blob: 17bacfb260552375d481899d21955ed9acebe3aa [file] [log] [blame]
/*
* Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "jvm.h"
#include "asm/macroAssembler.inline.hpp"
#include "compiler/disassembler.hpp"
#include "gc/shared/collectedHeap.inline.hpp"
#include "gc/shared/barrierSet.hpp"
#include "gc/shared/barrierSetAssembler.hpp"
#include "interpreter/interpreter.hpp"
#include "memory/resourceArea.hpp"
#include "memory/universe.hpp"
#include "oops/accessDecorators.hpp"
#include "oops/klass.inline.hpp"
#include "prims/methodHandles.hpp"
#include "runtime/biasedLocking.hpp"
#include "runtime/flags/flagSetting.hpp"
#include "runtime/interfaceSupport.inline.hpp"
#include "runtime/jniHandles.inline.hpp"
#include "runtime/objectMonitor.hpp"
#include "runtime/os.inline.hpp"
#include "runtime/safepoint.hpp"
#include "runtime/safepointMechanism.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/stubRoutines.hpp"
#include "utilities/align.hpp"
#include "utilities/macros.hpp"
#ifdef COMPILER2
#include "opto/intrinsicnode.hpp"
#endif
#ifdef PRODUCT
#define BLOCK_COMMENT(str) /* nothing */
#define STOP(error) stop(error)
#else
#define BLOCK_COMMENT(str) block_comment(str)
#define STOP(error) block_comment(error); stop(error)
#endif
// Convert the raw encoding form into the form expected by the
// constructor for Address.
Address Address::make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc) {
assert(scale == 0, "not supported");
RelocationHolder rspec;
if (disp_reloc != relocInfo::none) {
rspec = Relocation::spec_simple(disp_reloc);
}
Register rindex = as_Register(index);
if (rindex != G0) {
Address madr(as_Register(base), rindex);
madr._rspec = rspec;
return madr;
} else {
Address madr(as_Register(base), disp);
madr._rspec = rspec;
return madr;
}
}
Address Argument::address_in_frame() const {
// Warning: In LP64 mode disp will occupy more than 10 bits, but
// op codes such as ld or ldx, only access disp() to get
// their simm13 argument.
int disp = ((_number - Argument::n_register_parameters + frame::memory_parameter_word_sp_offset) * BytesPerWord) + STACK_BIAS;
if (is_in())
return Address(FP, disp); // In argument.
else
return Address(SP, disp); // Out argument.
}
static const char* argumentNames[][2] = {
{"A0","P0"}, {"A1","P1"}, {"A2","P2"}, {"A3","P3"}, {"A4","P4"},
{"A5","P5"}, {"A6","P6"}, {"A7","P7"}, {"A8","P8"}, {"A9","P9"},
{"A(n>9)","P(n>9)"}
};
const char* Argument::name() const {
int nofArgs = sizeof argumentNames / sizeof argumentNames[0];
int num = number();
if (num >= nofArgs) num = nofArgs - 1;
return argumentNames[num][is_in() ? 1 : 0];
}
#ifdef ASSERT
// On RISC, there's no benefit to verifying instruction boundaries.
bool AbstractAssembler::pd_check_instruction_mark() { return false; }
#endif
// Patch instruction inst at offset inst_pos to refer to dest_pos
// and return the resulting instruction.
// We should have pcs, not offsets, but since all is relative, it will work out
// OK.
int MacroAssembler::patched_branch(int dest_pos, int inst, int inst_pos) {
int m; // mask for displacement field
int v; // new value for displacement field
const int word_aligned_ones = -4;
switch (inv_op(inst)) {
default: ShouldNotReachHere();
case call_op: m = wdisp(word_aligned_ones, 0, 30); v = wdisp(dest_pos, inst_pos, 30); break;
case branch_op:
switch (inv_op2(inst)) {
case fbp_op2: m = wdisp( word_aligned_ones, 0, 19); v = wdisp( dest_pos, inst_pos, 19); break;
case bp_op2: m = wdisp( word_aligned_ones, 0, 19); v = wdisp( dest_pos, inst_pos, 19); break;
case fb_op2: m = wdisp( word_aligned_ones, 0, 22); v = wdisp( dest_pos, inst_pos, 22); break;
case br_op2: m = wdisp( word_aligned_ones, 0, 22); v = wdisp( dest_pos, inst_pos, 22); break;
case bpr_op2: {
if (is_cbcond(inst)) {
m = wdisp10(word_aligned_ones, 0);
v = wdisp10(dest_pos, inst_pos);
} else {
m = wdisp16(word_aligned_ones, 0);
v = wdisp16(dest_pos, inst_pos);
}
break;
}
default: ShouldNotReachHere();
}
}
return inst & ~m | v;
}
// Return the offset of the branch destionation of instruction inst
// at offset pos.
// Should have pcs, but since all is relative, it works out.
int MacroAssembler::branch_destination(int inst, int pos) {
int r;
switch (inv_op(inst)) {
default: ShouldNotReachHere();
case call_op: r = inv_wdisp(inst, pos, 30); break;
case branch_op:
switch (inv_op2(inst)) {
case fbp_op2: r = inv_wdisp( inst, pos, 19); break;
case bp_op2: r = inv_wdisp( inst, pos, 19); break;
case fb_op2: r = inv_wdisp( inst, pos, 22); break;
case br_op2: r = inv_wdisp( inst, pos, 22); break;
case bpr_op2: {
if (is_cbcond(inst)) {
r = inv_wdisp10(inst, pos);
} else {
r = inv_wdisp16(inst, pos);
}
break;
}
default: ShouldNotReachHere();
}
}
return r;
}
void MacroAssembler::resolve_jobject(Register value, Register tmp) {
Label done, not_weak;
br_null(value, false, Assembler::pn, done); // Use NULL as-is.
delayed()->andcc(value, JNIHandles::weak_tag_mask, G0); // Test for jweak
brx(Assembler::zero, true, Assembler::pt, not_weak);
delayed()->nop();
access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF,
Address(value, -JNIHandles::weak_tag_value), value, tmp);
verify_oop(value);
br (Assembler::always, true, Assembler::pt, done);
delayed()->nop();
bind(not_weak);
access_load_at(T_OBJECT, IN_NATIVE, Address(value, 0), value, tmp);
verify_oop(value);
bind(done);
}
void MacroAssembler::null_check(Register reg, int offset) {
if (needs_explicit_null_check((intptr_t)offset)) {
// provoke OS NULL exception if reg = NULL by
// accessing M[reg] w/o changing any registers
ld_ptr(reg, 0, G0);
}
else {
// nothing to do, (later) access of M[reg + offset]
// will provoke OS NULL exception if reg = NULL
}
}
// Ring buffer jumps
void MacroAssembler::jmp2(Register r1, Register r2, const char* file, int line ) {
assert_not_delayed();
jmpl(r1, r2, G0);
}
void MacroAssembler::jmp(Register r1, int offset, const char* file, int line ) {
assert_not_delayed();
jmp(r1, offset);
}
// This code sequence is relocatable to any address, even on LP64.
void MacroAssembler::jumpl(const AddressLiteral& addrlit, Register temp, Register d, int offset, const char* file, int line) {
assert_not_delayed();
// Force fixed length sethi because NativeJump and NativeFarCall don't handle
// variable length instruction streams.
patchable_sethi(addrlit, temp);
Address a(temp, addrlit.low10() + offset); // Add the offset to the displacement.
jmpl(a.base(), a.disp(), d);
}
void MacroAssembler::jump(const AddressLiteral& addrlit, Register temp, int offset, const char* file, int line) {
jumpl(addrlit, temp, G0, offset, file, line);
}
// Conditional breakpoint (for assertion checks in assembly code)
void MacroAssembler::breakpoint_trap(Condition c, CC cc) {
trap(c, cc, G0, ST_RESERVED_FOR_USER_0);
}
// We want to use ST_BREAKPOINT here, but the debugger is confused by it.
void MacroAssembler::breakpoint_trap() {
trap(ST_RESERVED_FOR_USER_0);
}
// Write serialization page so VM thread can do a pseudo remote membar
// We use the current thread pointer to calculate a thread specific
// offset to write to within the page. This minimizes bus traffic
// due to cache line collision.
void MacroAssembler::serialize_memory(Register thread, Register tmp1, Register tmp2) {
srl(thread, os::get_serialize_page_shift_count(), tmp2);
if (Assembler::is_simm13(os::vm_page_size())) {
and3(tmp2, (os::vm_page_size() - sizeof(int)), tmp2);
}
else {
set((os::vm_page_size() - sizeof(int)), tmp1);
and3(tmp2, tmp1, tmp2);
}
set(os::get_memory_serialize_page(), tmp1);
st(G0, tmp1, tmp2);
}
void MacroAssembler::safepoint_poll(Label& slow_path, bool a, Register thread_reg, Register temp_reg) {
if (SafepointMechanism::uses_thread_local_poll()) {
ldx(Address(thread_reg, Thread::polling_page_offset()), temp_reg, 0);
// Armed page has poll bit set.
and3(temp_reg, SafepointMechanism::poll_bit(), temp_reg);
br_notnull(temp_reg, a, Assembler::pn, slow_path);
} else {
AddressLiteral sync_state(SafepointSynchronize::address_of_state());
load_contents(sync_state, temp_reg);
cmp(temp_reg, SafepointSynchronize::_not_synchronized);
br(Assembler::notEqual, a, Assembler::pn, slow_path);
}
}
void MacroAssembler::enter() {
Unimplemented();
}
void MacroAssembler::leave() {
Unimplemented();
}
// Calls to C land
#ifdef ASSERT
// a hook for debugging
static Thread* reinitialize_thread() {
return Thread::current();
}
#else
#define reinitialize_thread Thread::current
#endif
#ifdef ASSERT
address last_get_thread = NULL;
#endif
// call this when G2_thread is not known to be valid
void MacroAssembler::get_thread() {
save_frame(0); // to avoid clobbering O0
mov(G1, L0); // avoid clobbering G1
mov(G5_method, L1); // avoid clobbering G5
mov(G3, L2); // avoid clobbering G3 also
mov(G4, L5); // avoid clobbering G4
#ifdef ASSERT
AddressLiteral last_get_thread_addrlit(&last_get_thread);
set(last_get_thread_addrlit, L3);
rdpc(L4);
inc(L4, 3 * BytesPerInstWord); // skip rdpc + inc + st_ptr to point L4 at call st_ptr(L4, L3, 0);
#endif
call(CAST_FROM_FN_PTR(address, reinitialize_thread), relocInfo::runtime_call_type);
delayed()->nop();
mov(L0, G1);
mov(L1, G5_method);
mov(L2, G3);
mov(L5, G4);
restore(O0, 0, G2_thread);
}
static Thread* verify_thread_subroutine(Thread* gthread_value) {
Thread* correct_value = Thread::current();
guarantee(gthread_value == correct_value, "G2_thread value must be the thread");
return correct_value;
}
void MacroAssembler::verify_thread() {
if (VerifyThread) {
// NOTE: this chops off the heads of the 64-bit O registers.
// make sure G2_thread contains the right value
save_frame_and_mov(0, Lmethod, Lmethod); // to avoid clobbering O0 (and propagate Lmethod)
mov(G1, L1); // avoid clobbering G1
// G2 saved below
mov(G3, L3); // avoid clobbering G3
mov(G4, L4); // avoid clobbering G4
mov(G5_method, L5); // avoid clobbering G5_method
call(CAST_FROM_FN_PTR(address,verify_thread_subroutine), relocInfo::runtime_call_type);
delayed()->mov(G2_thread, O0);
mov(L1, G1); // Restore G1
// G2 restored below
mov(L3, G3); // restore G3
mov(L4, G4); // restore G4
mov(L5, G5_method); // restore G5_method
restore(O0, 0, G2_thread);
}
}
void MacroAssembler::save_thread(const Register thread_cache) {
verify_thread();
if (thread_cache->is_valid()) {
assert(thread_cache->is_local() || thread_cache->is_in(), "bad volatile");
mov(G2_thread, thread_cache);
}
if (VerifyThread) {
// smash G2_thread, as if the VM were about to anyway
set(0x67676767, G2_thread);
}
}
void MacroAssembler::restore_thread(const Register thread_cache) {
if (thread_cache->is_valid()) {
assert(thread_cache->is_local() || thread_cache->is_in(), "bad volatile");
mov(thread_cache, G2_thread);
verify_thread();
} else {
// do it the slow way
get_thread();
}
}
// %%% maybe get rid of [re]set_last_Java_frame
void MacroAssembler::set_last_Java_frame(Register last_java_sp, Register last_Java_pc) {
assert_not_delayed();
Address flags(G2_thread, JavaThread::frame_anchor_offset() +
JavaFrameAnchor::flags_offset());
Address pc_addr(G2_thread, JavaThread::last_Java_pc_offset());
// Always set last_Java_pc and flags first because once last_Java_sp is visible
// has_last_Java_frame is true and users will look at the rest of the fields.
// (Note: flags should always be zero before we get here so doesn't need to be set.)
#ifdef ASSERT
// Verify that flags was zeroed on return to Java
Label PcOk;
save_frame(0); // to avoid clobbering O0
ld_ptr(pc_addr, L0);
br_null_short(L0, Assembler::pt, PcOk);
STOP("last_Java_pc not zeroed before leaving Java");
bind(PcOk);
// Verify that flags was zeroed on return to Java
Label FlagsOk;
ld(flags, L0);
tst(L0);
br(Assembler::zero, false, Assembler::pt, FlagsOk);
delayed() -> restore();
STOP("flags not zeroed before leaving Java");
bind(FlagsOk);
#endif /* ASSERT */
//
// When returning from calling out from Java mode the frame anchor's last_Java_pc
// will always be set to NULL. It is set here so that if we are doing a call to
// native (not VM) that we capture the known pc and don't have to rely on the
// native call having a standard frame linkage where we can find the pc.
if (last_Java_pc->is_valid()) {
st_ptr(last_Java_pc, pc_addr);
}
#ifdef ASSERT
// Make sure that we have an odd stack
Label StackOk;
andcc(last_java_sp, 0x01, G0);
br(Assembler::notZero, false, Assembler::pt, StackOk);
delayed()->nop();
STOP("Stack Not Biased in set_last_Java_frame");
bind(StackOk);
#endif // ASSERT
assert( last_java_sp != G4_scratch, "bad register usage in set_last_Java_frame");
add( last_java_sp, STACK_BIAS, G4_scratch );
st_ptr(G4_scratch, G2_thread, JavaThread::last_Java_sp_offset());
}
void MacroAssembler::reset_last_Java_frame(void) {
assert_not_delayed();
Address sp_addr(G2_thread, JavaThread::last_Java_sp_offset());
Address pc_addr(G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
Address flags (G2_thread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::flags_offset());
#ifdef ASSERT
// check that it WAS previously set
save_frame_and_mov(0, Lmethod, Lmethod); // Propagate Lmethod to helper frame
ld_ptr(sp_addr, L0);
tst(L0);
breakpoint_trap(Assembler::zero, Assembler::ptr_cc);
restore();
#endif // ASSERT
st_ptr(G0, sp_addr);
// Always return last_Java_pc to zero
st_ptr(G0, pc_addr);
// Always null flags after return to Java
st(G0, flags);
}
void MacroAssembler::call_VM_base(
Register oop_result,
Register thread_cache,
Register last_java_sp,
address entry_point,
int number_of_arguments,
bool check_exceptions)
{
assert_not_delayed();
// determine last_java_sp register
if (!last_java_sp->is_valid()) {
last_java_sp = SP;
}
// debugging support
assert(number_of_arguments >= 0 , "cannot have negative number of arguments");
// 64-bit last_java_sp is biased!
set_last_Java_frame(last_java_sp, noreg);
if (VerifyThread) mov(G2_thread, O0); // about to be smashed; pass early
save_thread(thread_cache);
// do the call
call(entry_point, relocInfo::runtime_call_type);
if (!VerifyThread)
delayed()->mov(G2_thread, O0); // pass thread as first argument
else
delayed()->nop(); // (thread already passed)
restore_thread(thread_cache);
reset_last_Java_frame();
// check for pending exceptions. use Gtemp as scratch register.
if (check_exceptions) {
check_and_forward_exception(Gtemp);
}
#ifdef ASSERT
set(badHeapWordVal, G3);
set(badHeapWordVal, G4);
set(badHeapWordVal, G5);
#endif
// get oop result if there is one and reset the value in the thread
if (oop_result->is_valid()) {
get_vm_result(oop_result);
}
}
void MacroAssembler::check_and_forward_exception(Register scratch_reg)
{
Label L;
check_and_handle_popframe(scratch_reg);
check_and_handle_earlyret(scratch_reg);
Address exception_addr(G2_thread, Thread::pending_exception_offset());
ld_ptr(exception_addr, scratch_reg);
br_null_short(scratch_reg, pt, L);
// we use O7 linkage so that forward_exception_entry has the issuing PC
call(StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
delayed()->nop();
bind(L);
}
void MacroAssembler::check_and_handle_popframe(Register scratch_reg) {
}
void MacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
}
void MacroAssembler::call_VM(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
call_VM_base(oop_result, noreg, noreg, entry_point, number_of_arguments, check_exceptions);
}
void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions) {
// O0 is reserved for the thread
mov(arg_1, O1);
call_VM(oop_result, entry_point, 1, check_exceptions);
}
void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
// O0 is reserved for the thread
mov(arg_1, O1);
mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
call_VM(oop_result, entry_point, 2, check_exceptions);
}
void MacroAssembler::call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
// O0 is reserved for the thread
mov(arg_1, O1);
mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
mov(arg_3, O3); assert(arg_3 != O1 && arg_3 != O2, "smashed argument");
call_VM(oop_result, entry_point, 3, check_exceptions);
}
// Note: The following call_VM overloadings are useful when a "save"
// has already been performed by a stub, and the last Java frame is
// the previous one. In that case, last_java_sp must be passed as FP
// instead of SP.
