blob: 2a4bfe9e200f050525d4bf96f742523b0bfcfa21 [file] [log] [blame]
use rustc_ast::{
ptr::P,
token,
token::Delimiter,
tokenstream::{DelimSpan, TokenStream, TokenTree},
BinOpKind, BorrowKind, DelimArgs, Expr, ExprKind, ItemKind, MacCall, MethodCall, Mutability,
Path, PathSegment, Stmt, StructRest, UnOp, UseTree, UseTreeKind, DUMMY_NODE_ID,
};
use rustc_ast_pretty::pprust;
use rustc_data_structures::fx::FxHashSet;
use rustc_expand::base::ExtCtxt;
use rustc_span::{
symbol::{sym, Ident, Symbol},
Span,
};
use thin_vec::{thin_vec, ThinVec};
pub(super) struct Context<'cx, 'a> {
// An optimization.
//
// Elements that aren't consumed (PartialEq, PartialOrd, ...) can be copied **after** the
// `assert!` expression fails rather than copied on-the-fly.
best_case_captures: Vec<Stmt>,
// Top-level `let captureN = Capture::new()` statements
capture_decls: Vec<Capture>,
cx: &'cx ExtCtxt<'a>,
// Formatting string used for debugging
fmt_string: String,
// If the current expression being visited consumes itself. Used to construct
// `best_case_captures`.
is_consumed: bool,
// Top-level `let __local_bindN = &expr` statements
local_bind_decls: Vec<Stmt>,
// Used to avoid capturing duplicated paths
//
// ```rust
// let a = 1i32;
// assert!(add(a, a) == 3);
// ```
paths: FxHashSet<Ident>,
span: Span,
}
impl<'cx, 'a> Context<'cx, 'a> {
pub(super) fn new(cx: &'cx ExtCtxt<'a>, span: Span) -> Self {
Self {
best_case_captures: <_>::default(),
capture_decls: <_>::default(),
cx,
fmt_string: <_>::default(),
is_consumed: true,
local_bind_decls: <_>::default(),
paths: <_>::default(),
span,
}
}
/// Builds the whole `assert!` expression. For example, `let elem = 1; assert!(elem == 1);` expands to:
///
/// ```rust
/// #![feature(generic_assert_internals)]
/// let elem = 1;
/// {
/// #[allow(unused_imports)]
/// use ::core::asserting::{TryCaptureGeneric, TryCapturePrintable};
/// let mut __capture0 = ::core::asserting::Capture::new();
/// let __local_bind0 = &elem;
/// if !(
/// *{
/// (&::core::asserting::Wrapper(__local_bind0)).try_capture(&mut __capture0);
/// __local_bind0
/// } == 1
/// ) {
/// panic!("Assertion failed: elem == 1\nWith captures:\n elem = {:?}", __capture0)
/// }
/// }
/// ```
pub(super) fn build(mut self, mut cond_expr: P<Expr>, panic_path: Path) -> P<Expr> {
let expr_str = pprust::expr_to_string(&cond_expr);
self.manage_cond_expr(&mut cond_expr);
let initial_imports = self.build_initial_imports();
let panic = self.build_panic(&expr_str, panic_path);
let cond_expr_with_unlikely = self.build_unlikely(cond_expr);
let Self { best_case_captures, capture_decls, cx, local_bind_decls, span, .. } = self;
let mut assert_then_stmts = ThinVec::with_capacity(2);
