blob: fb0e5811c26798a3aef2e7c93d2488c9cb1aff4c [file] [log] [blame]
use rustc_data_structures::fx::{FxIndexMap, FxIndexSet};
use rustc_errors::ErrorGuaranteed;
use rustc_hir::def::DefKind;
use rustc_hir::def_id::LocalDefId;
use rustc_hir::OpaqueTyOrigin;
use rustc_infer::infer::InferCtxt;
use rustc_infer::infer::TyCtxtInferExt as _;
use rustc_infer::traits::{Obligation, ObligationCause};
use rustc_middle::traits::DefiningAnchor;
use rustc_middle::ty::visit::TypeVisitableExt;
use rustc_middle::ty::{self, OpaqueHiddenType, OpaqueTypeKey, Ty, TyCtxt, TypeFoldable};
use rustc_middle::ty::{GenericArgKind, GenericArgs};
use rustc_span::Span;
use rustc_trait_selection::traits::error_reporting::TypeErrCtxtExt as _;
use rustc_trait_selection::traits::ObligationCtxt;
use crate::session_diagnostics::NonGenericOpaqueTypeParam;
use super::RegionInferenceContext;
impl<'tcx> RegionInferenceContext<'tcx> {
/// Resolve any opaque types that were encountered while borrow checking
/// this item. This is then used to get the type in the `type_of` query.
///
/// For example consider `fn f<'a>(x: &'a i32) -> impl Sized + 'a { x }`.
/// This is lowered to give HIR something like
///
/// type f<'a>::_Return<'_a> = impl Sized + '_a;
/// fn f<'a>(x: &'a i32) -> f<'static>::_Return<'a> { x }
///
/// When checking the return type record the type from the return and the
/// type used in the return value. In this case they might be `_Return<'1>`
/// and `&'2 i32` respectively.
///
/// Once we to this method, we have completed region inference and want to
/// call `infer_opaque_definition_from_instantiation` to get the inferred
/// type of `_Return<'_a>`. `infer_opaque_definition_from_instantiation`
/// compares lifetimes directly, so we need to map the inference variables
/// back to concrete lifetimes: `'static`, `ReEarlyBound` or `ReFree`.
///
/// First we map all the lifetimes in the concrete type to an equal
/// universal region that occurs in the concrete type's args, in this case
/// this would result in `&'1 i32`. We only consider regions in the args
/// in case there is an equal region that does not. For example, this should
/// be allowed:
/// `fn f<'a: 'b, 'b: 'a>(x: *mut &'b i32) -> impl Sized + 'a { x }`
///
/// Then we map the regions in both the type and the subst to their
/// `external_name` giving `concrete_type = &'a i32`,
/// `args = ['static, 'a]`. This will then allow
/// `infer_opaque_definition_from_instantiation` to determine that
/// `_Return<'_a> = &'_a i32`.
///
/// There's a slight complication around closures. Given
/// `fn f<'a: 'a>() { || {} }` the closure's type is something like
/// `f::<'a>::{{closure}}`. The region parameter from f is essentially
/// ignored by type checking so ends up being inferred to an empty region.
/// Calling `universal_upper_bound` for such a region gives `fr_fn_body`,
/// which has no `external_name` in which case we use `'empty` as the
/// region to pass to `infer_opaque_definition_from_instantiation`.
#[instrument(level = "debug", skip(self, infcx), ret)]
pub(crate) fn infer_opaque_types(
&self,
infcx: &InferCtxt<'tcx>,
opaque_ty_decls: FxIndexMap<OpaqueTypeKey<'tcx>, OpaqueHiddenType<'tcx>>,
) -> FxIndexMap<LocalDefId, OpaqueHiddenType<'tcx>> {
let mut result: FxIndexMap<LocalDefId, OpaqueHiddenType<'tcx>> = FxIndexMap::default();
let member_constraints: FxIndexMap<_, _> = self
.member_constraints
.all_indices()
.map(|ci| (self.member_constraints[ci].key, ci))
.collect();
debug!(?member_constraints);
for (opaque_type_key, concrete_type) in opaque_ty_decls {
let args = opaque_type_key.args;
debug!(?concrete_type, ?args);
let mut subst_regions = vec![self.universal_regions.fr_static];
let to_universal_region = |vid, subst_regions: &mut Vec<_>| {
trace!(?vid);
let scc = self.constraint_sccs.scc(vid);
trace!(?scc);
match self.scc_values.universal_regions_outlived_by(scc).find_map(|lb| {
self.eval_equal(vid, lb).then_some(self.definitions[lb].external_name?)