void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments, bool check_exceptions) {
call_VM_base(oop_result, noreg, last_java_sp, entry_point, number_of_arguments, check_exceptions);
}
void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions) {
// O0 is reserved for the thread
mov(arg_1, O1);
call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
}
void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions) {
// O0 is reserved for the thread
mov(arg_1, O1);
mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
}
void MacroAssembler::call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions) {
// O0 is reserved for the thread
mov(arg_1, O1);
mov(arg_2, O2); assert(arg_2 != O1, "smashed argument");
mov(arg_3, O3); assert(arg_3 != O1 && arg_3 != O2, "smashed argument");
call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
}
void MacroAssembler::call_VM_leaf_base(Register thread_cache, address entry_point, int number_of_arguments) {
assert_not_delayed();
save_thread(thread_cache);
// do the call
call(entry_point, relocInfo::runtime_call_type);
delayed()->nop();
restore_thread(thread_cache);
#ifdef ASSERT
set(badHeapWordVal, G3);
set(badHeapWordVal, G4);
set(badHeapWordVal, G5);
#endif
}
void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, int number_of_arguments) {
call_VM_leaf_base(thread_cache, entry_point, number_of_arguments);
}
void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1) {
mov(arg_1, O0);
call_VM_leaf(thread_cache, entry_point, 1);
}
void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2) {
mov(arg_1, O0);
mov(arg_2, O1); assert(arg_2 != O0, "smashed argument");
call_VM_leaf(thread_cache, entry_point, 2);
}
void MacroAssembler::call_VM_leaf(Register thread_cache, address entry_point, Register arg_1, Register arg_2, Register arg_3) {
mov(arg_1, O0);
mov(arg_2, O1); assert(arg_2 != O0, "smashed argument");
mov(arg_3, O2); assert(arg_3 != O0 && arg_3 != O1, "smashed argument");
call_VM_leaf(thread_cache, entry_point, 3);
}
void MacroAssembler::get_vm_result(Register oop_result) {
verify_thread();
Address vm_result_addr(G2_thread, JavaThread::vm_result_offset());
ld_ptr( vm_result_addr, oop_result);
st_ptr(G0, vm_result_addr);
verify_oop(oop_result);
}
void MacroAssembler::get_vm_result_2(Register metadata_result) {
verify_thread();
Address vm_result_addr_2(G2_thread, JavaThread::vm_result_2_offset());
ld_ptr(vm_result_addr_2, metadata_result);
st_ptr(G0, vm_result_addr_2);
}
// We require that C code which does not return a value in vm_result will
// leave it undisturbed.
void MacroAssembler::set_vm_result(Register oop_result) {
verify_thread();
Address vm_result_addr(G2_thread, JavaThread::vm_result_offset());
verify_oop(oop_result);
# ifdef ASSERT
// Check that we are not overwriting any other oop.
save_frame_and_mov(0, Lmethod, Lmethod); // Propagate Lmethod
ld_ptr(vm_result_addr, L0);
tst(L0);
restore();
breakpoint_trap(notZero, Assembler::ptr_cc);
// }
# endif
st_ptr(oop_result, vm_result_addr);
}
void MacroAssembler::ic_call(address entry, bool emit_delay, jint method_index) {
RelocationHolder rspec = virtual_call_Relocation::spec(pc(), method_index);
patchable_set((intptr_t)Universe::non_oop_word(), G5_inline_cache_reg);
relocate(rspec);
call(entry, relocInfo::none);
if (emit_delay) {
delayed()->nop();
}
}
void MacroAssembler::internal_sethi(const AddressLiteral& addrlit, Register d, bool ForceRelocatable) {
address save_pc;
int shiftcnt;
#ifdef VALIDATE_PIPELINE
assert_no_delay("Cannot put two instructions in delay-slot.");
#endif
v9_dep();
save_pc = pc();
int msb32 = (int) (addrlit.value() >> 32);
int lsb32 = (int) (addrlit.value());
if (msb32 == 0 && lsb32 >= 0) {
Assembler::sethi(lsb32, d, addrlit.rspec());
}
else if (msb32 == -1) {
Assembler::sethi(~lsb32, d, addrlit.rspec());
xor3(d, ~low10(~0), d);
}
else {
Assembler::sethi(msb32, d, addrlit.rspec()); // msb 22-bits
if (msb32 & 0x3ff) // Any bits?
or3(d, msb32 & 0x3ff, d); // msb 32-bits are now in lsb 32
if (lsb32 & 0xFFFFFC00) { // done?
if ((lsb32 >> 20) & 0xfff) { // Any bits set?
sllx(d, 12, d); // Make room for next 12 bits
or3(d, (lsb32 >> 20) & 0xfff, d); // Or in next 12
shiftcnt = 0; // We already shifted
}
else
shiftcnt = 12;
if ((lsb32 >> 10) & 0x3ff) {
sllx(d, shiftcnt + 10, d); // Make room for last 10 bits
or3(d, (lsb32 >> 10) & 0x3ff, d); // Or in next 10
shiftcnt = 0;
}
else
shiftcnt = 10;
sllx(d, shiftcnt + 10, d); // Shift leaving disp field 0'd
}
else
sllx(d, 32, d);
}
// Pad out the instruction sequence so it can be patched later.
if (ForceRelocatable || (addrlit.rtype() != relocInfo::none &&
addrlit.rtype() != relocInfo::runtime_call_type)) {
while (pc() < (save_pc + (7 * BytesPerInstWord)))
nop();
}
}
void MacroAssembler::sethi(const AddressLiteral& addrlit, Register d) {
internal_sethi(addrlit, d, false);
}
void MacroAssembler::patchable_sethi(const AddressLiteral& addrlit, Register d) {
internal_sethi(addrlit, d, true);
}
int MacroAssembler::insts_for_sethi(address a, bool worst_case) {
if (worst_case) return 7;
intptr_t iaddr = (intptr_t) a;
int msb32 = (int) (iaddr >> 32);
int lsb32 = (int) (iaddr);
int count;
if (msb32 == 0 && lsb32 >= 0)
count = 1;
else if (msb32 == -1)
count = 2;
else {
count = 2;
if (msb32 & 0x3ff)
count++;
if (lsb32 & 0xFFFFFC00 ) {
if ((lsb32 >> 20) & 0xfff) count += 2;
if ((lsb32 >> 10) & 0x3ff) count += 2;
}
}
return count;
}
int MacroAssembler::worst_case_insts_for_set() {
return insts_for_sethi(NULL, true) + 1;
}
// Keep in sync with MacroAssembler::insts_for_internal_set
void MacroAssembler::internal_set(const AddressLiteral& addrlit, Register d, bool ForceRelocatable) {
intptr_t value = addrlit.value();
if (!ForceRelocatable && addrlit.rspec().type() == relocInfo::none) {
// can optimize
if (-4096 <= value && value <= 4095) {
or3(G0, value, d); // setsw (this leaves upper 32 bits sign-extended)
return;
}
if (inv_hi22(hi22(value)) == value) {
sethi(addrlit, d);
return;
}
}
assert_no_delay("Cannot put two instructions in delay-slot.");
internal_sethi(addrlit, d, ForceRelocatable);
if (ForceRelocatable || addrlit.rspec().type() != relocInfo::none || addrlit.low10() != 0) {
add(d, addrlit.low10(), d, addrlit.rspec());
}
}
// Keep in sync with MacroAssembler::internal_set
int MacroAssembler::insts_for_internal_set(intptr_t value) {
// can optimize
if (-4096 <= value && value <= 4095) {
return 1;
}
if (inv_hi22(hi22(value)) == value) {
return insts_for_sethi((address) value);
}
int count = insts_for_sethi((address) value);
AddressLiteral al(value);
if (al.low10() != 0) {
count++;
}
return count;
}
void MacroAssembler::set(const AddressLiteral& al, Register d) {
internal_set(al, d, false);
}
void MacroAssembler::set(intptr_t value, Register d) {
AddressLiteral al(value);
internal_set(al, d, false);
}
void MacroAssembler::set(address addr, Register d, RelocationHolder const& rspec) {
AddressLiteral al(addr, rspec);
internal_set(al, d, false);
}
void MacroAssembler::patchable_set(const AddressLiteral& al, Register d) {
internal_set(al, d, true);
}
void MacroAssembler::patchable_set(intptr_t value, Register d) {
AddressLiteral al(value);
internal_set(al, d, true);
}
void MacroAssembler::set64(jlong value, Register d, Register tmp) {
assert_not_delayed();
v9_dep();
int hi = (int)(value >> 32);
int lo = (int)(value & ~0);
int bits_33to2 = (int)((value >> 2) & ~0);
// (Matcher::isSimpleConstant64 knows about the following optimizations.)
if (Assembler::is_simm13(lo) && value == lo) {
or3(G0, lo, d);
} else if (hi == 0) {
Assembler::sethi(lo, d); // hardware version zero-extends to upper 32
if (low10(lo) != 0)
or3(d, low10(lo), d);
}
else if ((hi >> 2) == 0) {
Assembler::sethi(bits_33to2, d); // hardware version zero-extends to upper 32
sllx(d, 2, d);
if (low12(lo) != 0)
or3(d, low12(lo), d);
}
else if (hi == -1) {
Assembler::sethi(~lo, d); // hardware version zero-extends to upper 32
xor3(d, low10(lo) ^ ~low10(~0), d);
}
else if (lo == 0) {
if (Assembler::is_simm13(hi)) {
or3(G0, hi, d);
} else {
Assembler::sethi(hi, d); // hardware version zero-extends to upper 32
if (low10(hi) != 0)
or3(d, low10(hi), d);
}
sllx(d, 32, d);
}
else {
Assembler::sethi(hi, tmp);
Assembler::sethi(lo, d); // macro assembler version sign-extends
if (low10(hi) != 0)
or3 (tmp, low10(hi), tmp);
if (low10(lo) != 0)
or3 ( d, low10(lo), d);
sllx(tmp, 32, tmp);
or3 (d, tmp, d);
}
}
int MacroAssembler::insts_for_set64(jlong value) {
v9_dep();
int hi = (int) (value >> 32);
int lo = (int) (value & ~0);
int count = 0;
// (Matcher::isSimpleConstant64 knows about the following optimizations.)
if (Assembler::is_simm13(lo) && value == lo) {
count++;
} else if (hi == 0) {
count++;
if (low10(lo) != 0)
count++;
}
else if (hi == -1) {
count += 2;
}
else if (lo == 0) {
if (Assembler::is_simm13(hi)) {
count++;
} else {
count++;
if (low10(hi) != 0)
count++;
}
count++;
}
else {
count += 2;
if (low10(hi) != 0)
count++;
if (low10(lo) != 0)
count++;
count += 2;
}
return count;
}
// compute size in bytes of sparc frame, given
// number of extraWords
int MacroAssembler::total_frame_size_in_bytes(int extraWords) {
int nWords = frame::memory_parameter_word_sp_offset;
nWords += extraWords;
if (nWords & 1) ++nWords; // round up to double-word
return nWords * BytesPerWord;
}
// save_frame: given number of "extra" words in frame,
// issue approp. save instruction (p 200, v8 manual)
void MacroAssembler::save_frame(int extraWords) {
int delta = -total_frame_size_in_bytes(extraWords);
if (is_simm13(delta)) {
save(SP, delta, SP);
} else {
set(delta, G3_scratch);
save(SP, G3_scratch, SP);
}
}
void MacroAssembler::save_frame_c1(int size_in_bytes) {
if (is_simm13(-size_in_bytes)) {
save(SP, -size_in_bytes, SP);
} else {
set(-size_in_bytes, G3_scratch);
save(SP, G3_scratch, SP);
}
}
void MacroAssembler::save_frame_and_mov(int extraWords,
Register s1, Register d1,
Register s2, Register d2) {
assert_not_delayed();
// The trick here is to use precisely the same memory word
// that trap handlers also use to save the register.
// This word cannot be used for any other purpose, but
// it works fine to save the register's value, whether or not
// an interrupt flushes register windows at any given moment!
Address s1_addr;
if (s1->is_valid() && (s1->is_in() || s1->is_local())) {
s1_addr = s1->address_in_saved_window();
st_ptr(s1, s1_addr);
}
Address s2_addr;
if (s2->is_valid() && (s2->is_in() || s2->is_local())) {
s2_addr = s2->address_in_saved_window();
st_ptr(s2, s2_addr);
}
save_frame(extraWords);
if (s1_addr.base() == SP) {
ld_ptr(s1_addr.after_save(), d1);
} else if (s1->is_valid()) {
mov(s1->after_save(), d1);
}
if (s2_addr.base() == SP) {
ld_ptr(s2_addr.after_save(), d2);
} else if (s2->is_valid()) {
mov(s2->after_save(), d2);
}
}
AddressLiteral MacroAssembler::allocate_metadata_address(Metadata* obj) {
assert(oop_recorder() != NULL, "this assembler needs a Recorder");
int index = oop_recorder()->allocate_metadata_index(obj);
RelocationHolder rspec = metadata_Relocation::spec(index);
return AddressLiteral((address)obj, rspec);
}
AddressLiteral MacroAssembler::constant_metadata_address(Metadata* obj) {
assert(oop_recorder() != NULL, "this assembler needs a Recorder");
int index = oop_recorder()->find_index(obj);
RelocationHolder rspec = metadata_Relocation::spec(index);
return AddressLiteral((address)obj, rspec);
}
AddressLiteral MacroAssembler::constant_oop_address(jobject obj) {
#ifdef ASSERT
{
ThreadInVMfromUnknown tiv;
assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
assert(Universe::heap()->is_in_reserved(JNIHandles::resolve(obj)), "not an oop");
}
#endif
int oop_index = oop_recorder()->find_index(obj);
return AddressLiteral(obj, oop_Relocation::spec(oop_index));
}
void MacroAssembler::set_narrow_oop(jobject obj, Register d) {
assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
int oop_index = oop_recorder()->find_index(obj);
RelocationHolder rspec = oop_Relocation::spec(oop_index);
assert_not_delayed();
// Relocation with special format (see relocInfo_sparc.hpp).
relocate(rspec, 1);
// Assembler::sethi(0x3fffff, d);
emit_int32( op(branch_op) | rd(d) | op2(sethi_op2) | hi22(0x3fffff) );
// Don't add relocation for 'add'. Do patching during 'sethi' processing.
add(d, 0x3ff, d);
}
void MacroAssembler::set_narrow_klass(Klass* k, Register d) {
assert(oop_recorder() != NULL, "this assembler needs an OopRecorder");
int klass_index = oop_recorder()->find_index(k);
RelocationHolder rspec = metadata_Relocation::spec(klass_index);
narrowOop encoded_k = Klass::encode_klass(k);
assert_not_delayed();
// Relocation with special format (see relocInfo_sparc.hpp).
relocate(rspec, 1);
// Assembler::sethi(encoded_k, d);
emit_int32( op(branch_op) | rd(d) | op2(sethi_op2) | hi22(encoded_k) );
// Don't add relocation for 'add'. Do patching during 'sethi' processing.
add(d, low10(encoded_k), d);
}
void MacroAssembler::align(int modulus) {
while (offset() % modulus != 0) nop();
}
void RegistersForDebugging::print(outputStream* s) {
FlagSetting fs(Debugging, true);
int j;
for (j = 0; j < 8; ++j) {
if (j != 6) { s->print("i%d = ", j); os::print_location(s, i[j]); }
else { s->print( "fp = " ); os::print_location(s, i[j]); }
}
s->cr();
for (j = 0; j < 8; ++j) {
s->print("l%d = ", j); os::print_location(s, l[j]);
}
s->cr();
for (j = 0; j < 8; ++j) {
if (j != 6) { s->print("o%d = ", j); os::print_location(s, o[j]); }
else { s->print( "sp = " ); os::print_location(s, o[j]); }
}
s->cr();
for (j = 0; j < 8; ++j) {
s->print("g%d = ", j); os::print_location(s, g[j]);
}
s->cr();
// print out floats with compression
for (j = 0; j < 32; ) {
jfloat val = f[j];
int last = j;
for ( ; last+1 < 32; ++last ) {
char b1[1024], b2[1024];
sprintf(b1, "%f", val);
sprintf(b2, "%f", f[last+1]);
if (strcmp(b1, b2))
break;
}
s->print("f%d", j);
if ( j != last ) s->print(" - f%d", last);
s->print(" = %f", val);
s->fill_to(25);
s->print_cr(" (0x%x)", *(int*)&val);
j = last + 1;
}
s->cr();
// and doubles (evens only)
for (j = 0; j < 32; ) {
jdouble val = d[j];
int last = j;
for ( ; last+1 < 32; ++last ) {
char b1[1024], b2[1024];
sprintf(b1, "%f", val);
sprintf(b2, "%f", d[last+1]);
if (strcmp(b1, b2))
break;
}
s->print("d%d", 2 * j);
if ( j != last ) s->print(" - d%d", last);
s->print(" = %f", val);
s->fill_to(30);
s->print("(0x%x)", *(int*)&val);
s->fill_to(42);
s->print_cr("(0x%x)", *(1 + (int*)&val));
j = last + 1;
}
s->cr();
}
void RegistersForDebugging::save_registers(MacroAssembler* a) {
a->sub(FP, align_up(sizeof(RegistersForDebugging), sizeof(jdouble)) - STACK_BIAS, O0);
a->flushw();
int i;
for (i = 0; i < 8; ++i) {
a->ld_ptr(as_iRegister(i)->address_in_saved_window().after_save(), L1); a->st_ptr( L1, O0, i_offset(i));
a->ld_ptr(as_lRegister(i)->address_in_saved_window().after_save(), L1); a->st_ptr( L1, O0, l_offset(i));
a->st_ptr(as_oRegister(i)->after_save(), O0, o_offset(i));
a->st_ptr(as_gRegister(i)->after_save(), O0, g_offset(i));
}
for (i = 0; i < 32; ++i) {
a->stf(FloatRegisterImpl::S, as_FloatRegister(i), O0, f_offset(i));
}
for (i = 0; i < 64; i += 2) {
a->stf(FloatRegisterImpl::D, as_FloatRegister(i), O0, d_offset(i));
}
}
void RegistersForDebugging::restore_registers(MacroAssembler* a, Register r) {
for (int i = 1; i < 8; ++i) {
a->ld_ptr(r, g_offset(i), as_gRegister(i));
}
for (int j = 0; j < 32; ++j) {
a->ldf(FloatRegisterImpl::S, O0, f_offset(j), as_FloatRegister(j));
}
for (int k = 0; k < 64; k += 2) {
a->ldf(FloatRegisterImpl::D, O0, d_offset(k), as_FloatRegister(k));
}
}
// pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
void MacroAssembler::push_fTOS() {
// %%%%%% need to implement this
}
// pops double TOS element from CPU stack and pushes on FPU stack
void MacroAssembler::pop_fTOS() {
// %%%%%% need to implement this
}
void MacroAssembler::empty_FPU_stack() {
// %%%%%% need to implement this
}
void MacroAssembler::_verify_oop(Register reg, const char* msg, const char * file, int line) {
// plausibility check for oops
if (!VerifyOops) return;
if (reg == G0) return; // always NULL, which is always an oop
BLOCK_COMMENT("verify_oop {");
char buffer[64];
#ifdef COMPILER1
if (CommentedAssembly) {
snprintf(buffer, sizeof(buffer), "verify_oop at %d", offset());
block_comment(buffer);
}
#endif
const char* real_msg = NULL;
{
ResourceMark rm;
stringStream ss;
ss.print("%s at offset %d (%s:%d)", msg, offset(), file, line);
real_msg = code_string(ss.as_string());
}
// Call indirectly to solve generation ordering problem
AddressLiteral a(StubRoutines::verify_oop_subroutine_entry_address());
// Make some space on stack above the current register window.
