blob: 307c1264dc1be97b489a1cf7dac0299988e3a9ac [file] [log] [blame]
use crate::base;
use crate::common::{self, CodegenCx};
use crate::debuginfo;
use crate::errors::{
InvalidMinimumAlignmentNotPowerOfTwo, InvalidMinimumAlignmentTooLarge, SymbolAlreadyDefined,
};
use crate::llvm::{self, True};
use crate::type_::Type;
use crate::type_of::LayoutLlvmExt;
use crate::value::Value;
use cstr::cstr;
use rustc_codegen_ssa::traits::*;
use rustc_hir::def_id::DefId;
use rustc_middle::middle::codegen_fn_attrs::{CodegenFnAttrFlags, CodegenFnAttrs};
use rustc_middle::mir::interpret::{
read_target_uint, Allocation, ConstAllocation, ErrorHandled, InitChunk, Pointer,
Scalar as InterpScalar,
};
use rustc_middle::mir::mono::MonoItem;
use rustc_middle::ty::layout::LayoutOf;
use rustc_middle::ty::{self, Instance, Ty};
use rustc_middle::{bug, span_bug};
use rustc_session::config::Lto;
use rustc_target::abi::{
Align, AlignFromBytesError, HasDataLayout, Primitive, Scalar, Size, WrappingRange,
};
use std::ops::Range;
pub fn const_alloc_to_llvm<'ll>(cx: &CodegenCx<'ll, '_>, alloc: ConstAllocation<'_>) -> &'ll Value {
let alloc = alloc.inner();
let mut llvals = Vec::with_capacity(alloc.provenance().ptrs().len() + 1);
let dl = cx.data_layout();
let pointer_size = dl.pointer_size.bytes() as usize;
// Note: this function may call `inspect_with_uninit_and_ptr_outside_interpreter`, so `range`
// must be within the bounds of `alloc` and not contain or overlap a pointer provenance.
fn append_chunks_of_init_and_uninit_bytes<'ll, 'a, 'b>(
llvals: &mut Vec<&'ll Value>,
cx: &'a CodegenCx<'ll, 'b>,
alloc: &'a Allocation,
range: Range<usize>,
) {
let chunks = alloc.init_mask().range_as_init_chunks(range.clone().into());
let chunk_to_llval = move |chunk| match chunk {
InitChunk::Init(range) => {
let range = (range.start.bytes() as usize)..(range.end.bytes() as usize);
let bytes = alloc.inspect_with_uninit_and_ptr_outside_interpreter(range);
cx.const_bytes(bytes)
}
InitChunk::Uninit(range) => {
let len = range.end.bytes() - range.start.bytes();
cx.const_undef(cx.type_array(cx.type_i8(), len))
}
};
// Generating partially-uninit consts is limited to small numbers of chunks,
// to avoid the cost of generating large complex const expressions.
// For example, `[(u32, u8); 1024 * 1024]` contains uninit padding in each element,
// and would result in `{ [5 x i8] zeroinitializer, [3 x i8] undef, ...repeat 1M times... }`.
let max = cx.sess().opts.unstable_opts.uninit_const_chunk_threshold;
let allow_uninit_chunks = chunks.clone().take(max.saturating_add(1)).count() <= max;
if allow_uninit_chunks {
llvals.extend(chunks.map(chunk_to_llval));
} else {
// If this allocation contains any uninit bytes, codegen as if it was initialized
// (using some arbitrary value for uninit bytes).
let bytes = alloc.inspect_with_uninit_and_ptr_outside_interpreter(range);
llvals.push(cx.const_bytes(bytes));
}
}
let mut next_offset = 0;
for &(offset, alloc_id) in alloc.provenance().ptrs().iter() {
let offset = offset.bytes();
assert_eq!(offset as usize as u64, offset);
let offset = offset as usize;
if offset > next_offset {
// This `inspect` is okay since we have checked that there is no provenance, it
// is within the bounds of the allocation, and it doesn't affect interpreter execution
// (we inspect the result after interpreter execution).
append_chunks_of_init_and_uninit_bytes(&mut llvals, cx, alloc, next_offset..offset);
}
let ptr_offset = read_target_uint(
dl.endian,
// This `inspect` is okay since it is within the bounds of the allocation, it doesn't
// affect interpreter execution (we inspect the result after interpreter execution),
// and we properly interpret the provenance as a relocation pointer offset.