}) {
Some(region) => {
let vid = self.universal_regions.to_region_vid(region);
subst_regions.push(vid);
region
}
None => {
subst_regions.push(vid);
ty::Region::new_error_with_message(
infcx.tcx,
concrete_type.span,
"opaque type with non-universal region args",
)
}
}
};
// Start by inserting universal regions from the member_constraint choice regions.
// This will ensure they get precedence when folding the regions in the concrete type.
if let Some(&ci) = member_constraints.get(&opaque_type_key) {
for &vid in self.member_constraints.choice_regions(ci) {
to_universal_region(vid, &mut subst_regions);
}
}
debug!(?subst_regions);
// Next, insert universal regions from args, so we can translate regions that appear
// in them but are not subject to member constraints, for instance closure args.
let universal_args = infcx.tcx.fold_regions(args, |region, _| {
if let ty::RePlaceholder(..) = region.kind() {
// Higher kinded regions don't need remapping, they don't refer to anything outside of this the args.
return region;
}
let vid = self.to_region_vid(region);
to_universal_region(vid, &mut subst_regions)
});
debug!(?universal_args);
debug!(?subst_regions);
// Deduplicate the set of regions while keeping the chosen order.
let subst_regions = subst_regions.into_iter().collect::<FxIndexSet<_>>();
debug!(?subst_regions);
let universal_concrete_type =
infcx.tcx.fold_regions(concrete_type, |region, _| match *region {
ty::ReVar(vid) => subst_regions
.iter()
.find(|ur_vid| self.eval_equal(vid, **ur_vid))
.and_then(|ur_vid| self.definitions[*ur_vid].external_name)
.unwrap_or(infcx.tcx.lifetimes.re_erased),
_ => region,
});
debug!(?universal_concrete_type);
let opaque_type_key =
OpaqueTypeKey { def_id: opaque_type_key.def_id, args: universal_args };
let ty = infcx.infer_opaque_definition_from_instantiation(
opaque_type_key,
universal_concrete_type,
);
// Sometimes two opaque types are the same only after we remap the generic parameters
// back to the opaque type definition. E.g. we may have `OpaqueType<X, Y>` mapped to `(X, Y)`
// and `OpaqueType<Y, X>` mapped to `(Y, X)`, and those are the same, but we only know that
// once we convert the generic parameters to those of the opaque type.
if let Some(prev) = result.get_mut(&opaque_type_key.def_id) {
if prev.ty != ty {
let guar = ty.error_reported().err().unwrap_or_else(|| {
prev.report_mismatch(
&OpaqueHiddenType { ty, span: concrete_type.span },
opaque_type_key.def_id,
infcx.tcx,
)
.emit()
});
prev.ty = Ty::new_error(infcx.tcx, guar);
}
// Pick a better span if there is one.
// FIXME(oli-obk): collect multiple spans for better diagnostics down the road.
prev.span = prev.span.substitute_dummy(concrete_type.span);
} else {
result.insert(
opaque_type_key.def_id,
OpaqueHiddenType { ty, span: concrete_type.span },
);
}
}
result
}
/// Map the regions in the type to named regions. This is similar to what
/// `infer_opaque_types` does, but can infer any universal region, not only
/// ones from the args for the opaque type. It also doesn't double check
/// that the regions produced are in fact equal to the named region they are
/// replaced with. This is fine because this function is only to improve the
/// region names in error messages.
pub(crate) fn name_regions<T>(&self, tcx: TyCtxt<'tcx>, ty: T) -> T
where
T: TypeFoldable<TyCtxt<'tcx>>,
{
tcx.fold_regions(ty, |region, _| match *region {
ty::ReVar(vid) => {
let scc = self.constraint_sccs.scc(vid);
// Special handling of higher-ranked regions.
if self.scc_universes[scc] != ty::UniverseIndex::ROOT {
match self.scc_values.placeholders_contained_in(scc).enumerate().last() {
// If the region contains a single placeholder then they're equal.
Some((0, placeholder)) => {
return ty::Region::new_placeholder(tcx, placeholder);
}
// Fallback: this will produce a cryptic error message.