// Enough to hold 8 64-bit registers.
add(SP,-8*8,SP);
// Save some 64-bit registers; a normal 'save' chops the heads off
// of 64-bit longs in the 32-bit build.
stx(O0,SP,frame::register_save_words*wordSize+STACK_BIAS+0*8);
stx(O1,SP,frame::register_save_words*wordSize+STACK_BIAS+1*8);
mov(reg,O0); // Move arg into O0; arg might be in O7 which is about to be crushed
stx(O7,SP,frame::register_save_words*wordSize+STACK_BIAS+7*8);
// Size of set() should stay the same
patchable_set((intptr_t)real_msg, O1);
// Load address to call to into O7
load_ptr_contents(a, O7);
// Register call to verify_oop_subroutine
callr(O7, G0);
delayed()->nop();
// recover frame size
add(SP, 8*8,SP);
BLOCK_COMMENT("} verify_oop");
}
void MacroAssembler::_verify_oop_addr(Address addr, const char* msg, const char * file, int line) {
// plausibility check for oops
if (!VerifyOops) return;
const char* real_msg = NULL;
{
ResourceMark rm;
stringStream ss;
ss.print("%s at SP+%d (%s:%d)", msg, addr.disp(), file, line);
real_msg = code_string(ss.as_string());
}
// Call indirectly to solve generation ordering problem
AddressLiteral a(StubRoutines::verify_oop_subroutine_entry_address());
// Make some space on stack above the current register window.
// Enough to hold 8 64-bit registers.
add(SP,-8*8,SP);
// Save some 64-bit registers; a normal 'save' chops the heads off
// of 64-bit longs in the 32-bit build.
stx(O0,SP,frame::register_save_words*wordSize+STACK_BIAS+0*8);
stx(O1,SP,frame::register_save_words*wordSize+STACK_BIAS+1*8);
ld_ptr(addr.base(), addr.disp() + 8*8, O0); // Load arg into O0; arg might be in O7 which is about to be crushed
stx(O7,SP,frame::register_save_words*wordSize+STACK_BIAS+7*8);
// Size of set() should stay the same
patchable_set((intptr_t)real_msg, O1);
// Load address to call to into O7
load_ptr_contents(a, O7);
// Register call to verify_oop_subroutine
callr(O7, G0);
delayed()->nop();
// recover frame size
add(SP, 8*8,SP);
}
// side-door communication with signalHandler in os_solaris.cpp
address MacroAssembler::_verify_oop_implicit_branch[3] = { NULL };
// This macro is expanded just once; it creates shared code. Contract:
// receives an oop in O0. Must restore O0 & O7 from TLS. Must not smash ANY
// registers, including flags. May not use a register 'save', as this blows
// the high bits of the O-regs if they contain Long values. Acts as a 'leaf'
// call.
void MacroAssembler::verify_oop_subroutine() {
// Leaf call; no frame.
Label succeed, fail, null_or_fail;
// O0 and O7 were saved already (O0 in O0's TLS home, O7 in O5's TLS home).
// O0 is now the oop to be checked. O7 is the return address.
Register O0_obj = O0;
// Save some more registers for temps.
stx(O2,SP,frame::register_save_words*wordSize+STACK_BIAS+2*8);
stx(O3,SP,frame::register_save_words*wordSize+STACK_BIAS+3*8);
stx(O4,SP,frame::register_save_words*wordSize+STACK_BIAS+4*8);
stx(O5,SP,frame::register_save_words*wordSize+STACK_BIAS+5*8);
// Save flags
Register O5_save_flags = O5;
rdccr( O5_save_flags );
{ // count number of verifies
Register O2_adr = O2;
Register O3_accum = O3;
inc_counter(StubRoutines::verify_oop_count_addr(), O2_adr, O3_accum);
}
Register O2_mask = O2;
Register O3_bits = O3;
Register O4_temp = O4;
// mark lower end of faulting range
assert(_verify_oop_implicit_branch[0] == NULL, "set once");
_verify_oop_implicit_branch[0] = pc();
// We can't check the mark oop because it could be in the process of
// locking or unlocking while this is running.
set(Universe::verify_oop_mask (), O2_mask);
set(Universe::verify_oop_bits (), O3_bits);
// assert((obj & oop_mask) == oop_bits);
and3(O0_obj, O2_mask, O4_temp);
cmp_and_brx_short(O4_temp, O3_bits, notEqual, pn, null_or_fail);
if ((NULL_WORD & Universe::verify_oop_mask()) == Universe::verify_oop_bits()) {
// the null_or_fail case is useless; must test for null separately
br_null_short(O0_obj, pn, succeed);
}
// Check the Klass* of this object for being in the right area of memory.
// Cannot do the load in the delay above slot in case O0 is null
load_klass(O0_obj, O0_obj);
// assert((klass != NULL)
br_null_short(O0_obj, pn, fail);
wrccr( O5_save_flags ); // Restore CCR's
// mark upper end of faulting range
_verify_oop_implicit_branch[1] = pc();
//-----------------------
// all tests pass
bind(succeed);
// Restore prior 64-bit registers
ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+0*8,O0);
ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+1*8,O1);
ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+2*8,O2);
ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+3*8,O3);
ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+4*8,O4);
ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+5*8,O5);
retl(); // Leaf return; restore prior O7 in delay slot
delayed()->ldx(SP,frame::register_save_words*wordSize+STACK_BIAS+7*8,O7);
//-----------------------
bind(null_or_fail); // nulls are less common but OK
br_null(O0_obj, false, pt, succeed);
delayed()->wrccr( O5_save_flags ); // Restore CCR's
//-----------------------
// report failure:
bind(fail);
_verify_oop_implicit_branch[2] = pc();
wrccr( O5_save_flags ); // Restore CCR's
save_frame(align_up(sizeof(RegistersForDebugging) / BytesPerWord, 2));
// stop_subroutine expects message pointer in I1.
mov(I1, O1);
// Restore prior 64-bit registers
ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+0*8,I0);
ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+1*8,I1);
ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+2*8,I2);
ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+3*8,I3);
ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+4*8,I4);
ldx(FP,frame::register_save_words*wordSize+STACK_BIAS+5*8,I5);
// factor long stop-sequence into subroutine to save space
assert(StubRoutines::Sparc::stop_subroutine_entry_address(), "hasn't been generated yet");
// call indirectly to solve generation ordering problem
AddressLiteral al(StubRoutines::Sparc::stop_subroutine_entry_address());
load_ptr_contents(al, O5);
jmpl(O5, 0, O7);
delayed()->nop();
}
void MacroAssembler::stop(const char* msg) {
// save frame first to get O7 for return address
// add one word to size in case struct is odd number of words long
// It must be doubleword-aligned for storing doubles into it.
save_frame(align_up(sizeof(RegistersForDebugging) / BytesPerWord, 2));
// stop_subroutine expects message pointer in I1.
// Size of set() should stay the same
patchable_set((intptr_t)msg, O1);
// factor long stop-sequence into subroutine to save space
assert(StubRoutines::Sparc::stop_subroutine_entry_address(), "hasn't been generated yet");
// call indirectly to solve generation ordering problem
AddressLiteral a(StubRoutines::Sparc::stop_subroutine_entry_address());
load_ptr_contents(a, O5);
jmpl(O5, 0, O7);
delayed()->nop();
breakpoint_trap(); // make stop actually stop rather than writing
// unnoticeable results in the output files.
// restore(); done in callee to save space!
}
void MacroAssembler::warn(const char* msg) {
save_frame(align_up(sizeof(RegistersForDebugging) / BytesPerWord, 2));
RegistersForDebugging::save_registers(this);
mov(O0, L0);
// Size of set() should stay the same
patchable_set((intptr_t)msg, O0);
call( CAST_FROM_FN_PTR(address, warning) );
delayed()->nop();
// ret();
// delayed()->restore();
RegistersForDebugging::restore_registers(this, L0);
restore();
}
void MacroAssembler::untested(const char* what) {
// We must be able to turn interactive prompting off
// in order to run automated test scripts on the VM
// Use the flag ShowMessageBoxOnError
const char* b = NULL;
{
ResourceMark rm;
stringStream ss;
ss.print("untested: %s", what);
b = code_string(ss.as_string());
}
if (ShowMessageBoxOnError) { STOP(b); }
else { warn(b); }
}
void MacroAssembler::unimplemented(const char* what) {
const char* buf = NULL;
{
ResourceMark rm;
stringStream ss;
ss.print("unimplemented: %s", what);
buf = code_string(ss.as_string());
}
stop(buf);
}
void MacroAssembler::stop_subroutine() {
RegistersForDebugging::save_registers(this);
// for the sake of the debugger, stick a PC on the current frame
// (this assumes that the caller has performed an extra "save")
mov(I7, L7);
add(O7, -7 * BytesPerInt, I7);
save_frame(); // one more save to free up another O7 register
mov(I0, O1); // addr of reg save area
// We expect pointer to message in I1. Caller must set it up in O1
mov(I1, O0); // get msg
call (CAST_FROM_FN_PTR(address, MacroAssembler::debug), relocInfo::runtime_call_type);
delayed()->nop();
restore();
RegistersForDebugging::restore_registers(this, O0);
save_frame(0);
call(CAST_FROM_FN_PTR(address,breakpoint));
delayed()->nop();
restore();
mov(L7, I7);
retl();
delayed()->restore(); // see stop above
}
void MacroAssembler::debug(char* msg, RegistersForDebugging* regs) {
if ( ShowMessageBoxOnError ) {
JavaThread* thread = JavaThread::current();
JavaThreadState saved_state = thread->thread_state();
thread->set_thread_state(_thread_in_vm);
{
// In order to get locks work, we need to fake a in_VM state
ttyLocker ttyl;
::tty->print_cr("EXECUTION STOPPED: %s\n", msg);
if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
BytecodeCounter::print();
}
if (os::message_box(msg, "Execution stopped, print registers?"))
regs->print(::tty);
}
BREAKPOINT;
ThreadStateTransition::transition(JavaThread::current(), _thread_in_vm, saved_state);
}
else {
::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
}
assert(false, "DEBUG MESSAGE: %s", msg);
}
void MacroAssembler::calc_mem_param_words(Register Rparam_words, Register Rresult) {
subcc( Rparam_words, Argument::n_register_parameters, Rresult); // how many mem words?
Label no_extras;
br( negative, true, pt, no_extras ); // if neg, clear reg
delayed()->set(0, Rresult); // annuled, so only if taken
bind( no_extras );
}
void MacroAssembler::calc_frame_size(Register Rextra_words, Register Rresult) {
add(Rextra_words, frame::memory_parameter_word_sp_offset, Rresult);
bclr(1, Rresult);
sll(Rresult, LogBytesPerWord, Rresult); // Rresult has total frame bytes
}
void MacroAssembler::calc_frame_size_and_save(Register Rextra_words, Register Rresult) {
calc_frame_size(Rextra_words, Rresult);
neg(Rresult);
save(SP, Rresult, SP);
}
// ---------------------------------------------------------
Assembler::RCondition cond2rcond(Assembler::Condition c) {
switch (c) {
/*case zero: */
case Assembler::equal: return Assembler::rc_z;
case Assembler::lessEqual: return Assembler::rc_lez;
case Assembler::less: return Assembler::rc_lz;
/*case notZero:*/
case Assembler::notEqual: return Assembler::rc_nz;
case Assembler::greater: return Assembler::rc_gz;
case Assembler::greaterEqual: return Assembler::rc_gez;
}
ShouldNotReachHere();
return Assembler::rc_z;
}
// compares (32 bit) register with zero and branches. NOT FOR USE WITH 64-bit POINTERS
void MacroAssembler::cmp_zero_and_br(Condition c, Register s1, Label& L, bool a, Predict p) {
tst(s1);
br (c, a, p, L);
}
// Compares a pointer register with zero and branches on null.
// Does a test & branch on 32-bit systems and a register-branch on 64-bit.
void MacroAssembler::br_null( Register s1, bool a, Predict p, Label& L ) {
assert_not_delayed();
bpr( rc_z, a, p, s1, L );
}
void MacroAssembler::br_notnull( Register s1, bool a, Predict p, Label& L ) {
assert_not_delayed();
bpr( rc_nz, a, p, s1, L );
}
// Compare registers and branch with nop in delay slot or cbcond without delay slot.
// Compare integer (32 bit) values (icc only).
void MacroAssembler::cmp_and_br_short(Register s1, Register s2, Condition c,
Predict p, Label& L) {
assert_not_delayed();
if (use_cbcond(L)) {
Assembler::cbcond(c, icc, s1, s2, L);
} else {
cmp(s1, s2);
br(c, false, p, L);
delayed()->nop();
}
}
// Compare integer (32 bit) values (icc only).
void MacroAssembler::cmp_and_br_short(Register s1, int simm13a, Condition c,
Predict p, Label& L) {
assert_not_delayed();
if (is_simm(simm13a,5) && use_cbcond(L)) {
Assembler::cbcond(c, icc, s1, simm13a, L);
} else {
cmp(s1, simm13a);
br(c, false, p, L);
delayed()->nop();
}
}
// Branch that tests xcc in LP64 and icc in !LP64
void MacroAssembler::cmp_and_brx_short(Register s1, Register s2, Condition c,
Predict p, Label& L) {
assert_not_delayed();
if (use_cbcond(L)) {
Assembler::cbcond(c, ptr_cc, s1, s2, L);
} else {
cmp(s1, s2);
brx(c, false, p, L);
delayed()->nop();
}
}
// Branch that tests xcc in LP64 and icc in !LP64
void MacroAssembler::cmp_and_brx_short(Register s1, int simm13a, Condition c,
Predict p, Label& L) {
assert_not_delayed();
if (is_simm(simm13a,5) && use_cbcond(L)) {
Assembler::cbcond(c, ptr_cc, s1, simm13a, L);
} else {
cmp(s1, simm13a);
brx(c, false, p, L);
delayed()->nop();
}
}
// Short branch version for compares a pointer with zero.
void MacroAssembler::br_null_short(Register s1, Predict p, Label& L) {
assert_not_delayed();
if (use_cbcond(L)) {
Assembler::cbcond(zero, ptr_cc, s1, 0, L);
} else {
br_null(s1, false, p, L);
delayed()->nop();
}
}
void MacroAssembler::br_notnull_short(Register s1, Predict p, Label& L) {
assert_not_delayed();
if (use_cbcond(L)) {
Assembler::cbcond(notZero, ptr_cc, s1, 0, L);
} else {
br_notnull(s1, false, p, L);
delayed()->nop();
}
}
// Unconditional short branch
void MacroAssembler::ba_short(Label& L) {
assert_not_delayed();
if (use_cbcond(L)) {
Assembler::cbcond(equal, icc, G0, G0, L);
} else {
br(always, false, pt, L);
delayed()->nop();
}
}
// Branch if 'icc' says zero or not (i.e. icc.z == 1|0).
void MacroAssembler::br_icc_zero(bool iszero, Predict p, Label &L) {
assert_not_delayed();
Condition cf = (iszero ? Assembler::zero : Assembler::notZero);
br(cf, false, p, L);
delayed()->nop();
}
// instruction sequences factored across compiler & interpreter
void MacroAssembler::lcmp( Register Ra_hi, Register Ra_low,
Register Rb_hi, Register Rb_low,
Register Rresult) {
Label check_low_parts, done;
cmp(Ra_hi, Rb_hi ); // compare hi parts
br(equal, true, pt, check_low_parts);
delayed()->cmp(Ra_low, Rb_low); // test low parts
// And, with an unsigned comparison, it does not matter if the numbers
// are negative or not.
// E.g., -2 cmp -1: the low parts are 0xfffffffe and 0xffffffff.
// The second one is bigger (unsignedly).
// Other notes: The first move in each triplet can be unconditional
// (and therefore probably prefetchable).
// And the equals case for the high part does not need testing,
// since that triplet is reached only after finding the high halves differ.
mov(-1, Rresult);
ba(done);
delayed()->movcc(greater, false, icc, 1, Rresult);
bind(check_low_parts);
mov( -1, Rresult);
movcc(equal, false, icc, 0, Rresult);
movcc(greaterUnsigned, false, icc, 1, Rresult);
bind(done);
}
void MacroAssembler::lneg( Register Rhi, Register Rlow ) {
subcc( G0, Rlow, Rlow );
subc( G0, Rhi, Rhi );
}
void MacroAssembler::lshl( Register Rin_high, Register Rin_low,
Register Rcount,
Register Rout_high, Register Rout_low,
Register Rtemp ) {
Register Ralt_count = Rtemp;
Register Rxfer_bits = Rtemp;
assert( Ralt_count != Rin_high
&& Ralt_count != Rin_low
&& Ralt_count != Rcount
&& Rxfer_bits != Rin_low
&& Rxfer_bits != Rin_high
&& Rxfer_bits != Rcount
&& Rxfer_bits != Rout_low
&& Rout_low != Rin_high,
"register alias checks");
Label big_shift, done;
// This code can be optimized to use the 64 bit shifts in V9.
// Here we use the 32 bit shifts.
and3( Rcount, 0x3f, Rcount); // take least significant 6 bits
subcc(Rcount, 31, Ralt_count);
br(greater, true, pn, big_shift);
delayed()->dec(Ralt_count);
// shift < 32 bits, Ralt_count = Rcount-31
// We get the transfer bits by shifting right by 32-count the low
// register. This is done by shifting right by 31-count and then by one
// more to take care of the special (rare) case where count is zero
// (shifting by 32 would not work).
neg(Ralt_count);
// The order of the next two instructions is critical in the case where
// Rin and Rout are the same and should not be reversed.
srl(Rin_low, Ralt_count, Rxfer_bits); // shift right by 31-count
if (Rcount != Rout_low) {
sll(Rin_low, Rcount, Rout_low); // low half
}
sll(Rin_high, Rcount, Rout_high);
if (Rcount == Rout_low) {
sll(Rin_low, Rcount, Rout_low); // low half
}
srl(Rxfer_bits, 1, Rxfer_bits ); // shift right by one more
ba(done);
delayed()->or3(Rout_high, Rxfer_bits, Rout_high); // new hi value: or in shifted old hi part and xfer from low
// shift >= 32 bits, Ralt_count = Rcount-32
bind(big_shift);
sll(Rin_low, Ralt_count, Rout_high );
clr(Rout_low);
bind(done);
}
void MacroAssembler::lshr( Register Rin_high, Register Rin_low,
Register Rcount,
Register Rout_high, Register Rout_low,
Register Rtemp ) {
Register Ralt_count = Rtemp;
Register Rxfer_bits = Rtemp;
assert( Ralt_count != Rin_high
&& Ralt_count != Rin_low
&& Ralt_count != Rcount
&& Rxfer_bits != Rin_low
&& Rxfer_bits != Rin_high
&& Rxfer_bits != Rcount
&& Rxfer_bits != Rout_high
&& Rout_high != Rin_low,
"register alias checks");
Label big_shift, done;
// This code can be optimized to use the 64 bit shifts in V9.