alloc.inspect_with_uninit_and_ptr_outside_interpreter(offset..(offset + pointer_size)),
)
.expect("const_alloc_to_llvm: could not read relocation pointer")
as u64;
let address_space = cx.tcx.global_alloc(alloc_id).address_space(cx);
llvals.push(cx.scalar_to_backend(
InterpScalar::from_pointer(
Pointer::new(alloc_id, Size::from_bytes(ptr_offset)),
&cx.tcx,
),
Scalar::Initialized {
value: Primitive::Pointer(address_space),
valid_range: WrappingRange::full(dl.pointer_size),
},
cx.type_ptr_ext(address_space),
));
next_offset = offset + pointer_size;
}
if alloc.len() >= next_offset {
let range = next_offset..alloc.len();
// This `inspect` is okay since we have check that it is after all provenance, it is
// within the bounds of the allocation, and it doesn't affect interpreter execution (we
// inspect the result after interpreter execution).
append_chunks_of_init_and_uninit_bytes(&mut llvals, cx, alloc, range);
}
cx.const_struct(&llvals, true)
}
pub fn codegen_static_initializer<'ll, 'tcx>(
cx: &CodegenCx<'ll, 'tcx>,
def_id: DefId,
) -> Result<(&'ll Value, ConstAllocation<'tcx>), ErrorHandled> {
let alloc = cx.tcx.eval_static_initializer(def_id)?;
Ok((const_alloc_to_llvm(cx, alloc), alloc))
}
fn set_global_alignment<'ll>(cx: &CodegenCx<'ll, '_>, gv: &'ll Value, mut align: Align) {
// The target may require greater alignment for globals than the type does.
// Note: GCC and Clang also allow `__attribute__((aligned))` on variables,
// which can force it to be smaller. Rust doesn't support this yet.
if let Some(min) = cx.sess().target.min_global_align {
match Align::from_bits(min) {
Ok(min) => align = align.max(min),
Err(err) => match err {
AlignFromBytesError::NotPowerOfTwo(align) => {
cx.sess().emit_err(InvalidMinimumAlignmentNotPowerOfTwo { align });
}
AlignFromBytesError::TooLarge(align) => {
cx.sess().emit_err(InvalidMinimumAlignmentTooLarge { align });
}
},
}
}
unsafe {
llvm::LLVMSetAlignment(gv, align.bytes() as u32);
}
}
fn check_and_apply_linkage<'ll, 'tcx>(
cx: &CodegenCx<'ll, 'tcx>,
attrs: &CodegenFnAttrs,
ty: Ty<'tcx>,
sym: &str,
def_id: DefId,
) -> &'ll Value {
let llty = cx.layout_of(ty).llvm_type(cx);
if let Some(linkage) = attrs.import_linkage {
debug!("get_static: sym={} linkage={:?}", sym, linkage);
unsafe {
// Declare a symbol `foo` with the desired linkage.
let g1 = cx.declare_global(sym, cx.type_i8());
llvm::LLVMRustSetLinkage(g1, base::linkage_to_llvm(linkage));
// Declare an internal global `extern_with_linkage_foo` which
// is initialized with the address of `foo`. If `foo` is
// discarded during linking (for example, if `foo` has weak
// linkage and there are no definitions), then
// `extern_with_linkage_foo` will instead be initialized to
// zero.
let mut real_name = "_rust_extern_with_linkage_".to_string();
real_name.push_str(sym);
let g2 = cx.define_global(&real_name, llty).unwrap_or_else(|| {
cx.sess().emit_fatal(SymbolAlreadyDefined {
span: cx.tcx.def_span(def_id),
symbol_name: sym,
})
});
llvm::LLVMRustSetLinkage(g2, llvm::Linkage::InternalLinkage);
llvm::LLVMSetInitializer(g2, g1);
g2
}
} else if cx.tcx.sess.target.arch == "x86"
&& let Some(dllimport) = common::get_dllimport(cx.tcx, def_id, sym)
{
cx.declare_global(
&common::i686_decorated_name(
&dllimport,
common::is_mingw_gnu_toolchain(&cx.tcx.sess.target),
true,
),
llty,
)
} else {
// Generate an external declaration.