assert_then_stmts.extend(best_case_captures);
assert_then_stmts.push(self.cx.stmt_expr(panic));
let assert_then = self.cx.block(span, assert_then_stmts);
let mut stmts = ThinVec::with_capacity(4);
stmts.push(initial_imports);
stmts.extend(capture_decls.into_iter().map(|c| c.decl));
stmts.extend(local_bind_decls);
stmts.push(
cx.stmt_expr(cx.expr(span, ExprKind::If(cond_expr_with_unlikely, assert_then, None))),
);
cx.expr_block(cx.block(span, stmts))
}
/// Initial **trait** imports
///
/// use ::core::asserting::{ ... };
fn build_initial_imports(&self) -> Stmt {
let nested_tree = |this: &Self, sym| {
(
UseTree {
prefix: this.cx.path(this.span, vec![Ident::with_dummy_span(sym)]),
kind: UseTreeKind::Simple(None),
span: this.span,
},
DUMMY_NODE_ID,
)
};
self.cx.stmt_item(
self.span,
self.cx.item(
self.span,
Ident::empty(),
thin_vec![self.cx.attr_nested_word(sym::allow, sym::unused_imports, self.span)],
ItemKind::Use(UseTree {
prefix: self.cx.path(self.span, self.cx.std_path(&[sym::asserting])),
kind: UseTreeKind::Nested(thin_vec![
nested_tree(self, sym::TryCaptureGeneric),
nested_tree(self, sym::TryCapturePrintable),
]),
span: self.span,
}),
),
)
}
/// Takes the conditional expression of `assert!` and then wraps it inside `unlikely`
fn build_unlikely(&self, cond_expr: P<Expr>) -> P<Expr> {
let unlikely_path = self.cx.std_path(&[sym::intrinsics, sym::unlikely]);
self.cx.expr_call(
self.span,
self.cx.expr_path(self.cx.path(self.span, unlikely_path)),
thin_vec![self.cx.expr(self.span, ExprKind::Unary(UnOp::Not, cond_expr))],
)
}
/// The necessary custom `panic!(...)` expression.
///
/// panic!(
/// "Assertion failed: ... \n With expansion: ...",
/// __capture0,
/// ...
/// );
fn build_panic(&self, expr_str: &str, panic_path: Path) -> P<Expr> {
let escaped_expr_str = escape_to_fmt(expr_str);
let initial = [
TokenTree::token_alone(
token::Literal(token::Lit {
kind: token::LitKind::Str,
symbol: Symbol::intern(&if self.fmt_string.is_empty() {
format!("Assertion failed: {escaped_expr_str}")
} else {
format!(
"Assertion failed: {escaped_expr_str}\nWith captures:\n{}",
&self.fmt_string
)
}),
suffix: None,
}),
self.span,
),
TokenTree::token_alone(token::Comma, self.span),
];
let captures = self.capture_decls.iter().flat_map(|cap| {
[
TokenTree::token_alone(token::Ident(cap.ident.name, false), cap.ident.span),
TokenTree::token_alone(token::Comma, self.span),
]
});
self.cx.expr(
self.span,
ExprKind::MacCall(P(MacCall {
path: panic_path,
args: P(DelimArgs {
dspan: DelimSpan::from_single(self.span),
delim: Delimiter::Parenthesis,
tokens: initial.into_iter().chain(captures).collect::<TokenStream>(),
}),
})),
)
}
/// Recursive function called until `cond_expr` and `fmt_str` are fully modified.