// Here we use the 32 bit shifts.
and3( Rcount, 0x3f, Rcount); // take least significant 6 bits
subcc(Rcount, 31, Ralt_count);
br(greater, true, pn, big_shift);
delayed()->dec(Ralt_count);
// shift < 32 bits, Ralt_count = Rcount-31
// We get the transfer bits by shifting left by 32-count the high
// register. This is done by shifting left by 31-count and then by one
// more to take care of the special (rare) case where count is zero
// (shifting by 32 would not work).
neg(Ralt_count);
if (Rcount != Rout_low) {
srl(Rin_low, Rcount, Rout_low);
}
// The order of the next two instructions is critical in the case where
// Rin and Rout are the same and should not be reversed.
sll(Rin_high, Ralt_count, Rxfer_bits); // shift left by 31-count
sra(Rin_high, Rcount, Rout_high ); // high half
sll(Rxfer_bits, 1, Rxfer_bits); // shift left by one more
if (Rcount == Rout_low) {
srl(Rin_low, Rcount, Rout_low);
}
ba(done);
delayed()->or3(Rout_low, Rxfer_bits, Rout_low); // new low value: or shifted old low part and xfer from high
// shift >= 32 bits, Ralt_count = Rcount-32
bind(big_shift);
sra(Rin_high, Ralt_count, Rout_low);
sra(Rin_high, 31, Rout_high); // sign into hi
bind( done );
}
void MacroAssembler::lushr( Register Rin_high, Register Rin_low,
Register Rcount,
Register Rout_high, Register Rout_low,
Register Rtemp ) {
Register Ralt_count = Rtemp;
Register Rxfer_bits = Rtemp;
assert( Ralt_count != Rin_high
&& Ralt_count != Rin_low
&& Ralt_count != Rcount
&& Rxfer_bits != Rin_low
&& Rxfer_bits != Rin_high
&& Rxfer_bits != Rcount
&& Rxfer_bits != Rout_high
&& Rout_high != Rin_low,
"register alias checks");
Label big_shift, done;
// This code can be optimized to use the 64 bit shifts in V9.
// Here we use the 32 bit shifts.
and3( Rcount, 0x3f, Rcount); // take least significant 6 bits
subcc(Rcount, 31, Ralt_count);
br(greater, true, pn, big_shift);
delayed()->dec(Ralt_count);
// shift < 32 bits, Ralt_count = Rcount-31
// We get the transfer bits by shifting left by 32-count the high
// register. This is done by shifting left by 31-count and then by one
// more to take care of the special (rare) case where count is zero
// (shifting by 32 would not work).
neg(Ralt_count);
if (Rcount != Rout_low) {
srl(Rin_low, Rcount, Rout_low);
}
// The order of the next two instructions is critical in the case where
// Rin and Rout are the same and should not be reversed.
sll(Rin_high, Ralt_count, Rxfer_bits); // shift left by 31-count
srl(Rin_high, Rcount, Rout_high ); // high half
sll(Rxfer_bits, 1, Rxfer_bits); // shift left by one more
if (Rcount == Rout_low) {
srl(Rin_low, Rcount, Rout_low);
}
ba(done);
delayed()->or3(Rout_low, Rxfer_bits, Rout_low); // new low value: or shifted old low part and xfer from high
// shift >= 32 bits, Ralt_count = Rcount-32
bind(big_shift);
srl(Rin_high, Ralt_count, Rout_low);
clr(Rout_high);
bind( done );
}
void MacroAssembler::lcmp( Register Ra, Register Rb, Register Rresult) {
cmp(Ra, Rb);
mov(-1, Rresult);
movcc(equal, false, xcc, 0, Rresult);
movcc(greater, false, xcc, 1, Rresult);
}
void MacroAssembler::load_sized_value(Address src, Register dst, size_t size_in_bytes, bool is_signed) {
switch (size_in_bytes) {
case 8: ld_long(src, dst); break;
case 4: ld( src, dst); break;
case 2: is_signed ? ldsh(src, dst) : lduh(src, dst); break;
case 1: is_signed ? ldsb(src, dst) : ldub(src, dst); break;
default: ShouldNotReachHere();
}
}
void MacroAssembler::store_sized_value(Register src, Address dst, size_t size_in_bytes) {
switch (size_in_bytes) {
case 8: st_long(src, dst); break;
case 4: st( src, dst); break;
case 2: sth( src, dst); break;
case 1: stb( src, dst); break;
default: ShouldNotReachHere();
}
}
void MacroAssembler::float_cmp( bool is_float, int unordered_result,
FloatRegister Fa, FloatRegister Fb,
Register Rresult) {
if (is_float) {
fcmp(FloatRegisterImpl::S, fcc0, Fa, Fb);
} else {
fcmp(FloatRegisterImpl::D, fcc0, Fa, Fb);
}
if (unordered_result == 1) {
mov( -1, Rresult);
movcc(f_equal, true, fcc0, 0, Rresult);
movcc(f_unorderedOrGreater, true, fcc0, 1, Rresult);
} else {
mov( -1, Rresult);
movcc(f_equal, true, fcc0, 0, Rresult);
movcc(f_greater, true, fcc0, 1, Rresult);
}
}
void MacroAssembler::save_all_globals_into_locals() {
mov(G1,L1);
mov(G2,L2);
mov(G3,L3);
mov(G4,L4);
mov(G5,L5);
mov(G6,L6);
mov(G7,L7);
}
void MacroAssembler::restore_globals_from_locals() {
mov(L1,G1);
mov(L2,G2);
mov(L3,G3);
mov(L4,G4);
mov(L5,G5);
mov(L6,G6);
mov(L7,G7);
}
RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
Register tmp,
int offset) {
intptr_t value = *delayed_value_addr;
if (value != 0)
return RegisterOrConstant(value + offset);
// load indirectly to solve generation ordering problem
AddressLiteral a(delayed_value_addr);
load_ptr_contents(a, tmp);
#ifdef ASSERT
tst(tmp);
breakpoint_trap(zero, xcc);
#endif
if (offset != 0)
add(tmp, offset, tmp);
return RegisterOrConstant(tmp);
}
RegisterOrConstant MacroAssembler::regcon_andn_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
assert(d.register_or_noreg() != G0, "lost side effect");
if ((s2.is_constant() && s2.as_constant() == 0) ||
(s2.is_register() && s2.as_register() == G0)) {
// Do nothing, just move value.
if (s1.is_register()) {
if (d.is_constant()) d = temp;
mov(s1.as_register(), d.as_register());
return d;
} else {
return s1;
}
}
if (s1.is_register()) {
assert_different_registers(s1.as_register(), temp);
if (d.is_constant()) d = temp;
andn(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
return d;
} else {
if (s2.is_register()) {
assert_different_registers(s2.as_register(), temp);
if (d.is_constant()) d = temp;
set(s1.as_constant(), temp);
andn(temp, s2.as_register(), d.as_register());
return d;
} else {
intptr_t res = s1.as_constant() & ~s2.as_constant();
return res;
}
}
}
RegisterOrConstant MacroAssembler::regcon_inc_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
assert(d.register_or_noreg() != G0, "lost side effect");
if ((s2.is_constant() && s2.as_constant() == 0) ||
(s2.is_register() && s2.as_register() == G0)) {
// Do nothing, just move value.
if (s1.is_register()) {
if (d.is_constant()) d = temp;
mov(s1.as_register(), d.as_register());
return d;
} else {
return s1;
}
}
if (s1.is_register()) {
assert_different_registers(s1.as_register(), temp);
if (d.is_constant()) d = temp;
add(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
return d;
} else {
if (s2.is_register()) {
assert_different_registers(s2.as_register(), temp);
if (d.is_constant()) d = temp;
add(s2.as_register(), ensure_simm13_or_reg(s1, temp), d.as_register());
return d;
} else {
intptr_t res = s1.as_constant() + s2.as_constant();
return res;
}
}
}
RegisterOrConstant MacroAssembler::regcon_sll_ptr(RegisterOrConstant s1, RegisterOrConstant s2, RegisterOrConstant d, Register temp) {
assert(d.register_or_noreg() != G0, "lost side effect");
if (!is_simm13(s2.constant_or_zero()))
s2 = (s2.as_constant() & 0xFF);
if ((s2.is_constant() && s2.as_constant() == 0) ||
(s2.is_register() && s2.as_register() == G0)) {
// Do nothing, just move value.
if (s1.is_register()) {
if (d.is_constant()) d = temp;
mov(s1.as_register(), d.as_register());
return d;
} else {
return s1;
}
}
if (s1.is_register()) {
assert_different_registers(s1.as_register(), temp);
if (d.is_constant()) d = temp;
sll_ptr(s1.as_register(), ensure_simm13_or_reg(s2, temp), d.as_register());
return d;
} else {
if (s2.is_register()) {
assert_different_registers(s2.as_register(), temp);
if (d.is_constant()) d = temp;
set(s1.as_constant(), temp);
sll_ptr(temp, s2.as_register(), d.as_register());
return d;
} else {
intptr_t res = s1.as_constant() << s2.as_constant();
return res;
}
}
}
// Look up the method for a megamorphic invokeinterface call.
// The target method is determined by <intf_klass, itable_index>.
// The receiver klass is in recv_klass.
// On success, the result will be in method_result, and execution falls through.
// On failure, execution transfers to the given label.
void MacroAssembler::lookup_interface_method(Register recv_klass,
Register intf_klass,
RegisterOrConstant itable_index,
Register method_result,
Register scan_temp,
Register sethi_temp,
Label& L_no_such_interface,
bool return_method) {
assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
assert(!return_method || itable_index.is_constant() || itable_index.as_register() == method_result,
"caller must use same register for non-constant itable index as for method");
Label L_no_such_interface_restore;
bool did_save = false;
if (scan_temp == noreg || sethi_temp == noreg) {
Register recv_2 = recv_klass->is_global() ? recv_klass : L0;
Register intf_2 = intf_klass->is_global() ? intf_klass : L1;
assert(method_result->is_global(), "must be able to return value");
scan_temp = L2;
sethi_temp = L3;
save_frame_and_mov(0, recv_klass, recv_2, intf_klass, intf_2);
recv_klass = recv_2;
intf_klass = intf_2;
did_save = true;
}
// Compute start of first itableOffsetEntry (which is at the end of the vtable)
int vtable_base = in_bytes(Klass::vtable_start_offset());
int scan_step = itableOffsetEntry::size() * wordSize;
int vte_size = vtableEntry::size_in_bytes();
lduw(recv_klass, in_bytes(Klass::vtable_length_offset()), scan_temp);
// %%% We should store the aligned, prescaled offset in the klassoop.
// Then the next several instructions would fold away.
int itb_offset = vtable_base;
int itb_scale = exact_log2(vtableEntry::size_in_bytes());
sll(scan_temp, itb_scale, scan_temp);
add(scan_temp, itb_offset, scan_temp);
add(recv_klass, scan_temp, scan_temp);
if (return_method) {
// Adjust recv_klass by scaled itable_index, so we can free itable_index.
RegisterOrConstant itable_offset = itable_index;
itable_offset = regcon_sll_ptr(itable_index, exact_log2(itableMethodEntry::size() * wordSize), itable_offset);
itable_offset = regcon_inc_ptr(itable_offset, itableMethodEntry::method_offset_in_bytes(), itable_offset);
add(recv_klass, ensure_simm13_or_reg(itable_offset, sethi_temp), recv_klass);
}
// for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
// if (scan->interface() == intf) {
// result = (klass + scan->offset() + itable_index);
// }
// }
Label L_search, L_found_method;
for (int peel = 1; peel >= 0; peel--) {
// %%%% Could load both offset and interface in one ldx, if they were
// in the opposite order. This would save a load.
ld_ptr(scan_temp, itableOffsetEntry::interface_offset_in_bytes(), method_result);
// Check that this entry is non-null. A null entry means that
// the receiver class doesn't implement the interface, and wasn't the
// same as when the caller was compiled.
bpr(Assembler::rc_z, false, Assembler::pn, method_result, did_save ? L_no_such_interface_restore : L_no_such_interface);
delayed()->cmp(method_result, intf_klass);
if (peel) {
brx(Assembler::equal, false, Assembler::pt, L_found_method);
} else {
brx(Assembler::notEqual, false, Assembler::pn, L_search);
// (invert the test to fall through to found_method...)
}
delayed()->add(scan_temp, scan_step, scan_temp);
if (!peel) break;
bind(L_search);
}
bind(L_found_method);
if (return_method) {
// Got a hit.
int ito_offset = itableOffsetEntry::offset_offset_in_bytes();
// scan_temp[-scan_step] points to the vtable offset we need
ito_offset -= scan_step;
lduw(scan_temp, ito_offset, scan_temp);
ld_ptr(recv_klass, scan_temp, method_result);
}
if (did_save) {
Label L_done;
ba(L_done);
delayed()->restore();
bind(L_no_such_interface_restore);
ba(L_no_such_interface);
delayed()->restore();
bind(L_done);
}
}
// virtual method calling
void MacroAssembler::lookup_virtual_method(Register recv_klass,
RegisterOrConstant vtable_index,
Register method_result) {
assert_different_registers(recv_klass, method_result, vtable_index.register_or_noreg());
Register sethi_temp = method_result;
const int base = in_bytes(Klass::vtable_start_offset()) +
// method pointer offset within the vtable entry:
vtableEntry::method_offset_in_bytes();
RegisterOrConstant vtable_offset = vtable_index;
// Each of the following three lines potentially generates an instruction.
// But the total number of address formation instructions will always be
// at most two, and will often be zero. In any case, it will be optimal.
// If vtable_index is a register, we will have (sll_ptr N,x; inc_ptr B,x; ld_ptr k,x).
// If vtable_index is a constant, we will have at most (set B+X<<N,t; ld_ptr k,t).
vtable_offset = regcon_sll_ptr(vtable_index, exact_log2(vtableEntry::size_in_bytes()), vtable_offset);
vtable_offset = regcon_inc_ptr(vtable_offset, base, vtable_offset, sethi_temp);
Address vtable_entry_addr(recv_klass, ensure_simm13_or_reg(vtable_offset, sethi_temp));
ld_ptr(vtable_entry_addr, method_result);
}
void MacroAssembler::check_klass_subtype(Register sub_klass,
Register super_klass,
Register temp_reg,
Register temp2_reg,
Label& L_success) {
Register sub_2 = sub_klass;
Register sup_2 = super_klass;
if (!sub_2->is_global()) sub_2 = L0;
if (!sup_2->is_global()) sup_2 = L1;
bool did_save = false;
if (temp_reg == noreg || temp2_reg == noreg) {
temp_reg = L2;
temp2_reg = L3;
save_frame_and_mov(0, sub_klass, sub_2, super_klass, sup_2);
sub_klass = sub_2;
super_klass = sup_2;
did_save = true;
}
Label L_failure, L_pop_to_failure, L_pop_to_success;
check_klass_subtype_fast_path(sub_klass, super_klass,
temp_reg, temp2_reg,
(did_save ? &L_pop_to_success : &L_success),
(did_save ? &L_pop_to_failure : &L_failure), NULL);
if (!did_save)
save_frame_and_mov(0, sub_klass, sub_2, super_klass, sup_2);
check_klass_subtype_slow_path(sub_2, sup_2,
L2, L3, L4, L5,
NULL, &L_pop_to_failure);
// on success:
bind(L_pop_to_success);
restore();
ba_short(L_success);
// on failure:
bind(L_pop_to_failure);
restore();
bind(L_failure);
}
void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
Register super_klass,
Register temp_reg,
Register temp2_reg,
Label* L_success,
Label* L_failure,
Label* L_slow_path,
RegisterOrConstant super_check_offset) {
int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
int sco_offset = in_bytes(Klass::super_check_offset_offset());
bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
bool need_slow_path = (must_load_sco ||
super_check_offset.constant_or_zero() == sco_offset);
assert_different_registers(sub_klass, super_klass, temp_reg);
if (super_check_offset.is_register()) {
assert_different_registers(sub_klass, super_klass, temp_reg,
super_check_offset.as_register());
} else if (must_load_sco) {
assert(temp2_reg != noreg, "supply either a temp or a register offset");
}
Label L_fallthrough;
int label_nulls = 0;
if (L_success == NULL) { L_success = &L_fallthrough; label_nulls++; }
if (L_failure == NULL) { L_failure = &L_fallthrough; label_nulls++; }
if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
assert(label_nulls <= 1 ||
(L_slow_path == &L_fallthrough && label_nulls <= 2 && !need_slow_path),
"at most one NULL in the batch, usually");
// If the pointers are equal, we are done (e.g., String[] elements).
// This self-check enables sharing of secondary supertype arrays among
// non-primary types such as array-of-interface. Otherwise, each such
// type would need its own customized SSA.
// We move this check to the front of the fast path because many
// type checks are in fact trivially successful in this manner,
// so we get a nicely predicted branch right at the start of the check.
cmp(super_klass, sub_klass);
brx(Assembler::equal, false, Assembler::pn, *L_success);
delayed()->nop();
// Check the supertype display:
if (must_load_sco) {
// The super check offset is always positive...
lduw(super_klass, sco_offset, temp2_reg);
super_check_offset = RegisterOrConstant(temp2_reg);
// super_check_offset is register.
assert_different_registers(sub_klass, super_klass, temp_reg, super_check_offset.as_register());
}
ld_ptr(sub_klass, super_check_offset, temp_reg);
cmp(super_klass, temp_reg);
// This check has worked decisively for primary supers.
// Secondary supers are sought in the super_cache ('super_cache_addr').
// (Secondary supers are interfaces and very deeply nested subtypes.)
// This works in the same check above because of a tricky aliasing
// between the super_cache and the primary super display elements.
// (The 'super_check_addr' can address either, as the case requires.)
// Note that the cache is updated below if it does not help us find
// what we need immediately.
// So if it was a primary super, we can just fail immediately.
// Otherwise, it's the slow path for us (no success at this point).
// Hacked ba(), which may only be used just before L_fallthrough.