// FIXME(nagisa): investigate whether it can be changed into define_global
cx.declare_global(sym, llty)
}
}
impl<'ll> CodegenCx<'ll, '_> {
pub(crate) fn const_bitcast(&self, val: &'ll Value, ty: &'ll Type) -> &'ll Value {
unsafe { llvm::LLVMConstBitCast(val, ty) }
}
pub(crate) fn static_addr_of_mut(
&self,
cv: &'ll Value,
align: Align,
kind: Option<&str>,
) -> &'ll Value {
unsafe {
let gv = match kind {
Some(kind) if !self.tcx.sess.fewer_names() => {
let name = self.generate_local_symbol_name(kind);
let gv = self.define_global(&name, self.val_ty(cv)).unwrap_or_else(|| {
bug!("symbol `{}` is already defined", name);
});
llvm::LLVMRustSetLinkage(gv, llvm::Linkage::PrivateLinkage);
gv
}
_ => self.define_private_global(self.val_ty(cv)),
};
llvm::LLVMSetInitializer(gv, cv);
set_global_alignment(self, gv, align);
llvm::SetUnnamedAddress(gv, llvm::UnnamedAddr::Global);
gv
}
}
pub(crate) fn get_static(&self, def_id: DefId) -> &'ll Value {
let instance = Instance::mono(self.tcx, def_id);
if let Some(&g) = self.instances.borrow().get(&instance) {
return g;
}
let defined_in_current_codegen_unit =
self.codegen_unit.items().contains_key(&MonoItem::Static(def_id));
assert!(
!defined_in_current_codegen_unit,
"consts::get_static() should always hit the cache for \
statics defined in the same CGU, but did not for `{def_id:?}`"
);
let ty = instance.ty(self.tcx, ty::ParamEnv::reveal_all());
let sym = self.tcx.symbol_name(instance).name;
let fn_attrs = self.tcx.codegen_fn_attrs(def_id);
debug!("get_static: sym={} instance={:?} fn_attrs={:?}", sym, instance, fn_attrs);
let g = if def_id.is_local() && !self.tcx.is_foreign_item(def_id) {
let llty = self.layout_of(ty).llvm_type(self);
if let Some(g) = self.get_declared_value(sym) {
if self.val_ty(g) != self.type_ptr() {
span_bug!(self.tcx.def_span(def_id), "Conflicting types for static");
}
}
let g = self.declare_global(sym, llty);
if !self.tcx.is_reachable_non_generic(def_id) {
unsafe {
llvm::LLVMRustSetVisibility(g, llvm::Visibility::Hidden);
}
}
g
} else {
check_and_apply_linkage(self, fn_attrs, ty, sym, def_id)
};
// Thread-local statics in some other crate need to *always* be linked
// against in a thread-local fashion, so we need to be sure to apply the
// thread-local attribute locally if it was present remotely. If we
// don't do this then linker errors can be generated where the linker
// complains that one object files has a thread local version of the
// symbol and another one doesn't.
if fn_attrs.flags.contains(CodegenFnAttrFlags::THREAD_LOCAL) {
llvm::set_thread_local_mode(g, self.tls_model);
}
let dso_local = unsafe { self.should_assume_dso_local(g, true) };
if dso_local {
unsafe {
llvm::LLVMRustSetDSOLocal(g, true);
}
}
if !def_id.is_local() {
let needs_dll_storage_attr = self.use_dll_storage_attrs && !self.tcx.is_foreign_item(def_id) &&
// Local definitions can never be imported, so we must not apply
// the DLLImport annotation.
!dso_local &&
// ThinLTO can't handle this workaround in all cases, so we don't
// emit the attrs. Instead we make them unnecessary by disallowing
// dynamic linking when linker plugin based LTO is enabled.
!self.tcx.sess.opts.cg.linker_plugin_lto.enabled() &&
self.tcx.sess.lto() != Lto::Thin;
// If this assertion triggers, there's something wrong with commandline
// argument validation.
debug_assert!(
!(self.tcx.sess.opts.cg.linker_plugin_lto.enabled()
&& self.tcx.sess.target.is_like_windows
&& self.tcx.sess.opts.cg.prefer_dynamic)
);
if needs_dll_storage_attr {
// This item is external but not foreign, i.e., it originates from an external Rust
// crate. Since we don't know whether this crate will be linked dynamically or
// statically in the final application, we always mark such symbols as 'dllimport'.
// If final linkage happens to be static, we rely on compiler-emitted __imp_ stubs
// to make things work.