///
/// See [Self::manage_initial_capture] and [Self::manage_try_capture]
fn manage_cond_expr(&mut self, expr: &mut P<Expr>) {
match &mut expr.kind {
ExprKind::AddrOf(_, mutability, local_expr) => {
self.with_is_consumed_management(matches!(mutability, Mutability::Mut), |this| {
this.manage_cond_expr(local_expr)
});
}
ExprKind::Array(local_exprs) => {
for local_expr in local_exprs {
self.manage_cond_expr(local_expr);
}
}
ExprKind::Binary(op, lhs, rhs) => {
self.with_is_consumed_management(
matches!(
op.node,
BinOpKind::Add
| BinOpKind::And
| BinOpKind::BitAnd
| BinOpKind::BitOr
| BinOpKind::BitXor
| BinOpKind::Div
| BinOpKind::Mul
| BinOpKind::Or
| BinOpKind::Rem
| BinOpKind::Shl
| BinOpKind::Shr
| BinOpKind::Sub
),
|this| {
this.manage_cond_expr(lhs);
this.manage_cond_expr(rhs);
},
);
}
ExprKind::Call(_, local_exprs) => {
for local_expr in local_exprs {
self.manage_cond_expr(local_expr);
}
}
ExprKind::Cast(local_expr, _) => {
self.manage_cond_expr(local_expr);
}
ExprKind::If(local_expr, _, _) => {
self.manage_cond_expr(local_expr);
}
ExprKind::Index(prefix, suffix, _) => {
self.manage_cond_expr(prefix);
self.manage_cond_expr(suffix);
}
ExprKind::Let(_, local_expr, _, _) => {
self.manage_cond_expr(local_expr);
}
ExprKind::Match(local_expr, _) => {
self.manage_cond_expr(local_expr);
}
ExprKind::MethodCall(call) => {
for arg in &mut call.args {
self.manage_cond_expr(arg);
}
}
ExprKind::Path(_, Path { segments, .. }) if let [path_segment] = &segments[..] => {
let path_ident = path_segment.ident;
self.manage_initial_capture(expr, path_ident);
}
ExprKind::Paren(local_expr) => {
self.manage_cond_expr(local_expr);
}
ExprKind::Range(prefix, suffix, _) => {
if let Some(elem) = prefix {
self.manage_cond_expr(elem);
}
if let Some(elem) = suffix {
self.manage_cond_expr(elem);
}
}
ExprKind::Repeat(local_expr, elem) => {
self.manage_cond_expr(local_expr);
self.manage_cond_expr(&mut elem.value);
}
ExprKind::Struct(elem) => {
for field in &mut elem.fields {
self.manage_cond_expr(&mut field.expr);
}
if let StructRest::Base(local_expr) = &mut elem.rest {
self.manage_cond_expr(local_expr);
}
}
ExprKind::Tup(local_exprs) => {
for local_expr in local_exprs {
self.manage_cond_expr(local_expr);
}
}
ExprKind::Unary(un_op, local_expr) => {
self.with_is_consumed_management(matches!(un_op, UnOp::Neg | UnOp::Not), |this| {
this.manage_cond_expr(local_expr)
});
}
// Expressions that are not worth or can not be captured.
//
// Full list instead of `_` to catch possible future inclusions and to
// sync with the `rfc-2011-nicer-assert-messages/all-expr-kinds.rs` test.
ExprKind::Assign(_, _, _)
| ExprKind::AssignOp(_, _, _)
| ExprKind::Gen(_, _, _)
| ExprKind::Await(_, _)
| ExprKind::Block(_, _)
| ExprKind::Break(_, _)
| ExprKind::Closure(_)
| ExprKind::ConstBlock(_)
| ExprKind::Continue(_)
| ExprKind::Err
| ExprKind::Field(_, _)
| ExprKind::ForLoop(_, _, _, _)
| ExprKind::FormatArgs(_)
| ExprKind::IncludedBytes(..)
| ExprKind::InlineAsm(_)
| ExprKind::Lit(_)
| ExprKind::Loop(_, _, _)
| ExprKind::MacCall(_)
| ExprKind::OffsetOf(_, _)
| ExprKind::Path(_, _)
| ExprKind::Ret(_)
| ExprKind::Try(_)
| ExprKind::TryBlock(_)
| ExprKind::Type(_, _)
| ExprKind::Underscore
| ExprKind::While(_, _, _)
| ExprKind::Yeet(_)
| ExprKind::Become(_)
| ExprKind::Yield(_) => {}
}
}
/// Pushes the top-level declarations and modifies `expr` to try capturing variables.
///
/// `fmt_str`, the formatting string used for debugging, is constructed to show possible
/// captured variables.
fn manage_initial_capture(&mut self, expr: &mut P<Expr>, path_ident: Ident) {
if self.paths.contains(&path_ident) {
return;
} else {
self.fmt_string.push_str(" ");
self.fmt_string.push_str(path_ident.as_str());
self.fmt_string.push_str(" = {:?}\n");
let _ = self.paths.insert(path_ident);
}
let curr_capture_idx = self.capture_decls.len();
let capture_string = format!("__capture{curr_capture_idx}");
let ident = Ident::new(Symbol::intern(&capture_string), self.span);
let init_std_path = self.cx.std_path(&[sym::asserting, sym::Capture, sym::new]);
let init = self.cx.expr_call(
self.span,
self.cx.expr_path(self.cx.path(self.span, init_std_path)),
ThinVec::new(),
);
let capture = Capture { decl: self.cx.stmt_let(self.span, true, ident, init), ident };
self.capture_decls.push(capture);
self.manage_try_capture(ident, curr_capture_idx, expr);
}
/// Tries to copy `__local_bindN` into `__captureN`.