#define FINAL_JUMP(label) \
if (&(label) != &L_fallthrough) { \
ba(label); delayed()->nop(); \
}
if (super_check_offset.is_register()) {
brx(Assembler::equal, false, Assembler::pn, *L_success);
delayed()->cmp(super_check_offset.as_register(), sc_offset);
if (L_failure == &L_fallthrough) {
brx(Assembler::equal, false, Assembler::pt, *L_slow_path);
delayed()->nop();
} else {
brx(Assembler::notEqual, false, Assembler::pn, *L_failure);
delayed()->nop();
FINAL_JUMP(*L_slow_path);
}
} else if (super_check_offset.as_constant() == sc_offset) {
// Need a slow path; fast failure is impossible.
if (L_slow_path == &L_fallthrough) {
brx(Assembler::equal, false, Assembler::pt, *L_success);
delayed()->nop();
} else {
brx(Assembler::notEqual, false, Assembler::pn, *L_slow_path);
delayed()->nop();
FINAL_JUMP(*L_success);
}
} else {
// No slow path; it's a fast decision.
if (L_failure == &L_fallthrough) {
brx(Assembler::equal, false, Assembler::pt, *L_success);
delayed()->nop();
} else {
brx(Assembler::notEqual, false, Assembler::pn, *L_failure);
delayed()->nop();
FINAL_JUMP(*L_success);
}
}
bind(L_fallthrough);
#undef FINAL_JUMP
}
void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
Register super_klass,
Register count_temp,
Register scan_temp,
Register scratch_reg,
Register coop_reg,
Label* L_success,
Label* L_failure) {
assert_different_registers(sub_klass, super_klass,
count_temp, scan_temp, scratch_reg, coop_reg);
Label L_fallthrough, L_loop;
int label_nulls = 0;
if (L_success == NULL) { L_success = &L_fallthrough; label_nulls++; }
if (L_failure == NULL) { L_failure = &L_fallthrough; label_nulls++; }
assert(label_nulls <= 1, "at most one NULL in the batch");
// a couple of useful fields in sub_klass:
int ss_offset = in_bytes(Klass::secondary_supers_offset());
int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
// Do a linear scan of the secondary super-klass chain.
// This code is rarely used, so simplicity is a virtue here.
#ifndef PRODUCT
int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
inc_counter((address) pst_counter, count_temp, scan_temp);
#endif
// We will consult the secondary-super array.
ld_ptr(sub_klass, ss_offset, scan_temp);
Register search_key = super_klass;
// Load the array length. (Positive movl does right thing on LP64.)
lduw(scan_temp, Array<Klass*>::length_offset_in_bytes(), count_temp);
// Check for empty secondary super list
tst(count_temp);
// In the array of super classes elements are pointer sized.
int element_size = wordSize;
// Top of search loop
bind(L_loop);
br(Assembler::equal, false, Assembler::pn, *L_failure);
delayed()->add(scan_temp, element_size, scan_temp);
// Skip the array header in all array accesses.
int elem_offset = Array<Klass*>::base_offset_in_bytes();
elem_offset -= element_size; // the scan pointer was pre-incremented also
// Load next super to check
ld_ptr( scan_temp, elem_offset, scratch_reg );
// Look for Rsuper_klass on Rsub_klass's secondary super-class-overflow list
cmp(scratch_reg, search_key);
// A miss means we are NOT a subtype and need to keep looping
brx(Assembler::notEqual, false, Assembler::pn, L_loop);
delayed()->deccc(count_temp); // decrement trip counter in delay slot
// Success. Cache the super we found and proceed in triumph.
st_ptr(super_klass, sub_klass, sc_offset);
if (L_success != &L_fallthrough) {
ba(*L_success);
delayed()->nop();
}
bind(L_fallthrough);
}
RegisterOrConstant MacroAssembler::argument_offset(RegisterOrConstant arg_slot,
Register temp_reg,
int extra_slot_offset) {
// cf. TemplateTable::prepare_invoke(), if (load_receiver).
int stackElementSize = Interpreter::stackElementSize;
int offset = extra_slot_offset * stackElementSize;
if (arg_slot.is_constant()) {
offset += arg_slot.as_constant() * stackElementSize;
return offset;
} else {
assert(temp_reg != noreg, "must specify");
sll_ptr(arg_slot.as_register(), exact_log2(stackElementSize), temp_reg);
if (offset != 0)
add(temp_reg, offset, temp_reg);
return temp_reg;
}
}
Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
Register temp_reg,
int extra_slot_offset) {
return Address(Gargs, argument_offset(arg_slot, temp_reg, extra_slot_offset));
}
void MacroAssembler::biased_locking_enter(Register obj_reg, Register mark_reg,
Register temp_reg,
Label& done, Label* slow_case,
BiasedLockingCounters* counters) {
assert(UseBiasedLocking, "why call this otherwise?");
if (PrintBiasedLockingStatistics) {
assert_different_registers(obj_reg, mark_reg, temp_reg, O7);
if (counters == NULL)
counters = BiasedLocking::counters();
}
Label cas_label;
// Biased locking
// See whether the lock is currently biased toward our thread and
// whether the epoch is still valid
// Note that the runtime guarantees sufficient alignment of JavaThread
// pointers to allow age to be placed into low bits
assert(markOop::age_shift == markOop::lock_bits + markOop::biased_lock_bits, "biased locking makes assumptions about bit layout");
and3(mark_reg, markOop::biased_lock_mask_in_place, temp_reg);
cmp_and_brx_short(temp_reg, markOop::biased_lock_pattern, Assembler::notEqual, Assembler::pn, cas_label);
load_klass(obj_reg, temp_reg);
ld_ptr(Address(temp_reg, Klass::prototype_header_offset()), temp_reg);
or3(G2_thread, temp_reg, temp_reg);
xor3(mark_reg, temp_reg, temp_reg);
andcc(temp_reg, ~((int) markOop::age_mask_in_place), temp_reg);
if (counters != NULL) {
cond_inc(Assembler::equal, (address) counters->biased_lock_entry_count_addr(), mark_reg, temp_reg);
// Reload mark_reg as we may need it later
ld_ptr(Address(obj_reg, oopDesc::mark_offset_in_bytes()), mark_reg);
}
brx(Assembler::equal, true, Assembler::pt, done);
delayed()->nop();
Label try_revoke_bias;
Label try_rebias;
Address mark_addr = Address(obj_reg, oopDesc::mark_offset_in_bytes());
assert(mark_addr.disp() == 0, "cas must take a zero displacement");
// At this point we know that the header has the bias pattern and
// that we are not the bias owner in the current epoch. We need to
// figure out more details about the state of the header in order to
// know what operations can be legally performed on the object's
// header.
// If the low three bits in the xor result aren't clear, that means
// the prototype header is no longer biased and we have to revoke
// the bias on this object.
btst(markOop::biased_lock_mask_in_place, temp_reg);
brx(Assembler::notZero, false, Assembler::pn, try_revoke_bias);
// Biasing is still enabled for this data type. See whether the
// epoch of the current bias is still valid, meaning that the epoch
// bits of the mark word are equal to the epoch bits of the
// prototype header. (Note that the prototype header's epoch bits
// only change at a safepoint.) If not, attempt to rebias the object
// toward the current thread. Note that we must be absolutely sure
// that the current epoch is invalid in order to do this because
// otherwise the manipulations it performs on the mark word are
// illegal.
delayed()->btst(markOop::epoch_mask_in_place, temp_reg);
brx(Assembler::notZero, false, Assembler::pn, try_rebias);
// The epoch of the current bias is still valid but we know nothing
// about the owner; it might be set or it might be clear. Try to
// acquire the bias of the object using an atomic operation. If this
// fails we will go in to the runtime to revoke the object's bias.
// Note that we first construct the presumed unbiased header so we
// don't accidentally blow away another thread's valid bias.
delayed()->and3(mark_reg,
markOop::biased_lock_mask_in_place | markOop::age_mask_in_place | markOop::epoch_mask_in_place,
mark_reg);
or3(G2_thread, mark_reg, temp_reg);
cas_ptr(mark_addr.base(), mark_reg, temp_reg);
// If the biasing toward our thread failed, this means that
// another thread succeeded in biasing it toward itself and we
// need to revoke that bias. The revocation will occur in the
// interpreter runtime in the slow case.
cmp(mark_reg, temp_reg);
if (counters != NULL) {
cond_inc(Assembler::zero, (address) counters->anonymously_biased_lock_entry_count_addr(), mark_reg, temp_reg);
}
if (slow_case != NULL) {
brx(Assembler::notEqual, true, Assembler::pn, *slow_case);
delayed()->nop();
}
ba_short(done);
bind(try_rebias);
// At this point we know the epoch has expired, meaning that the
// current "bias owner", if any, is actually invalid. Under these
// circumstances _only_, we are allowed to use the current header's
// value as the comparison value when doing the cas to acquire the
// bias in the current epoch. In other words, we allow transfer of
// the bias from one thread to another directly in this situation.
//
// FIXME: due to a lack of registers we currently blow away the age
// bits in this situation. Should attempt to preserve them.
load_klass(obj_reg, temp_reg);
ld_ptr(Address(temp_reg, Klass::prototype_header_offset()), temp_reg);
or3(G2_thread, temp_reg, temp_reg);
cas_ptr(mark_addr.base(), mark_reg, temp_reg);
// If the biasing toward our thread failed, this means that
// another thread succeeded in biasing it toward itself and we
// need to revoke that bias. The revocation will occur in the
// interpreter runtime in the slow case.
cmp(mark_reg, temp_reg);
if (counters != NULL) {
cond_inc(Assembler::zero, (address) counters->rebiased_lock_entry_count_addr(), mark_reg, temp_reg);
}
if (slow_case != NULL) {
brx(Assembler::notEqual, true, Assembler::pn, *slow_case);
delayed()->nop();
}
ba_short(done);
bind(try_revoke_bias);
// The prototype mark in the klass doesn't have the bias bit set any
// more, indicating that objects of this data type are not supposed
// to be biased any more. We are going to try to reset the mark of
// this object to the prototype value and fall through to the
// CAS-based locking scheme. Note that if our CAS fails, it means
// that another thread raced us for the privilege of revoking the
// bias of this particular object, so it's okay to continue in the
// normal locking code.
//
// FIXME: due to a lack of registers we currently blow away the age
// bits in this situation. Should attempt to preserve them.
load_klass(obj_reg, temp_reg);
ld_ptr(Address(temp_reg, Klass::prototype_header_offset()), temp_reg);
cas_ptr(mark_addr.base(), mark_reg, temp_reg);
// Fall through to the normal CAS-based lock, because no matter what
// the result of the above CAS, some thread must have succeeded in
// removing the bias bit from the object's header.
if (counters != NULL) {
cmp(mark_reg, temp_reg);
cond_inc(Assembler::zero, (address) counters->revoked_lock_entry_count_addr(), mark_reg, temp_reg);
}
bind(cas_label);
}
void MacroAssembler::biased_locking_exit (Address mark_addr, Register temp_reg, Label& done,
bool allow_delay_slot_filling) {
// Check for biased locking unlock case, which is a no-op
// Note: we do not have to check the thread ID for two reasons.
// First, the interpreter checks for IllegalMonitorStateException at
// a higher level. Second, if the bias was revoked while we held the
// lock, the object could not be rebiased toward another thread, so
// the bias bit would be clear.
ld_ptr(mark_addr, temp_reg);
and3(temp_reg, markOop::biased_lock_mask_in_place, temp_reg);
cmp(temp_reg, markOop::biased_lock_pattern);
brx(Assembler::equal, allow_delay_slot_filling, Assembler::pt, done);
delayed();
if (!allow_delay_slot_filling) {
nop();
}
}
// compiler_lock_object() and compiler_unlock_object() are direct transliterations
// of i486.ad fast_lock() and fast_unlock(). See those methods for detailed comments.
// The code could be tightened up considerably.
//
// box->dhw disposition - post-conditions at DONE_LABEL.
// - Successful inflated lock: box->dhw != 0.
// Any non-zero value suffices.
// Consider G2_thread, rsp, boxReg, or markOop::unused_mark()
// - Successful Stack-lock: box->dhw == mark.
// box->dhw must contain the displaced mark word value
// - Failure -- icc.ZFlag == 0 and box->dhw is undefined.
// The slow-path fast_enter() and slow_enter() operators
// are responsible for setting box->dhw = NonZero (typically markOop::unused_mark()).
// - Biased: box->dhw is undefined
//
// SPARC refworkload performance - specifically jetstream and scimark - are
// extremely sensitive to the size of the code emitted by compiler_lock_object
// and compiler_unlock_object. Critically, the key factor is code size, not path
// length. (Simply experiments to pad CLO with unexecuted NOPs demonstrte the
// effect).
void MacroAssembler::compiler_lock_object(Register Roop, Register Rmark,
Register Rbox, Register Rscratch,
BiasedLockingCounters* counters,
bool try_bias) {
Address mark_addr(Roop, oopDesc::mark_offset_in_bytes());
verify_oop(Roop);
Label done ;
if (counters != NULL) {
inc_counter((address) counters->total_entry_count_addr(), Rmark, Rscratch);
}
if (EmitSync & 1) {
mov(3, Rscratch);
st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
cmp(SP, G0);
return ;
}
if (EmitSync & 2) {
// Fetch object's markword
ld_ptr(mark_addr, Rmark);
if (try_bias) {
biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
}
// Save Rbox in Rscratch to be used for the cas operation
mov(Rbox, Rscratch);
// set Rmark to markOop | markOop::unlocked_value
or3(Rmark, markOop::unlocked_value, Rmark);
// Initialize the box. (Must happen before we update the object mark!)
st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
// compare object markOop with Rmark and if equal exchange Rscratch with object markOop
assert(mark_addr.disp() == 0, "cas must take a zero displacement");
cas_ptr(mark_addr.base(), Rmark, Rscratch);
// if compare/exchange succeeded we found an unlocked object and we now have locked it
// hence we are done
cmp(Rmark, Rscratch);
sub(Rscratch, STACK_BIAS, Rscratch);
brx(Assembler::equal, false, Assembler::pt, done);
delayed()->sub(Rscratch, SP, Rscratch); //pull next instruction into delay slot
// we did not find an unlocked object so see if this is a recursive case
// sub(Rscratch, SP, Rscratch);
assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
andcc(Rscratch, 0xfffff003, Rscratch);
st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
bind (done);
return ;
}
Label Egress ;
if (EmitSync & 256) {
Label IsInflated ;
ld_ptr(mark_addr, Rmark); // fetch obj->mark
// Triage: biased, stack-locked, neutral, inflated
if (try_bias) {
biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
// Invariant: if control reaches this point in the emitted stream
// then Rmark has not been modified.
}
// Store mark into displaced mark field in the on-stack basic-lock "box"
// Critically, this must happen before the CAS
// Maximize the ST-CAS distance to minimize the ST-before-CAS penalty.
st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
andcc(Rmark, 2, G0);
brx(Assembler::notZero, false, Assembler::pn, IsInflated);
delayed()->
// Try stack-lock acquisition.
// Beware: the 1st instruction is in a delay slot
mov(Rbox, Rscratch);
or3(Rmark, markOop::unlocked_value, Rmark);
assert(mark_addr.disp() == 0, "cas must take a zero displacement");
cas_ptr(mark_addr.base(), Rmark, Rscratch);
cmp(Rmark, Rscratch);
brx(Assembler::equal, false, Assembler::pt, done);
delayed()->sub(Rscratch, SP, Rscratch);
// Stack-lock attempt failed - check for recursive stack-lock.
// See the comments below about how we might remove this case.
sub(Rscratch, STACK_BIAS, Rscratch);
assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
andcc(Rscratch, 0xfffff003, Rscratch);
br(Assembler::always, false, Assembler::pt, done);
delayed()-> st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
bind(IsInflated);
if (EmitSync & 64) {
// If m->owner != null goto IsLocked
// Pessimistic form: Test-and-CAS vs CAS
// The optimistic form avoids RTS->RTO cache line upgrades.
ld_ptr(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner), Rscratch);
andcc(Rscratch, Rscratch, G0);
brx(Assembler::notZero, false, Assembler::pn, done);
delayed()->nop();
// m->owner == null : it's unlocked.
}
// Try to CAS m->owner from null to Self
// Invariant: if we acquire the lock then _recursions should be 0.
add(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner), Rmark);
mov(G2_thread, Rscratch);
cas_ptr(Rmark, G0, Rscratch);
cmp(Rscratch, G0);
// Intentional fall-through into done
} else {
// Aggressively avoid the Store-before-CAS penalty
// Defer the store into box->dhw until after the CAS
Label IsInflated, Recursive ;
// Anticipate CAS -- Avoid RTS->RTO upgrade
// prefetch (mark_addr, Assembler::severalWritesAndPossiblyReads);
ld_ptr(mark_addr, Rmark); // fetch obj->mark
// Triage: biased, stack-locked, neutral, inflated
if (try_bias) {
biased_locking_enter(Roop, Rmark, Rscratch, done, NULL, counters);
// Invariant: if control reaches this point in the emitted stream
// then Rmark has not been modified.
}
andcc(Rmark, 2, G0);
brx(Assembler::notZero, false, Assembler::pn, IsInflated);
delayed()-> // Beware - dangling delay-slot
// Try stack-lock acquisition.
// Transiently install BUSY (0) encoding in the mark word.
// if the CAS of 0 into the mark was successful then we execute:
// ST box->dhw = mark -- save fetched mark in on-stack basiclock box
// ST obj->mark = box -- overwrite transient 0 value
// This presumes TSO, of course.
mov(0, Rscratch);
or3(Rmark, markOop::unlocked_value, Rmark);
assert(mark_addr.disp() == 0, "cas must take a zero displacement");
cas_ptr(mark_addr.base(), Rmark, Rscratch);
// prefetch (mark_addr, Assembler::severalWritesAndPossiblyReads);
cmp(Rscratch, Rmark);
brx(Assembler::notZero, false, Assembler::pn, Recursive);
delayed()->st_ptr(Rmark, Rbox, BasicLock::displaced_header_offset_in_bytes());
if (counters != NULL) {
cond_inc(Assembler::equal, (address) counters->fast_path_entry_count_addr(), Rmark, Rscratch);
}
ba(done);
delayed()->st_ptr(Rbox, mark_addr);
bind(Recursive);
// Stack-lock attempt failed - check for recursive stack-lock.
// Tests show that we can remove the recursive case with no impact
// on refworkload 0.83. If we need to reduce the size of the code
// emitted by compiler_lock_object() the recursive case is perfect
// candidate.
//
// A more extreme idea is to always inflate on stack-lock recursion.
// This lets us eliminate the recursive checks in compiler_lock_object
// and compiler_unlock_object and the (box->dhw == 0) encoding.
// A brief experiment - requiring changes to synchronizer.cpp, interpreter,
// and showed a performance *increase*. In the same experiment I eliminated
// the fast-path stack-lock code from the interpreter and always passed
// control to the "slow" operators in synchronizer.cpp.
// RScratch contains the fetched obj->mark value from the failed CAS.
sub(Rscratch, STACK_BIAS, Rscratch);
sub(Rscratch, SP, Rscratch);
assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
andcc(Rscratch, 0xfffff003, Rscratch);
if (counters != NULL) {
// Accounting needs the Rscratch register
st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
cond_inc(Assembler::equal, (address) counters->fast_path_entry_count_addr(), Rmark, Rscratch);
ba_short(done);
} else {
ba(done);
delayed()->st_ptr(Rscratch, Rbox, BasicLock::displaced_header_offset_in_bytes());
}
bind (IsInflated);
// Try to CAS m->owner from null to Self
// Invariant: if we acquire the lock then _recursions should be 0.
add(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner), Rmark);
mov(G2_thread, Rscratch);
cas_ptr(Rmark, G0, Rscratch);
andcc(Rscratch, Rscratch, G0); // set ICCs for done: icc.zf iff success
// set icc.zf : 1=success 0=failure
// ST box->displaced_header = NonZero.