//
// However, in some scenarios we defer emission of statics to downstream
// crates, so there are cases where a static with an upstream DefId
// is actually present in the current crate. We can find out via the
// is_codegened_item query.
if !self.tcx.is_codegened_item(def_id) {
unsafe {
llvm::LLVMSetDLLStorageClass(g, llvm::DLLStorageClass::DllImport);
}
}
}
}
if self.use_dll_storage_attrs
&& let Some(library) = self.tcx.native_library(def_id)
&& library.kind.is_dllimport()
{
// For foreign (native) libs we know the exact storage type to use.
unsafe {
llvm::LLVMSetDLLStorageClass(g, llvm::DLLStorageClass::DllImport);
}
}
self.instances.borrow_mut().insert(instance, g);
g
}
}
impl<'ll> StaticMethods for CodegenCx<'ll, '_> {
fn static_addr_of(&self, cv: &'ll Value, align: Align, kind: Option<&str>) -> &'ll Value {
if let Some(&gv) = self.const_globals.borrow().get(&cv) {
unsafe {
// Upgrade the alignment in cases where the same constant is used with different
// alignment requirements
let llalign = align.bytes() as u32;
if llalign > llvm::LLVMGetAlignment(gv) {
llvm::LLVMSetAlignment(gv, llalign);
}
}
return gv;
}
let gv = self.static_addr_of_mut(cv, align, kind);
unsafe {
llvm::LLVMSetGlobalConstant(gv, True);
}
self.const_globals.borrow_mut().insert(cv, gv);
gv
}
fn codegen_static(&self, def_id: DefId, is_mutable: bool) {
unsafe {
let attrs = self.tcx.codegen_fn_attrs(def_id);
let Ok((v, alloc)) = codegen_static_initializer(self, def_id) else {
// Error has already been reported
return;
};
let alloc = alloc.inner();
let g = self.get_static(def_id);
let val_llty = self.val_ty(v);
let instance = Instance::mono(self.tcx, def_id);
let ty = instance.ty(self.tcx, ty::ParamEnv::reveal_all());
let llty = self.layout_of(ty).llvm_type(self);
let g = if val_llty == llty {
g
} else {
// If we created the global with the wrong type,
// correct the type.
let name = llvm::get_value_name(g).to_vec();
llvm::set_value_name(g, b"");
let linkage = llvm::LLVMRustGetLinkage(g);
let visibility = llvm::LLVMRustGetVisibility(g);
let new_g = llvm::LLVMRustGetOrInsertGlobal(
self.llmod,
name.as_ptr().cast(),
name.len(),
val_llty,
);
llvm::LLVMRustSetLinkage(new_g, linkage);
llvm::LLVMRustSetVisibility(new_g, visibility);
// The old global has had its name removed but is returned by
// get_static since it is in the instance cache. Provide an
// alternative lookup that points to the new global so that
// global_asm! can compute the correct mangled symbol name
// for the global.
self.renamed_statics.borrow_mut().insert(def_id, new_g);
// To avoid breaking any invariants, we leave around the old
// global for the moment; we'll replace all references to it
// with the new global later. (See base::codegen_backend.)
self.statics_to_rauw.borrow_mut().push((g, new_g));
new_g
};
set_global_alignment(self, g, self.align_of(ty));
llvm::LLVMSetInitializer(g, v);
if self.should_assume_dso_local(g, true) {
llvm::LLVMRustSetDSOLocal(g, true);
}
// As an optimization, all shared statics which do not have interior
// mutability are placed into read-only memory.
if !is_mutable && self.type_is_freeze(ty) {
llvm::LLVMSetGlobalConstant(g, llvm::True);
}
debuginfo::build_global_var_di_node(self, def_id, g);
if attrs.flags.contains(CodegenFnAttrFlags::THREAD_LOCAL) {
llvm::set_thread_local_mode(g, self.tls_model);
// Do not allow LLVM to change the alignment of a TLS on macOS.
//
// By default a global's alignment can be freely increased.
// This allows LLVM to generate more performant instructions
// e.g., using load-aligned into a SIMD register.
//
// However, on macOS 10.10 or below, the dynamic linker does not
// respect any alignment given on the TLS (radar 24221680).
// This will violate the alignment assumption, and causing segfault at runtime.
//
// This bug is very easy to trigger. In `println!` and `panic!`,
// the `LOCAL_STDOUT`/`LOCAL_STDERR` handles are stored in a TLS,
// which the values would be `mem::replace`d on initialization.
// The implementation of `mem::replace` will use SIMD
// whenever the size is 32 bytes or higher. LLVM notices SIMD is used
// and tries to align `LOCAL_STDOUT`/`LOCAL_STDERR` to a 32-byte boundary,
// which macOS's dyld disregarded and causing crashes
// (see issues #51794, #51758, #50867, #48866 and #44056).