_ => return region,
}
}
// Find something that we can name
let upper_bound = self.approx_universal_upper_bound(vid);
let upper_bound = &self.definitions[upper_bound];
match upper_bound.external_name {
Some(reg) => reg,
None => {
// Nothing exact found, so we pick the first one that we find.
let scc = self.constraint_sccs.scc(vid);
for vid in self.rev_scc_graph.as_ref().unwrap().upper_bounds(scc) {
match self.definitions[vid].external_name {
None => {}
Some(region) if region.is_static() => {}
Some(region) => return region,
}
}
region
}
}
}
_ => region,
})
}
}
pub trait InferCtxtExt<'tcx> {
fn infer_opaque_definition_from_instantiation(
&self,
opaque_type_key: OpaqueTypeKey<'tcx>,
instantiated_ty: OpaqueHiddenType<'tcx>,
) -> Ty<'tcx>;
}
impl<'tcx> InferCtxtExt<'tcx> for InferCtxt<'tcx> {
/// Given the fully resolved, instantiated type for an opaque
/// type, i.e., the value of an inference variable like C1 or C2
/// (*), computes the "definition type" for an opaque type
/// definition -- that is, the inferred value of `Foo1<'x>` or
/// `Foo2<'x>` that we would conceptually use in its definition:
/// ```ignore (illustrative)
/// type Foo1<'x> = impl Bar<'x> = AAA; // <-- this type AAA
/// type Foo2<'x> = impl Bar<'x> = BBB; // <-- or this type BBB
/// fn foo<'a, 'b>(..) -> (Foo1<'a>, Foo2<'b>) { .. }
/// ```
/// Note that these values are defined in terms of a distinct set of
/// generic parameters (`'x` instead of `'a`) from C1 or C2. The main
/// purpose of this function is to do that translation.
///
/// (*) C1 and C2 were introduced in the comments on
/// `register_member_constraints`. Read that comment for more context.
///
/// # Parameters
///
/// - `def_id`, the `impl Trait` type
/// - `args`, the args used to instantiate this opaque type
/// - `instantiated_ty`, the inferred type C1 -- fully resolved, lifted version of
/// `opaque_defn.concrete_ty`
#[instrument(level = "debug", skip(self))]
fn infer_opaque_definition_from_instantiation(
&self,
opaque_type_key: OpaqueTypeKey<'tcx>,
instantiated_ty: OpaqueHiddenType<'tcx>,
) -> Ty<'tcx> {
if let Some(e) = self.tainted_by_errors() {
return Ty::new_error(self.tcx, e);
}
if let Err(guar) =
check_opaque_type_parameter_valid(self.tcx, opaque_type_key, instantiated_ty.span)
{
return Ty::new_error(self.tcx, guar);
}
let definition_ty = instantiated_ty
.remap_generic_params_to_declaration_params(opaque_type_key, self.tcx, false)
.ty;
// `definition_ty` does not live in of the current inference context,
// so lets make sure that we don't accidentally misuse our current `infcx`.
match check_opaque_type_well_formed(
self.tcx,
self.next_trait_solver(),
opaque_type_key.def_id,
instantiated_ty.span,
definition_ty,
) {
Ok(hidden_ty) => hidden_ty,
Err(guar) => Ty::new_error(self.tcx, guar),
}
}
}
/// This logic duplicates most of `check_opaque_meets_bounds`.
/// FIXME(oli-obk): Also do region checks here and then consider removing
/// `check_opaque_meets_bounds` entirely.
fn check_opaque_type_well_formed<'tcx>(
tcx: TyCtxt<'tcx>,
next_trait_solver: bool,
def_id: LocalDefId,
definition_span: Span,
definition_ty: Ty<'tcx>,
) -> Result<Ty<'tcx>, ErrorGuaranteed> {
// Only check this for TAIT. RPIT already supports `tests/ui/impl-trait/nested-return-type2.rs`
// on stable and we'd break that.
let opaque_ty_hir = tcx.hir().expect_item(def_id);
let OpaqueTyOrigin::TyAlias { .. } = opaque_ty_hir.expect_opaque_ty().origin else {
return Ok(definition_ty);
};
let param_env = tcx.param_env(def_id);
let mut parent_def_id = def_id;
while tcx.def_kind(parent_def_id) == DefKind::OpaqueTy {
parent_def_id = tcx.local_parent(parent_def_id);
}
// FIXME(-Ztrait-solver=next): We probably should use `DefiningAnchor::Error`
// and prepopulate this `InferCtxt` with known opaque values, rather than
// using the `Bind` anchor here. For now it's fine.