// Any non-zero value suffices:
// markOop::unused_mark(), G2_thread, RBox, RScratch, rsp, etc.
st_ptr(Rbox, Rbox, BasicLock::displaced_header_offset_in_bytes());
// Intentional fall-through into done
}
bind (done);
}
void MacroAssembler::compiler_unlock_object(Register Roop, Register Rmark,
Register Rbox, Register Rscratch,
bool try_bias) {
Address mark_addr(Roop, oopDesc::mark_offset_in_bytes());
Label done ;
if (EmitSync & 4) {
cmp(SP, G0);
return ;
}
if (EmitSync & 8) {
if (try_bias) {
biased_locking_exit(mark_addr, Rscratch, done);
}
// Test first if it is a fast recursive unlock
ld_ptr(Rbox, BasicLock::displaced_header_offset_in_bytes(), Rmark);
br_null_short(Rmark, Assembler::pt, done);
// Check if it is still a light weight lock, this is is true if we see
// the stack address of the basicLock in the markOop of the object
assert(mark_addr.disp() == 0, "cas must take a zero displacement");
cas_ptr(mark_addr.base(), Rbox, Rmark);
ba(done);
delayed()->cmp(Rbox, Rmark);
bind(done);
return ;
}
// Beware ... If the aggregate size of the code emitted by CLO and CUO is
// is too large performance rolls abruptly off a cliff.
// This could be related to inlining policies, code cache management, or
// I$ effects.
Label LStacked ;
if (try_bias) {
// TODO: eliminate redundant LDs of obj->mark
biased_locking_exit(mark_addr, Rscratch, done);
}
ld_ptr(Roop, oopDesc::mark_offset_in_bytes(), Rmark);
ld_ptr(Rbox, BasicLock::displaced_header_offset_in_bytes(), Rscratch);
andcc(Rscratch, Rscratch, G0);
brx(Assembler::zero, false, Assembler::pn, done);
delayed()->nop(); // consider: relocate fetch of mark, above, into this DS
andcc(Rmark, 2, G0);
brx(Assembler::zero, false, Assembler::pt, LStacked);
delayed()->nop();
// It's inflated
// Conceptually we need a #loadstore|#storestore "release" MEMBAR before
// the ST of 0 into _owner which releases the lock. This prevents loads
// and stores within the critical section from reordering (floating)
// past the store that releases the lock. But TSO is a strong memory model
// and that particular flavor of barrier is a noop, so we can safely elide it.
// Note that we use 1-0 locking by default for the inflated case. We
// close the resultant (and rare) race by having contended threads in
// monitorenter periodically poll _owner.
if (EmitSync & 1024) {
// Emit code to check that _owner == Self
// We could fold the _owner test into subsequent code more efficiently
// than using a stand-alone check, but since _owner checking is off by
// default we don't bother. We also might consider predicating the
// _owner==Self check on Xcheck:jni or running on a debug build.
ld_ptr(Address(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), Rscratch);
orcc(Rscratch, G0, G0);
brx(Assembler::notZero, false, Assembler::pn, done);
delayed()->nop();
}
if (EmitSync & 512) {
// classic lock release code absent 1-0 locking
// m->Owner = null;
// membar #storeload
// if (m->cxq|m->EntryList) == null goto Success
// if (m->succ != null) goto Success
// if CAS (&m->Owner,0,Self) != 0 goto Success
// goto SlowPath
ld_ptr(Address(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)), Rbox);
orcc(Rbox, G0, G0);
brx(Assembler::notZero, false, Assembler::pn, done);
delayed()->nop();
st_ptr(G0, Address(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
if (os::is_MP()) { membar(StoreLoad); }
ld_ptr(Address(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)), Rscratch);
ld_ptr(Address(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)), Rbox);
orcc(Rbox, Rscratch, G0);
brx(Assembler::zero, false, Assembler::pt, done);
delayed()->
ld_ptr(Address(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), Rscratch);
andcc(Rscratch, Rscratch, G0);
brx(Assembler::notZero, false, Assembler::pt, done);
delayed()->andcc(G0, G0, G0);
add(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner), Rmark);
mov(G2_thread, Rscratch);
cas_ptr(Rmark, G0, Rscratch);
cmp(Rscratch, G0);
// invert icc.zf and goto done
brx(Assembler::notZero, false, Assembler::pt, done);
delayed()->cmp(G0, G0);
br(Assembler::always, false, Assembler::pt, done);
delayed()->cmp(G0, 1);
} else {
// 1-0 form : avoids CAS and MEMBAR in the common case
// Do not bother to ratify that m->Owner == Self.
ld_ptr(Address(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)), Rbox);
orcc(Rbox, G0, G0);
brx(Assembler::notZero, false, Assembler::pn, done);
delayed()->
ld_ptr(Address(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)), Rscratch);
ld_ptr(Address(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)), Rbox);
orcc(Rbox, Rscratch, G0);
if (EmitSync & 16384) {
// As an optional optimization, if (EntryList|cxq) != null and _succ is null then
// we should transfer control directly to the slow-path.
// This test makes the reacquire operation below very infrequent.
// The logic is equivalent to :
// if (cxq|EntryList) == null : Owner=null; goto Success
// if succ == null : goto SlowPath
// Owner=null; membar #storeload
// if succ != null : goto Success
// if CAS(&Owner,null,Self) != null goto Success
// goto SlowPath
brx(Assembler::zero, true, Assembler::pt, done);
delayed()->
st_ptr(G0, Address(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
ld_ptr(Address(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), Rscratch);
andcc(Rscratch, Rscratch, G0) ;
brx(Assembler::zero, false, Assembler::pt, done);
delayed()->orcc(G0, 1, G0);
st_ptr(G0, Address(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
} else {
brx(Assembler::zero, false, Assembler::pt, done);
delayed()->
st_ptr(G0, Address(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
}
if (os::is_MP()) { membar(StoreLoad); }
// Check that _succ is (or remains) non-zero
ld_ptr(Address(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), Rscratch);
andcc(Rscratch, Rscratch, G0);
brx(Assembler::notZero, false, Assembler::pt, done);
delayed()->andcc(G0, G0, G0);
add(Rmark, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner), Rmark);
mov(G2_thread, Rscratch);
cas_ptr(Rmark, G0, Rscratch);
cmp(Rscratch, G0);
// invert icc.zf and goto done
// A slightly better v8+/v9 idiom would be the following:
// movrnz Rscratch,1,Rscratch
// ba done
// xorcc Rscratch,1,G0
// In v8+ mode the idiom would be valid IFF Rscratch was a G or O register
brx(Assembler::notZero, false, Assembler::pt, done);
delayed()->cmp(G0, G0);
br(Assembler::always, false, Assembler::pt, done);
delayed()->cmp(G0, 1);
}
bind (LStacked);
// Consider: we could replace the expensive CAS in the exit
// path with a simple ST of the displaced mark value fetched from
// the on-stack basiclock box. That admits a race where a thread T2
// in the slow lock path -- inflating with monitor M -- could race a
// thread T1 in the fast unlock path, resulting in a missed wakeup for T2.
// More precisely T1 in the stack-lock unlock path could "stomp" the
// inflated mark value M installed by T2, resulting in an orphan
// object monitor M and T2 becoming stranded. We can remedy that situation
// by having T2 periodically poll the object's mark word using timed wait
// operations. If T2 discovers that a stomp has occurred it vacates
// the monitor M and wakes any other threads stranded on the now-orphan M.
// In addition the monitor scavenger, which performs deflation,
// would also need to check for orpan monitors and stranded threads.
//
// Finally, inflation is also used when T2 needs to assign a hashCode
// to O and O is stack-locked by T1. The "stomp" race could cause
// an assigned hashCode value to be lost. We can avoid that condition
// and provide the necessary hashCode stability invariants by ensuring
// that hashCode generation is idempotent between copying GCs.
// For example we could compute the hashCode of an object O as
// O's heap address XOR some high quality RNG value that is refreshed
// at GC-time. The monitor scavenger would install the hashCode
// found in any orphan monitors. Again, the mechanism admits a
// lost-update "stomp" WAW race but detects and recovers as needed.
//
// A prototype implementation showed excellent results, although
// the scavenger and timeout code was rather involved.
cas_ptr(mark_addr.base(), Rbox, Rscratch);
cmp(Rbox, Rscratch);
// Intentional fall through into done ...
bind(done);
}
void MacroAssembler::print_CPU_state() {
// %%%%% need to implement this
}
void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
// %%%%% need to implement this
}
void MacroAssembler::push_IU_state() {
// %%%%% need to implement this
}
void MacroAssembler::pop_IU_state() {
// %%%%% need to implement this
}
void MacroAssembler::push_FPU_state() {
// %%%%% need to implement this
}
void MacroAssembler::pop_FPU_state() {
// %%%%% need to implement this
}
void MacroAssembler::push_CPU_state() {
// %%%%% need to implement this
}
void MacroAssembler::pop_CPU_state() {
// %%%%% need to implement this
}
void MacroAssembler::verify_tlab() {
#ifdef ASSERT
if (UseTLAB && VerifyOops) {
Label next, next2, ok;
Register t1 = L0;
Register t2 = L1;
Register t3 = L2;
save_frame(0);
ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), t1);
ld_ptr(G2_thread, in_bytes(JavaThread::tlab_start_offset()), t2);
or3(t1, t2, t3);
cmp_and_br_short(t1, t2, Assembler::greaterEqual, Assembler::pn, next);
STOP("assert(top >= start)");
should_not_reach_here();
bind(next);
ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), t1);
ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), t2);
or3(t3, t2, t3);
cmp_and_br_short(t1, t2, Assembler::lessEqual, Assembler::pn, next2);
STOP("assert(top <= end)");
should_not_reach_here();
bind(next2);
and3(t3, MinObjAlignmentInBytesMask, t3);
cmp_and_br_short(t3, 0, Assembler::lessEqual, Assembler::pn, ok);
STOP("assert(aligned)");
should_not_reach_here();
bind(ok);
restore();
}
#endif
}
void MacroAssembler::eden_allocate(
Register obj, // result: pointer to object after successful allocation
Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
int con_size_in_bytes, // object size in bytes if known at compile time
Register t1, // temp register
Register t2, // temp register
Label& slow_case // continuation point if fast allocation fails
){
// make sure arguments make sense
assert_different_registers(obj, var_size_in_bytes, t1, t2);
assert(0 <= con_size_in_bytes && Assembler::is_simm13(con_size_in_bytes), "illegal object size");
assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
if (!Universe::heap()->supports_inline_contig_alloc()) {
// No allocation in the shared eden.
ba(slow_case);
delayed()->nop();
} else {
// get eden boundaries
// note: we need both top & top_addr!
const Register top_addr = t1;
const Register end = t2;
CollectedHeap* ch = Universe::heap();
set((intx)ch->top_addr(), top_addr);
intx delta = (intx)ch->end_addr() - (intx)ch->top_addr();
ld_ptr(top_addr, delta, end);
ld_ptr(top_addr, 0, obj);
// try to allocate
Label retry;
bind(retry);
#ifdef ASSERT
// make sure eden top is properly aligned
{
Label L;
btst(MinObjAlignmentInBytesMask, obj);
br(Assembler::zero, false, Assembler::pt, L);
delayed()->nop();
STOP("eden top is not properly aligned");
bind(L);
}
#endif // ASSERT
const Register free = end;
sub(end, obj, free); // compute amount of free space
if (var_size_in_bytes->is_valid()) {
// size is unknown at compile time
cmp(free, var_size_in_bytes);
brx(Assembler::lessUnsigned, false, Assembler::pn, slow_case); // if there is not enough space go the slow case
delayed()->add(obj, var_size_in_bytes, end);
} else {
// size is known at compile time
cmp(free, con_size_in_bytes);
brx(Assembler::lessUnsigned, false, Assembler::pn, slow_case); // if there is not enough space go the slow case
delayed()->add(obj, con_size_in_bytes, end);
}
// Compare obj with the value at top_addr; if still equal, swap the value of
// end with the value at top_addr. If not equal, read the value at top_addr
// into end.
cas_ptr(top_addr, obj, end);
// if someone beat us on the allocation, try again, otherwise continue
cmp(obj, end);
brx(Assembler::notEqual, false, Assembler::pn, retry);
delayed()->mov(end, obj); // nop if successfull since obj == end
#ifdef ASSERT
// make sure eden top is properly aligned
{
Label L;
const Register top_addr = t1;
set((intx)ch->top_addr(), top_addr);
ld_ptr(top_addr, 0, top_addr);
btst(MinObjAlignmentInBytesMask, top_addr);
br(Assembler::zero, false, Assembler::pt, L);
delayed()->nop();
STOP("eden top is not properly aligned");
bind(L);
}
#endif // ASSERT
}
}
void MacroAssembler::tlab_allocate(
Register obj, // result: pointer to object after successful allocation
Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
int con_size_in_bytes, // object size in bytes if known at compile time
Register t1, // temp register
Label& slow_case // continuation point if fast allocation fails
){
// make sure arguments make sense
assert_different_registers(obj, var_size_in_bytes, t1);
assert(0 <= con_size_in_bytes && is_simm13(con_size_in_bytes), "illegal object size");
assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "object size is not multiple of alignment");
const Register free = t1;
verify_tlab();
ld_ptr(G2_thread, in_bytes(JavaThread::tlab_top_offset()), obj);
// calculate amount of free space
ld_ptr(G2_thread, in_bytes(JavaThread::tlab_end_offset()), free);
sub(free, obj, free);
Label done;
if (var_size_in_bytes == noreg) {
cmp(free, con_size_in_bytes);
} else {
cmp(free, var_size_in_bytes);
}
br(Assembler::less, false, Assembler::pn, slow_case);
// calculate the new top pointer
if (var_size_in_bytes == noreg) {
delayed()->add(obj, con_size_in_bytes, free);
} else {
delayed()->add(obj, var_size_in_bytes, free);
}
bind(done);
#ifdef ASSERT
// make sure new free pointer is properly aligned
{
Label L;
btst(MinObjAlignmentInBytesMask, free);
br(Assembler::zero, false, Assembler::pt, L);
delayed()->nop();
STOP("updated TLAB free is not properly aligned");
bind(L);
}
#endif // ASSERT
// update the tlab top pointer
st_ptr(free, G2_thread, in_bytes(JavaThread::tlab_top_offset()));
verify_tlab();
}
void MacroAssembler::zero_memory(Register base, Register index) {
assert_different_registers(base, index);
Label loop;
bind(loop);
subcc(index, HeapWordSize, index);
brx(Assembler::greaterEqual, true, Assembler::pt, loop);
delayed()->st_ptr(G0, base, index);
}
void MacroAssembler::incr_allocated_bytes(RegisterOrConstant size_in_bytes,
Register t1, Register t2) {
// Bump total bytes allocated by this thread
assert(t1->is_global(), "must be global reg"); // so all 64 bits are saved on a context switch
assert_different_registers(size_in_bytes.register_or_noreg(), t1, t2);
// v8 support has gone the way of the dodo
ldx(G2_thread, in_bytes(JavaThread::allocated_bytes_offset()), t1);
add(t1, ensure_simm13_or_reg(size_in_bytes, t2), t1);
stx(t1, G2_thread, in_bytes(JavaThread::allocated_bytes_offset()));
}
Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
switch (cond) {
// Note some conditions are synonyms for others
case Assembler::never: return Assembler::always;
case Assembler::zero: return Assembler::notZero;
case Assembler::lessEqual: return Assembler::greater;
case Assembler::less: return Assembler::greaterEqual;
case Assembler::lessEqualUnsigned: return Assembler::greaterUnsigned;
case Assembler::lessUnsigned: return Assembler::greaterEqualUnsigned;
case Assembler::negative: return Assembler::positive;
case Assembler::overflowSet: return Assembler::overflowClear;
case Assembler::always: return Assembler::never;
case Assembler::notZero: return Assembler::zero;
case Assembler::greater: return Assembler::lessEqual;
case Assembler::greaterEqual: return Assembler::less;
case Assembler::greaterUnsigned: return Assembler::lessEqualUnsigned;
case Assembler::greaterEqualUnsigned: return Assembler::lessUnsigned;
case Assembler::positive: return Assembler::negative;
case Assembler::overflowClear: return Assembler::overflowSet;
}
ShouldNotReachHere(); return Assembler::overflowClear;
}
void MacroAssembler::cond_inc(Assembler::Condition cond, address counter_ptr,
Register Rtmp1, Register Rtmp2 /*, Register Rtmp3, Register Rtmp4 */) {
Condition negated_cond = negate_condition(cond);
Label L;
brx(negated_cond, false, Assembler::pt, L);
delayed()->nop();
inc_counter(counter_ptr, Rtmp1, Rtmp2);
bind(L);
}
void MacroAssembler::inc_counter(address counter_addr, Register Rtmp1, Register Rtmp2) {
AddressLiteral addrlit(counter_addr);
sethi(addrlit, Rtmp1); // Move hi22 bits into temporary register.
Address addr(Rtmp1, addrlit.low10()); // Build an address with low10 bits.
ld(addr, Rtmp2);
inc(Rtmp2);
st(Rtmp2, addr);
}
void MacroAssembler::inc_counter(int* counter_addr, Register Rtmp1, Register Rtmp2) {
inc_counter((address) counter_addr, Rtmp1, Rtmp2);
}
SkipIfEqual::SkipIfEqual(
MacroAssembler* masm, Register temp, const bool* flag_addr,
Assembler::Condition condition) {
_masm = masm;
AddressLiteral flag(flag_addr);
_masm->sethi(flag, temp);
_masm->ldub(temp, flag.low10(), temp);
_masm->tst(temp);
_masm->br(condition, false, Assembler::pt, _label);
_masm->delayed()->nop();
}
SkipIfEqual::~SkipIfEqual() {
_masm->bind(_label);
}
void MacroAssembler::bang_stack_with_offset(int offset) {
// stack grows down, caller passes positive offset
assert(offset > 0, "must bang with negative offset");
set((-offset)+STACK_BIAS, G3_scratch);
st(G0, SP, G3_scratch);
}
// Writes to stack successive pages until offset reached to check for
// stack overflow + shadow pages. This clobbers tsp and scratch.
void MacroAssembler::bang_stack_size(Register Rsize, Register Rtsp,
Register Rscratch) {
// Use stack pointer in temp stack pointer
mov(SP, Rtsp);
// Bang stack for total size given plus stack shadow page size.