//
// To workaround the bug, we trick LLVM into not increasing
// the global's alignment by explicitly assigning a section to it
// (equivalent to automatically generating a `#[link_section]` attribute).
// See the comment in the `GlobalValue::canIncreaseAlignment()` function
// of `lib/IR/Globals.cpp` for why this works.
//
// When the alignment is not increased, the optimized `mem::replace`
// will use load-unaligned instructions instead, and thus avoiding the crash.
//
// We could remove this hack whenever we decide to drop macOS 10.10 support.
if self.tcx.sess.target.is_like_osx {
// The `inspect` method is okay here because we checked for provenance, and
// because we are doing this access to inspect the final interpreter state
// (not as part of the interpreter execution).
//
// FIXME: This check requires that the (arbitrary) value of undefined bytes
// happens to be zero. Instead, we should only check the value of defined bytes
// and set all undefined bytes to zero if this allocation is headed for the
// BSS.
let all_bytes_are_zero = alloc.provenance().ptrs().is_empty()
&& alloc
.inspect_with_uninit_and_ptr_outside_interpreter(0..alloc.len())
.iter()
.all(|&byte| byte == 0);
let sect_name = if all_bytes_are_zero {
cstr!("__DATA,__thread_bss")
} else {
cstr!("__DATA,__thread_data")
};
llvm::LLVMSetSection(g, sect_name.as_ptr());
}
}
// Wasm statics with custom link sections get special treatment as they
// go into custom sections of the wasm executable.
if self.tcx.sess.target.is_like_wasm {
if let Some(section) = attrs.link_section {
let section = llvm::LLVMMDStringInContext2(
self.llcx,
section.as_str().as_ptr().cast(),
section.as_str().len(),
);
assert!(alloc.provenance().ptrs().is_empty());
// The `inspect` method is okay here because we checked for provenance, and
// because we are doing this access to inspect the final interpreter state (not
// as part of the interpreter execution).
let bytes =
alloc.inspect_with_uninit_and_ptr_outside_interpreter(0..alloc.len());
let alloc =
llvm::LLVMMDStringInContext2(self.llcx, bytes.as_ptr().cast(), bytes.len());
let data = [section, alloc];
let meta = llvm::LLVMMDNodeInContext2(self.llcx, data.as_ptr(), data.len());
let val = llvm::LLVMMetadataAsValue(self.llcx, meta);
llvm::LLVMAddNamedMetadataOperand(
self.llmod,
"wasm.custom_sections\0".as_ptr().cast(),
val,
);
}
} else {
base::set_link_section(g, attrs);
}
if attrs.flags.contains(CodegenFnAttrFlags::USED) {
// `USED` and `USED_LINKER` can't be used together.
assert!(!attrs.flags.contains(CodegenFnAttrFlags::USED_LINKER));
// The semantics of #[used] in Rust only require the symbol to make it into the
// object file. It is explicitly allowed for the linker to strip the symbol if it
// is dead, which means we are allowed to use `llvm.compiler.used` instead of
// `llvm.used` here.
//
// Additionally, https://reviews.llvm.org/D97448 in LLVM 13 started emitting unique
// sections with SHF_GNU_RETAIN flag for llvm.used symbols, which may trigger bugs
// in the handling of `.init_array` (the static constructor list) in versions of
// the gold linker (prior to the one released with binutils 2.36).
//
// That said, we only ever emit these when compiling for ELF targets, unless
// `#[used(compiler)]` is explicitly requested. This is to avoid similar breakage
// on other targets, in particular MachO targets have *their* static constructor
// lists broken if `llvm.compiler.used` is emitted rather than `llvm.used`. However,
// that check happens when assigning the `CodegenFnAttrFlags` in `rustc_hir_analysis`,
// so we don't need to take care of it here.
self.add_compiler_used_global(g);
}
if attrs.flags.contains(CodegenFnAttrFlags::USED_LINKER) {
// `USED` and `USED_LINKER` can't be used together.
assert!(!attrs.flags.contains(CodegenFnAttrFlags::USED));
self.add_used_global(g);
}
}
}
/// Add a global value to a list to be stored in the `llvm.used` variable, an array of ptr.
fn add_used_global(&self, global: &'ll Value) {
self.used_statics.borrow_mut().push(global);
}
/// Add a global value to a list to be stored in the `llvm.compiler.used` variable,
/// an array of ptr.
fn add_compiler_used_global(&self, global: &'ll Value) {
self.compiler_used_statics.borrow_mut().push(global);
}
}