///
/// *{
/// (&Wrapper(__local_bindN)).try_capture(&mut __captureN);
/// __local_bindN
/// }
fn manage_try_capture(&mut self, capture: Ident, curr_capture_idx: usize, expr: &mut P<Expr>) {
let local_bind_string = format!("__local_bind{curr_capture_idx}");
let local_bind = Ident::new(Symbol::intern(&local_bind_string), self.span);
self.local_bind_decls.push(self.cx.stmt_let(
self.span,
false,
local_bind,
self.cx.expr_addr_of(self.span, expr.clone()),
));
let wrapper = self.cx.expr_call(
self.span,
self.cx.expr_path(
self.cx.path(self.span, self.cx.std_path(&[sym::asserting, sym::Wrapper])),
),
thin_vec![self.cx.expr_path(Path::from_ident(local_bind))],
);
let try_capture_call = self
.cx
.stmt_expr(expr_method_call(
self.cx,
PathSegment {
args: None,
id: DUMMY_NODE_ID,
ident: Ident::new(sym::try_capture, self.span),
},
expr_paren(self.cx, self.span, self.cx.expr_addr_of(self.span, wrapper)),
thin_vec![expr_addr_of_mut(
self.cx,
self.span,
self.cx.expr_path(Path::from_ident(capture)),
)],
self.span,
))
.add_trailing_semicolon();
let local_bind_path = self.cx.expr_path(Path::from_ident(local_bind));
let rslt = if self.is_consumed {
let ret = self.cx.stmt_expr(local_bind_path);
self.cx.expr_block(self.cx.block(self.span, thin_vec![try_capture_call, ret]))
} else {
self.best_case_captures.push(try_capture_call);
local_bind_path
};
*expr = self.cx.expr_deref(self.span, rslt);
}
// Calls `f` with the internal `is_consumed` set to `curr_is_consumed` and then
// sets the internal `is_consumed` back to its original value.
fn with_is_consumed_management(&mut self, curr_is_consumed: bool, f: impl FnOnce(&mut Self)) {
let prev_is_consumed = self.is_consumed;
self.is_consumed = curr_is_consumed;
f(self);
self.is_consumed = prev_is_consumed;
}
}
/// Information about a captured element.
#[derive(Debug)]
struct Capture {
// Generated indexed `Capture` statement.
//
// `let __capture{} = Capture::new();`
decl: Stmt,
// The name of the generated indexed `Capture` variable.
//
// `__capture{}`
ident: Ident,
}
/// Escapes to use as a formatting string.
fn escape_to_fmt(s: &str) -> String {
let mut rslt = String::with_capacity(s.len());
for c in s.chars() {
rslt.extend(c.escape_debug());
match c {
'{' | '}' => rslt.push(c),
_ => {}
}
}
rslt
}
fn expr_addr_of_mut(cx: &ExtCtxt<'_>, sp: Span, e: P<Expr>) -> P<Expr> {
cx.expr(sp, ExprKind::AddrOf(BorrowKind::Ref, Mutability::Mut, e))
}
fn expr_method_call(
cx: &ExtCtxt<'_>,
seg: PathSegment,
receiver: P<Expr>,
args: ThinVec<P<Expr>>,
span: Span,
) -> P<Expr> {
cx.expr(span, ExprKind::MethodCall(Box::new(MethodCall { seg, receiver, args, span })))
}
fn expr_paren(cx: &ExtCtxt<'_>, sp: Span, e: P<Expr>) -> P<Expr> {
cx.expr(sp, ExprKind::Paren(e))
}