// Bang one page at a time because a large size can overflow yellow and
// red zones (the bang will fail but stack overflow handling can't tell that
// it was a stack overflow bang vs a regular segv).
int offset = os::vm_page_size();
Register Roffset = Rscratch;
Label loop;
bind(loop);
set((-offset)+STACK_BIAS, Rscratch);
st(G0, Rtsp, Rscratch);
set(offset, Roffset);
sub(Rsize, Roffset, Rsize);
cmp(Rsize, G0);
br(Assembler::greater, false, Assembler::pn, loop);
delayed()->sub(Rtsp, Roffset, Rtsp);
// Bang down shadow pages too.
// At this point, (tmp-0) is the last address touched, so don't
// touch it again. (It was touched as (tmp-pagesize) but then tmp
// was post-decremented.) Skip this address by starting at i=1, and
// touch a few more pages below. N.B. It is important to touch all
// the way down to and including i=StackShadowPages.
for (int i = 1; i < JavaThread::stack_shadow_zone_size() / os::vm_page_size(); i++) {
set((-i*offset)+STACK_BIAS, Rscratch);
st(G0, Rtsp, Rscratch);
}
}
void MacroAssembler::reserved_stack_check() {
// testing if reserved zone needs to be enabled
Label no_reserved_zone_enabling;
ld_ptr(G2_thread, JavaThread::reserved_stack_activation_offset(), G4_scratch);
cmp_and_brx_short(SP, G4_scratch, Assembler::lessUnsigned, Assembler::pt, no_reserved_zone_enabling);
call_VM_leaf(L0, CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), G2_thread);
AddressLiteral stub(StubRoutines::throw_delayed_StackOverflowError_entry());
jump_to(stub, G4_scratch);
delayed()->restore();
should_not_reach_here();
bind(no_reserved_zone_enabling);
}
// ((OopHandle)result).resolve();
void MacroAssembler::resolve_oop_handle(Register result, Register tmp) {
// OopHandle::resolve is an indirection.
access_load_at(T_OBJECT, IN_NATIVE, Address(result, 0), result, tmp);
}
void MacroAssembler::load_mirror(Register mirror, Register method, Register tmp) {
const int mirror_offset = in_bytes(Klass::java_mirror_offset());
ld_ptr(method, in_bytes(Method::const_offset()), mirror);
ld_ptr(mirror, in_bytes(ConstMethod::constants_offset()), mirror);
ld_ptr(mirror, ConstantPool::pool_holder_offset_in_bytes(), mirror);
ld_ptr(mirror, mirror_offset, mirror);
resolve_oop_handle(mirror, tmp);
}
void MacroAssembler::load_klass(Register src_oop, Register klass) {
// The number of bytes in this code is used by
// MachCallDynamicJavaNode::ret_addr_offset()
// if this changes, change that.
if (UseCompressedClassPointers) {
lduw(src_oop, oopDesc::klass_offset_in_bytes(), klass);
decode_klass_not_null(klass);
} else {
ld_ptr(src_oop, oopDesc::klass_offset_in_bytes(), klass);
}
}
void MacroAssembler::store_klass(Register klass, Register dst_oop) {
if (UseCompressedClassPointers) {
assert(dst_oop != klass, "not enough registers");
encode_klass_not_null(klass);
st(klass, dst_oop, oopDesc::klass_offset_in_bytes());
} else {
st_ptr(klass, dst_oop, oopDesc::klass_offset_in_bytes());
}
}
void MacroAssembler::store_klass_gap(Register s, Register d) {
if (UseCompressedClassPointers) {
assert(s != d, "not enough registers");
st(s, d, oopDesc::klass_gap_offset_in_bytes());
}
}
void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators,
Register src, Address dst, Register tmp) {
BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
decorators = AccessInternal::decorator_fixup(decorators);
bool as_raw = (decorators & AS_RAW) != 0;
if (as_raw) {
bs->BarrierSetAssembler::store_at(this, decorators, type, src, dst, tmp);
} else {
bs->store_at(this, decorators, type, src, dst, tmp);
}
}
void MacroAssembler::access_load_at(BasicType type, DecoratorSet decorators,
Address src, Register dst, Register tmp) {
BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
decorators = AccessInternal::decorator_fixup(decorators);
bool as_raw = (decorators & AS_RAW) != 0;
if (as_raw) {
bs->BarrierSetAssembler::load_at(this, decorators, type, src, dst, tmp);
} else {
bs->load_at(this, decorators, type, src, dst, tmp);
}
}
void MacroAssembler::load_heap_oop(const Address& s, Register d, Register tmp, DecoratorSet decorators) {
access_load_at(T_OBJECT, IN_HEAP | decorators, s, d, tmp);
}
void MacroAssembler::load_heap_oop(Register s1, Register s2, Register d, Register tmp, DecoratorSet decorators) {
access_load_at(T_OBJECT, IN_HEAP | decorators, Address(s1, s2), d, tmp);
}
void MacroAssembler::load_heap_oop(Register s1, int simm13a, Register d, Register tmp, DecoratorSet decorators) {
access_load_at(T_OBJECT, IN_HEAP | decorators, Address(s1, simm13a), d, tmp);
}
void MacroAssembler::load_heap_oop(Register s1, RegisterOrConstant s2, Register d, Register tmp, DecoratorSet decorators) {
if (s2.is_constant()) {
access_load_at(T_OBJECT, IN_HEAP | decorators, Address(s1, s2.as_constant()), d, tmp);
} else {
access_load_at(T_OBJECT, IN_HEAP | decorators, Address(s1, s2.as_register()), d, tmp);
}
}
void MacroAssembler::store_heap_oop(Register d, Register s1, Register s2, Register tmp, DecoratorSet decorators) {
access_store_at(T_OBJECT, IN_HEAP | decorators, d, Address(s1, s2), tmp);
}
void MacroAssembler::store_heap_oop(Register d, Register s1, int simm13a, Register tmp, DecoratorSet decorators) {
access_store_at(T_OBJECT, IN_HEAP | decorators, d, Address(s1, simm13a), tmp);
}
void MacroAssembler::store_heap_oop(Register d, const Address& a, int offset, Register tmp, DecoratorSet decorators) {
if (a.has_index()) {
assert(!a.has_disp(), "not supported yet");
assert(offset == 0, "not supported yet");
access_store_at(T_OBJECT, IN_HEAP | decorators, d, Address(a.base(), a.index()), tmp);
} else {
access_store_at(T_OBJECT, IN_HEAP | decorators, d, Address(a.base(), a.disp() + offset), tmp);
}
}
void MacroAssembler::encode_heap_oop(Register src, Register dst) {
assert (UseCompressedOops, "must be compressed");
assert (Universe::heap() != NULL, "java heap should be initialized");
assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
verify_oop(src);
if (Universe::narrow_oop_base() == NULL) {
srlx(src, LogMinObjAlignmentInBytes, dst);
return;
}
Label done;
if (src == dst) {
// optimize for frequent case src == dst
bpr(rc_nz, true, Assembler::pt, src, done);
delayed() -> sub(src, G6_heapbase, dst); // annuled if not taken
bind(done);
srlx(src, LogMinObjAlignmentInBytes, dst);
} else {
bpr(rc_z, false, Assembler::pn, src, done);
delayed() -> mov(G0, dst);
// could be moved before branch, and annulate delay,
// but may add some unneeded work decoding null
sub(src, G6_heapbase, dst);
srlx(dst, LogMinObjAlignmentInBytes, dst);
bind(done);
}
}
void MacroAssembler::encode_heap_oop_not_null(Register r) {
assert (UseCompressedOops, "must be compressed");
assert (Universe::heap() != NULL, "java heap should be initialized");
assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
verify_oop(r);
if (Universe::narrow_oop_base() != NULL)
sub(r, G6_heapbase, r);
srlx(r, LogMinObjAlignmentInBytes, r);
}
void MacroAssembler::encode_heap_oop_not_null(Register src, Register dst) {
assert (UseCompressedOops, "must be compressed");
assert (Universe::heap() != NULL, "java heap should be initialized");
assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
verify_oop(src);
if (Universe::narrow_oop_base() == NULL) {
srlx(src, LogMinObjAlignmentInBytes, dst);
} else {
sub(src, G6_heapbase, dst);
srlx(dst, LogMinObjAlignmentInBytes, dst);
}
}
// Same algorithm as oops.inline.hpp decode_heap_oop.
void MacroAssembler::decode_heap_oop(Register src, Register dst) {
assert (UseCompressedOops, "must be compressed");
assert (Universe::heap() != NULL, "java heap should be initialized");
assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
sllx(src, LogMinObjAlignmentInBytes, dst);
if (Universe::narrow_oop_base() != NULL) {
Label done;
bpr(rc_nz, true, Assembler::pt, dst, done);
delayed() -> add(dst, G6_heapbase, dst); // annuled if not taken
bind(done);
}
verify_oop(dst);
}
void MacroAssembler::decode_heap_oop_not_null(Register r) {
// Do not add assert code to this unless you change vtableStubs_sparc.cpp
// pd_code_size_limit.
// Also do not verify_oop as this is called by verify_oop.
assert (UseCompressedOops, "must be compressed");
assert (Universe::heap() != NULL, "java heap should be initialized");
assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
sllx(r, LogMinObjAlignmentInBytes, r);
if (Universe::narrow_oop_base() != NULL)
add(r, G6_heapbase, r);
}
void MacroAssembler::decode_heap_oop_not_null(Register src, Register dst) {
// Do not add assert code to this unless you change vtableStubs_sparc.cpp
// pd_code_size_limit.
// Also do not verify_oop as this is called by verify_oop.
assert (UseCompressedOops, "must be compressed");
assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
sllx(src, LogMinObjAlignmentInBytes, dst);
if (Universe::narrow_oop_base() != NULL)
add(dst, G6_heapbase, dst);
}
void MacroAssembler::encode_klass_not_null(Register r) {
assert (UseCompressedClassPointers, "must be compressed");
if (Universe::narrow_klass_base() != NULL) {
assert(r != G6_heapbase, "bad register choice");
set((intptr_t)Universe::narrow_klass_base(), G6_heapbase);
sub(r, G6_heapbase, r);
if (Universe::narrow_klass_shift() != 0) {
assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
srlx(r, LogKlassAlignmentInBytes, r);
}
reinit_heapbase();
} else {
assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift() || Universe::narrow_klass_shift() == 0, "decode alg wrong");
srlx(r, Universe::narrow_klass_shift(), r);
}
}
void MacroAssembler::encode_klass_not_null(Register src, Register dst) {
if (src == dst) {
encode_klass_not_null(src);
} else {
assert (UseCompressedClassPointers, "must be compressed");
if (Universe::narrow_klass_base() != NULL) {
set((intptr_t)Universe::narrow_klass_base(), dst);
sub(src, dst, dst);
if (Universe::narrow_klass_shift() != 0) {
srlx(dst, LogKlassAlignmentInBytes, dst);
}
} else {
// shift src into dst
assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift() || Universe::narrow_klass_shift() == 0, "decode alg wrong");
srlx(src, Universe::narrow_klass_shift(), dst);
}
}
}
// Function instr_size_for_decode_klass_not_null() counts the instructions
// generated by decode_klass_not_null() and reinit_heapbase(). Hence, if
// the instructions they generate change, then this method needs to be updated.
int MacroAssembler::instr_size_for_decode_klass_not_null() {
assert (UseCompressedClassPointers, "only for compressed klass ptrs");
int num_instrs = 1; // shift src,dst or add
if (Universe::narrow_klass_base() != NULL) {
// set + add + set
num_instrs += insts_for_internal_set((intptr_t)Universe::narrow_klass_base()) +
insts_for_internal_set((intptr_t)Universe::narrow_ptrs_base());
if (Universe::narrow_klass_shift() != 0) {
num_instrs += 1; // sllx
}
}
return num_instrs * BytesPerInstWord;
}
// !!! If the instructions that get generated here change then function
// instr_size_for_decode_klass_not_null() needs to get updated.
void MacroAssembler::decode_klass_not_null(Register r) {
// Do not add assert code to this unless you change vtableStubs_sparc.cpp
// pd_code_size_limit.
assert (UseCompressedClassPointers, "must be compressed");
if (Universe::narrow_klass_base() != NULL) {
assert(r != G6_heapbase, "bad register choice");
set((intptr_t)Universe::narrow_klass_base(), G6_heapbase);
if (Universe::narrow_klass_shift() != 0)
sllx(r, LogKlassAlignmentInBytes, r);
add(r, G6_heapbase, r);
reinit_heapbase();
} else {
assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift() || Universe::narrow_klass_shift() == 0, "decode alg wrong");
sllx(r, Universe::narrow_klass_shift(), r);
}
}
void MacroAssembler::decode_klass_not_null(Register src, Register dst) {
if (src == dst) {
decode_klass_not_null(src);
} else {
// Do not add assert code to this unless you change vtableStubs_sparc.cpp
// pd_code_size_limit.
assert (UseCompressedClassPointers, "must be compressed");
if (Universe::narrow_klass_base() != NULL) {
if (Universe::narrow_klass_shift() != 0) {
assert((src != G6_heapbase) && (dst != G6_heapbase), "bad register choice");
set((intptr_t)Universe::narrow_klass_base(), G6_heapbase);
sllx(src, LogKlassAlignmentInBytes, dst);
add(dst, G6_heapbase, dst);
reinit_heapbase();
} else {
set((intptr_t)Universe::narrow_klass_base(), dst);
add(src, dst, dst);
}
} else {
// shift/mov src into dst.
assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift() || Universe::narrow_klass_shift() == 0, "decode alg wrong");
sllx(src, Universe::narrow_klass_shift(), dst);
}
}
}
void MacroAssembler::reinit_heapbase() {
if (UseCompressedOops || UseCompressedClassPointers) {
if (Universe::heap() != NULL) {
set((intptr_t)Universe::narrow_ptrs_base(), G6_heapbase);
} else {
AddressLiteral base(Universe::narrow_ptrs_base_addr());
load_ptr_contents(base, G6_heapbase);
}
}
}
#ifdef COMPILER2
// Compress char[] to byte[] by compressing 16 bytes at once. Return 0 on failure.
void MacroAssembler::string_compress_16(Register src, Register dst, Register cnt, Register result,
Register tmp1, Register tmp2, Register tmp3, Register tmp4,
FloatRegister ftmp1, FloatRegister ftmp2, FloatRegister ftmp3, Label& Ldone) {
Label Lloop, Lslow;
assert(UseVIS >= 3, "VIS3 is required");
assert_different_registers(src, dst, cnt, tmp1, tmp2, tmp3, tmp4, result);
assert_different_registers(ftmp1, ftmp2, ftmp3);
// Check if cnt >= 8 (= 16 bytes)
cmp(cnt, 8);
br(Assembler::less, false, Assembler::pn, Lslow);
delayed()->mov(cnt, result); // copy count
// Check for 8-byte alignment of src and dst
or3(src, dst, tmp1);
andcc(tmp1, 7, G0);
br(Assembler::notZero, false, Assembler::pn, Lslow);
delayed()->nop();
// Set mask for bshuffle instruction
Register mask = tmp4;
set(0x13579bdf, mask);
bmask(mask, G0, G0);
// Set mask to 0xff00 ff00 ff00 ff00 to check for non-latin1 characters
Assembler::sethi(0xff00fc00, mask); // mask = 0x0000 0000 ff00 fc00
add(mask, 0x300, mask); // mask = 0x0000 0000 ff00 ff00
sllx(mask, 32, tmp1); // tmp1 = 0xff00 ff00 0000 0000
or3(mask, tmp1, mask); // mask = 0xff00 ff00 ff00 ff00
// Load first 8 bytes
ldx(src, 0, tmp1);
bind(Lloop);
// Load next 8 bytes
ldx(src, 8, tmp2);
// Check for non-latin1 character by testing if the most significant byte of a char is set.
// Although we have to move the data between integer and floating point registers, this is
// still faster than the corresponding VIS instructions (ford/fand/fcmpd).
or3(tmp1, tmp2, tmp3);
btst(tmp3, mask);
// annul zeroing if branch is not taken to preserve original count
brx(Assembler::notZero, true, Assembler::pn, Ldone);
delayed()->mov(G0, result); // 0 - failed
// Move bytes into float register
movxtod(tmp1, ftmp1);
movxtod(tmp2, ftmp2);
// Compress by copying one byte per char from ftmp1 and ftmp2 to ftmp3
bshuffle(ftmp1, ftmp2, ftmp3);
stf(FloatRegisterImpl::D, ftmp3, dst, 0);
// Increment addresses and decrement count
inc(src, 16);
inc(dst, 8);
dec(cnt, 8);
cmp(cnt, 8);
// annul LDX if branch is not taken to prevent access past end of string
br(Assembler::greaterEqual, true, Assembler::pt, Lloop);
delayed()->ldx(src, 0, tmp1);
// Fallback to slow version
bind(Lslow);
}
// Compress char[] to byte[]. Return 0 on failure.
void MacroAssembler::string_compress(Register src, Register dst, Register cnt, Register result, Register tmp, Label& Ldone) {
Label Lloop;
assert_different_registers(src, dst, cnt, tmp, result);
lduh(src, 0, tmp);
bind(Lloop);
inc(src, sizeof(jchar));
cmp(tmp, 0xff);
// annul zeroing if branch is not taken to preserve original count
br(Assembler::greater, true, Assembler::pn, Ldone); // don't check xcc
delayed()->mov(G0, result); // 0 - failed
deccc(cnt);
stb(tmp, dst, 0);
inc(dst);
// annul LDUH if branch is not taken to prevent access past end of string
br(Assembler::notZero, true, Assembler::pt, Lloop);
delayed()->lduh(src, 0, tmp); // hoisted
}
// Inflate byte[] to char[] by inflating 16 bytes at once.
void MacroAssembler::string_inflate_16(Register src, Register dst, Register cnt, Register tmp,
FloatRegister ftmp1, FloatRegister ftmp2, FloatRegister ftmp3, FloatRegister ftmp4, Label& Ldone) {
Label Lloop, Lslow;
assert(UseVIS >= 3, "VIS3 is required");
assert_different_registers(src, dst, cnt, tmp);
assert_different_registers(ftmp1, ftmp2, ftmp3, ftmp4);
// Check if cnt >= 8 (= 16 bytes)
cmp(cnt, 8);
br(Assembler::less, false, Assembler::pn, Lslow);
delayed()->nop();
// Check for 8-byte alignment of src and dst
or3(src, dst, tmp);
andcc(tmp, 7, G0);
br(Assembler::notZero, false, Assembler::pn, Lslow);
// Initialize float register to zero
FloatRegister zerof = ftmp4;
delayed()->fzero(FloatRegisterImpl::D, zerof);
// Load first 8 bytes
ldf(FloatRegisterImpl::D, src, 0, ftmp1);
bind(Lloop);
inc(src, 8);
dec(cnt, 8);
// Inflate the string by interleaving each byte from the source array
// with a zero byte and storing the result in the destination array.
fpmerge(zerof, ftmp1->successor(), ftmp2);
stf(FloatRegisterImpl::D, ftmp2, dst, 8);
fpmerge(zerof, ftmp1, ftmp3);
stf(FloatRegisterImpl::D, ftmp3, dst, 0);
inc(dst, 16);
cmp(cnt, 8);
// annul LDX if branch is not taken to prevent access past end of string
br(Assembler::greaterEqual, true, Assembler::pt, Lloop);
delayed()->ldf(FloatRegisterImpl::D, src, 0, ftmp1);
// Fallback to slow version
bind(Lslow);
}
// Inflate byte[] to char[].
void MacroAssembler::string_inflate(Register src, Register dst, Register cnt, Register tmp, Label& Ldone) {
Label Loop;
assert_different_registers(src, dst, cnt, tmp);
ldub(src, 0, tmp);
bind(Loop);
inc(src);
deccc(cnt);
sth(tmp, dst, 0);
inc(dst, sizeof(jchar));
// annul LDUB if branch is not taken to prevent access past end of string
br(Assembler::notZero, true, Assembler::pt, Loop);
delayed()->ldub(src, 0, tmp); // hoisted
}
void MacroAssembler::string_compare(Register str1, Register str2,
Register cnt1, Register cnt2,
Register tmp1, Register tmp2,
Register result, int ae) {
Label Ldone, Lloop;
assert_different_registers(str1, str2, cnt1, cnt2, tmp1, result);
int stride1, stride2;
// Note: Making use of the fact that compareTo(a, b) == -compareTo(b, a)
// we interchange str1 and str2 in the UL case and negate the result.