let infcx = tcx
.infer_ctxt()
.with_next_trait_solver(next_trait_solver)
.with_opaque_type_inference(DefiningAnchor::Bind(parent_def_id))
.build();
let ocx = ObligationCtxt::new(&infcx);
let identity_args = GenericArgs::identity_for_item(tcx, def_id);
// Require that the hidden type actually fulfills all the bounds of the opaque type, even without
// the bounds that the function supplies.
let opaque_ty = Ty::new_opaque(tcx, def_id.to_def_id(), identity_args);
ocx.eq(&ObligationCause::misc(definition_span, def_id), param_env, opaque_ty, definition_ty)
.map_err(|err| {
infcx
.err_ctxt()
.report_mismatched_types(
&ObligationCause::misc(definition_span, def_id),
opaque_ty,
definition_ty,
err,
)
.emit()
})?;
// Require the hidden type to be well-formed with only the generics of the opaque type.
// Defining use functions may have more bounds than the opaque type, which is ok, as long as the
// hidden type is well formed even without those bounds.
let predicate = ty::Binder::dummy(ty::PredicateKind::Clause(ty::ClauseKind::WellFormed(
definition_ty.into(),
)));
ocx.register_obligation(Obligation::misc(tcx, definition_span, def_id, param_env, predicate));
// Check that all obligations are satisfied by the implementation's
// version.
let errors = ocx.select_all_or_error();
// This is fishy, but we check it again in `check_opaque_meets_bounds`.
// Remove once we can prepopulate with known hidden types.
let _ = infcx.take_opaque_types();
if errors.is_empty() {
Ok(definition_ty)
} else {
Err(infcx.err_ctxt().report_fulfillment_errors(errors))
}
}
fn check_opaque_type_parameter_valid(
tcx: TyCtxt<'_>,
opaque_type_key: OpaqueTypeKey<'_>,
span: Span,
) -> Result<(), ErrorGuaranteed> {
let opaque_ty_hir = tcx.hir().expect_item(opaque_type_key.def_id);
let is_ty_alias = match opaque_ty_hir.expect_opaque_ty().origin {
OpaqueTyOrigin::TyAlias { .. } => true,
OpaqueTyOrigin::AsyncFn(..) | OpaqueTyOrigin::FnReturn(..) => false,
};
let opaque_generics = tcx.generics_of(opaque_type_key.def_id);
let mut seen_params: FxIndexMap<_, Vec<_>> = FxIndexMap::default();
for (i, arg) in opaque_type_key.args.iter().enumerate() {
if let Err(guar) = arg.error_reported() {
return Err(guar);
}
let arg_is_param = match arg.unpack() {
GenericArgKind::Type(ty) => matches!(ty.kind(), ty::Param(_)),
GenericArgKind::Lifetime(lt) if is_ty_alias => {
matches!(*lt, ty::ReEarlyBound(_) | ty::ReFree(_))
}
// FIXME(#113916): we can't currently check for unique lifetime params,
// see that issue for more. We will also have to ignore unused lifetime
// params for RPIT, but that's comparatively trivial ✨
GenericArgKind::Lifetime(_) => continue,
GenericArgKind::Const(ct) => matches!(ct.kind(), ty::ConstKind::Param(_)),
};
if arg_is_param {
seen_params.entry(arg).or_default().push(i);
} else {
// Prevent `fn foo() -> Foo<u32>` from being defining.
let opaque_param = opaque_generics.param_at(i, tcx);
let kind = opaque_param.kind.descr();
return Err(tcx.sess.emit_err(NonGenericOpaqueTypeParam {
ty: arg,
kind,
span,
param_span: tcx.def_span(opaque_param.def_id),
}));
}
}
for (_, indices) in seen_params {
if indices.len() > 1 {
let descr = opaque_generics.param_at(indices[0], tcx).kind.descr();
let spans: Vec<_> = indices
.into_iter()
.map(|i| tcx.def_span(opaque_generics.param_at(i, tcx).def_id))
.collect();
return Err(tcx
.sess
.struct_span_err(span, "non-defining opaque type use in defining scope")
.span_note(spans, format!("{descr} used multiple times"))
.emit());
}
}
Ok(())
}