// Like this, str1 is always latin1 encoded, expect for the UU case.
if (ae == StrIntrinsicNode::LU || ae == StrIntrinsicNode::UL) {
srl(cnt2, 1, cnt2);
}
// See if the lengths are different, and calculate min in cnt1.
// Save diff in case we need it for a tie-breaker.
Label Lskip;
Register diff = tmp1;
subcc(cnt1, cnt2, diff);
br(Assembler::greater, true, Assembler::pt, Lskip);
// cnt2 is shorter, so use its count:
delayed()->mov(cnt2, cnt1);
bind(Lskip);
// Rename registers
Register limit1 = cnt1;
Register limit2 = limit1;
Register chr1 = result;
Register chr2 = cnt2;
if (ae == StrIntrinsicNode::LU || ae == StrIntrinsicNode::UL) {
// We need an additional register to keep track of two limits
assert_different_registers(str1, str2, cnt1, cnt2, tmp1, tmp2, result);
limit2 = tmp2;
}
// Is the minimum length zero?
cmp(limit1, (int)0); // use cast to resolve overloading ambiguity
br(Assembler::equal, true, Assembler::pn, Ldone);
// result is difference in lengths
if (ae == StrIntrinsicNode::UU) {
delayed()->sra(diff, 1, result); // Divide by 2 to get number of chars
} else {
delayed()->mov(diff, result);
}
// Load first characters
if (ae == StrIntrinsicNode::LL) {
stride1 = stride2 = sizeof(jbyte);
ldub(str1, 0, chr1);
ldub(str2, 0, chr2);
} else if (ae == StrIntrinsicNode::UU) {
stride1 = stride2 = sizeof(jchar);
lduh(str1, 0, chr1);
lduh(str2, 0, chr2);
} else {
stride1 = sizeof(jbyte);
stride2 = sizeof(jchar);
ldub(str1, 0, chr1);
lduh(str2, 0, chr2);
}
// Compare first characters
subcc(chr1, chr2, chr1);
br(Assembler::notZero, false, Assembler::pt, Ldone);
assert(chr1 == result, "result must be pre-placed");
delayed()->nop();
// Check if the strings start at same location
cmp(str1, str2);
brx(Assembler::equal, true, Assembler::pn, Ldone);
delayed()->mov(G0, result); // result is zero
// We have no guarantee that on 64 bit the higher half of limit is 0
signx(limit1);
// Get limit
if (ae == StrIntrinsicNode::LU || ae == StrIntrinsicNode::UL) {
sll(limit1, 1, limit2);
subcc(limit2, stride2, chr2);
}
subcc(limit1, stride1, chr1);
br(Assembler::zero, true, Assembler::pn, Ldone);
// result is difference in lengths
if (ae == StrIntrinsicNode::UU) {
delayed()->sra(diff, 1, result); // Divide by 2 to get number of chars
} else {
delayed()->mov(diff, result);
}
// Shift str1 and str2 to the end of the arrays, negate limit
add(str1, limit1, str1);
add(str2, limit2, str2);
neg(chr1, limit1); // limit1 = -(limit1-stride1)
if (ae == StrIntrinsicNode::LU || ae == StrIntrinsicNode::UL) {
neg(chr2, limit2); // limit2 = -(limit2-stride2)
}
// Compare the rest of the characters
load_sized_value(Address(str1, limit1), chr1, (ae == StrIntrinsicNode::UU) ? 2 : 1, false);
bind(Lloop);
load_sized_value(Address(str2, limit2), chr2, (ae == StrIntrinsicNode::LL) ? 1 : 2, false);
subcc(chr1, chr2, chr1);
br(Assembler::notZero, false, Assembler::pt, Ldone);
assert(chr1 == result, "result must be pre-placed");
delayed()->inccc(limit1, stride1);
if (ae == StrIntrinsicNode::LU || ae == StrIntrinsicNode::UL) {
inccc(limit2, stride2);
}
// annul LDUB if branch is not taken to prevent access past end of string
br(Assembler::notZero, true, Assembler::pt, Lloop);
delayed()->load_sized_value(Address(str1, limit1), chr1, (ae == StrIntrinsicNode::UU) ? 2 : 1, false);
// If strings are equal up to min length, return the length difference.
if (ae == StrIntrinsicNode::UU) {
// Divide by 2 to get number of chars
sra(diff, 1, result);
} else {
mov(diff, result);
}
// Otherwise, return the difference between the first mismatched chars.
bind(Ldone);
if(ae == StrIntrinsicNode::UL) {
// Negate result (see note above)
neg(result);
}
}
void MacroAssembler::array_equals(bool is_array_equ, Register ary1, Register ary2,
Register limit, Register tmp, Register result, bool is_byte) {
Label Ldone, Lloop, Lremaining;
assert_different_registers(ary1, ary2, limit, tmp, result);
int length_offset = arrayOopDesc::length_offset_in_bytes();
int base_offset = arrayOopDesc::base_offset_in_bytes(is_byte ? T_BYTE : T_CHAR);
assert(base_offset % 8 == 0, "Base offset must be 8-byte aligned");
if (is_array_equ) {
// return true if the same array
cmp(ary1, ary2);
brx(Assembler::equal, true, Assembler::pn, Ldone);
delayed()->mov(1, result); // equal
br_null(ary1, true, Assembler::pn, Ldone);
delayed()->clr(result); // not equal
br_null(ary2, true, Assembler::pn, Ldone);
delayed()->clr(result); // not equal
// load the lengths of arrays
ld(Address(ary1, length_offset), limit);
ld(Address(ary2, length_offset), tmp);
// return false if the two arrays are not equal length
cmp(limit, tmp);
br(Assembler::notEqual, true, Assembler::pn, Ldone);
delayed()->clr(result); // not equal
}
cmp_zero_and_br(Assembler::zero, limit, Ldone, true, Assembler::pn);
delayed()->mov(1, result); // zero-length arrays are equal
if (is_array_equ) {
// load array addresses
add(ary1, base_offset, ary1);
add(ary2, base_offset, ary2);
// set byte count
if (!is_byte) {
sll(limit, exact_log2(sizeof(jchar)), limit);
}
} else {
// We have no guarantee that on 64 bit the higher half of limit is 0
signx(limit);
}
#ifdef ASSERT
// Sanity check for doubleword (8-byte) alignment of ary1 and ary2.
// Guaranteed on 64-bit systems (see arrayOopDesc::header_size_in_bytes()).
Label Laligned;
or3(ary1, ary2, tmp);
andcc(tmp, 7, tmp);
br_null_short(tmp, Assembler::pn, Laligned);
STOP("First array element is not 8-byte aligned.");
should_not_reach_here();
bind(Laligned);
#endif
// Shift ary1 and ary2 to the end of the arrays, negate limit
add(ary1, limit, ary1);
add(ary2, limit, ary2);
neg(limit, limit);
// MAIN LOOP
// Load and compare array elements of size 'byte_width' until the elements are not
// equal or we reached the end of the arrays. If the size of the arrays is not a
// multiple of 'byte_width', we simply read over the end of the array, bail out and
// compare the remaining bytes below by skipping the garbage bytes.
ldx(ary1, limit, result);
bind(Lloop);
ldx(ary2, limit, tmp);
inccc(limit, 8);
// Bail out if we reached the end (but still do the comparison)
br(Assembler::positive, false, Assembler::pn, Lremaining);
delayed()->cmp(result, tmp);
// Check equality of elements
brx(Assembler::equal, false, Assembler::pt, target(Lloop));
delayed()->ldx(ary1, limit, result);
ba(Ldone);
delayed()->clr(result); // not equal
// TAIL COMPARISON
// We got here because we reached the end of the arrays. 'limit' is the number of
// garbage bytes we may have compared by reading over the end of the arrays. Shift
// out the garbage and compare the remaining elements.
bind(Lremaining);
// Optimistic shortcut: elements potentially including garbage are equal
brx(Assembler::equal, true, Assembler::pt, target(Ldone));
delayed()->mov(1, result); // equal
// Shift 'limit' bytes to the right and compare
sll(limit, 3, limit); // bytes to bits
srlx(result, limit, result);
srlx(tmp, limit, tmp);
cmp(result, tmp);
clr(result);
movcc(Assembler::equal, false, xcc, 1, result);
bind(Ldone);
}
void MacroAssembler::has_negatives(Register inp, Register size, Register result, Register t2, Register t3, Register t4, Register t5) {
// test for negative bytes in input string of a given size
// result 1 if found, 0 otherwise.
Label Lcore, Ltail, Lreturn, Lcore_rpt;
assert_different_registers(inp, size, t2, t3, t4, t5, result);
Register i = result; // result used as integer index i until very end
Register lmask = t2; // t2 is aliased to lmask
// INITIALIZATION
// ===========================================================
// initialize highbits mask -> lmask = 0x8080808080808080 (8B/64b)
// compute unaligned offset -> i
// compute core end index -> t5
Assembler::sethi(0x80808000, t2); //! sethi macro fails to emit optimal
add(t2, 0x80, t2);
sllx(t2, 32, t3);
or3(t3, t2, lmask); // 0x8080808080808080 -> lmask
sra(size,0,size);
andcc(inp, 0x7, i); // unaligned offset -> i
br(Assembler::zero, true, Assembler::pn, Lcore); // starts 8B aligned?
delayed()->add(size, -8, t5); // (annuled) core end index -> t5
// ===========================================================
// UNALIGNED HEAD
// ===========================================================
// * unaligned head handling: grab aligned 8B containing unaligned inp(ut)
// * obliterate (ignore) bytes outside string by shifting off reg ends
// * compare with bitmask, short circuit return true if one or more high
// bits set.
cmp(size, 0);
br(Assembler::zero, true, Assembler::pn, Lreturn); // short-circuit?
delayed()->mov(0,result); // annuled so i not clobbered for following
neg(i, t4);
add(i, size, t5);
ldx(inp, t4, t3); // raw aligned 8B containing unaligned head -> t3
mov(8, t4);
sub(t4, t5, t4);
sra(t4, 31, t5);
andn(t4, t5, t5);
add(i, t5, t4);
sll(t5, 3, t5);
sll(t4, 3, t4); // # bits to shift right, left -> t5,t4
srlx(t3, t5, t3);
sllx(t3, t4, t3); // bytes outside string in 8B header obliterated -> t3
andcc(lmask, t3, G0);
brx(Assembler::notZero, true, Assembler::pn, Lreturn); // short circuit?
delayed()->mov(1,result); // annuled so i not clobbered for following
add(size, -8, t5); // core end index -> t5
mov(8, t4);
sub(t4, i, i); // # bytes examined in unalgn head (<8) -> i
// ===========================================================
// ALIGNED CORE
// ===========================================================
// * iterate index i over aligned 8B sections of core, comparing with
// bitmask, short circuit return true if one or more high bits set
// t5 contains core end index/loop limit which is the index
// of the MSB of last (unaligned) 8B fully contained in the string.
// inp contains address of first byte in string/array
// lmask contains 8B high bit mask for comparison
// i contains next index to be processed (adr. inp+i is on 8B boundary)
bind(Lcore);
cmp_and_br_short(i, t5, Assembler::greater, Assembler::pn, Ltail);
bind(Lcore_rpt);
ldx(inp, i, t3);
andcc(t3, lmask, G0);
brx(Assembler::notZero, true, Assembler::pn, Lreturn);
delayed()->mov(1, result); // annuled so i not clobbered for following
add(i, 8, i);
cmp_and_br_short(i, t5, Assembler::lessEqual, Assembler::pn, Lcore_rpt);
// ===========================================================
// ALIGNED TAIL (<8B)
// ===========================================================
// handle aligned tail of 7B or less as complete 8B, obliterating end of
// string bytes by shifting them off end, compare what's left with bitmask
// inp contains address of first byte in string/array
// lmask contains 8B high bit mask for comparison
// i contains next index to be processed (adr. inp+i is on 8B boundary)
bind(Ltail);
subcc(size, i, t4); // # of remaining bytes in string -> t4
// return 0 if no more remaining bytes
br(Assembler::lessEqual, true, Assembler::pn, Lreturn);
delayed()->mov(0, result); // annuled so i not clobbered for following
ldx(inp, i, t3); // load final 8B (aligned) containing tail -> t3
mov(8, t5);
sub(t5, t4, t4);
mov(0, result); // ** i clobbered at this point
sll(t4, 3, t4); // bits beyond end of string -> t4
srlx(t3, t4, t3); // bytes beyond end now obliterated -> t3
andcc(lmask, t3, G0);
movcc(Assembler::notZero, false, xcc, 1, result);
bind(Lreturn);
}
#endif
// Use BIS for zeroing (count is in bytes).
void MacroAssembler::bis_zeroing(Register to, Register count, Register temp, Label& Ldone) {
assert(UseBlockZeroing && VM_Version::has_blk_zeroing(), "only works with BIS zeroing");
Register end = count;
int cache_line_size = VM_Version::prefetch_data_size();
assert(cache_line_size > 0, "cache line size should be known for this code");
// Minimum count when BIS zeroing can be used since
// it needs membar which is expensive.
int block_zero_size = MAX2(cache_line_size*3, (int)BlockZeroingLowLimit);
Label small_loop;
// Check if count is negative (dead code) or zero.
// Note, count uses 64bit in 64 bit VM.
cmp_and_brx_short(count, 0, Assembler::lessEqual, Assembler::pn, Ldone);
// Use BIS zeroing only for big arrays since it requires membar.
if (Assembler::is_simm13(block_zero_size)) { // < 4096
cmp(count, block_zero_size);
} else {
set(block_zero_size, temp);
cmp(count, temp);
}
br(Assembler::lessUnsigned, false, Assembler::pt, small_loop);
delayed()->add(to, count, end);
// Note: size is >= three (32 bytes) cache lines.
// Clean the beginning of space up to next cache line.
for (int offs = 0; offs < cache_line_size; offs += 8) {
stx(G0, to, offs);
}
// align to next cache line
add(to, cache_line_size, to);
and3(to, -cache_line_size, to);
// Note: size left >= two (32 bytes) cache lines.
// BIS should not be used to zero tail (64 bytes)
// to avoid zeroing a header of the following object.
sub(end, (cache_line_size*2)-8, end);
Label bis_loop;
bind(bis_loop);
stxa(G0, to, G0, Assembler::ASI_ST_BLKINIT_PRIMARY);
add(to, cache_line_size, to);
cmp_and_brx_short(to, end, Assembler::lessUnsigned, Assembler::pt, bis_loop);
// BIS needs membar.
membar(Assembler::StoreLoad);
add(end, (cache_line_size*2)-8, end); // restore end
cmp_and_brx_short(to, end, Assembler::greaterEqualUnsigned, Assembler::pn, Ldone);
// Clean the tail.
bind(small_loop);
stx(G0, to, 0);
add(to, 8, to);
cmp_and_brx_short(to, end, Assembler::lessUnsigned, Assembler::pt, small_loop);
nop(); // Separate short branches
}
/**
* Update CRC-32[C] with a byte value according to constants in table
*
* @param [in,out]crc Register containing the crc.
* @param [in]val Register containing the byte to fold into the CRC.
* @param [in]table Register containing the table of crc constants.
*
* uint32_t crc;
* val = crc_table[(val ^ crc) & 0xFF];
* crc = val ^ (crc >> 8);
*/
void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) {
xor3(val, crc, val);
and3(val, 0xFF, val);
sllx(val, 2, val);
lduw(table, val, val);
srlx(crc, 8, crc);
xor3(val, crc, crc);
}
// Reverse byte order of lower 32 bits, assuming upper 32 bits all zeros
void MacroAssembler::reverse_bytes_32(Register src, Register dst, Register tmp) {
srlx(src, 24, dst);
sllx(src, 32+8, tmp);
srlx(tmp, 32+24, tmp);
sllx(tmp, 8, tmp);
or3(dst, tmp, dst);
sllx(src, 32+16, tmp);
srlx(tmp, 32+24, tmp);
sllx(tmp, 16, tmp);
or3(dst, tmp, dst);
sllx(src, 32+24, tmp);
srlx(tmp, 32, tmp);
or3(dst, tmp, dst);
}
void MacroAssembler::movitof_revbytes(Register src, FloatRegister dst, Register tmp1, Register tmp2) {
reverse_bytes_32(src, tmp1, tmp2);
movxtod(tmp1, dst);
}
void MacroAssembler::movftoi_revbytes(FloatRegister src, Register dst, Register tmp1, Register tmp2) {
movdtox(src, tmp1);
reverse_bytes_32(tmp1, dst, tmp2);
}
void MacroAssembler::fold_128bit_crc32(Register xcrc_hi, Register xcrc_lo, Register xK_hi, Register xK_lo, Register xtmp_hi, Register xtmp_lo, Register buf, int offset) {
xmulx(xcrc_hi, xK_hi, xtmp_lo);
xmulxhi(xcrc_hi, xK_hi, xtmp_hi);
xmulxhi(xcrc_lo, xK_lo, xcrc_hi);
xmulx(xcrc_lo, xK_lo, xcrc_lo);
xor3(xcrc_lo, xtmp_lo, xcrc_lo);
xor3(xcrc_hi, xtmp_hi, xcrc_hi);
ldxl(buf, G0, xtmp_lo);
inc(buf, 8);
ldxl(buf, G0, xtmp_hi);
inc(buf, 8);
xor3(xcrc_lo, xtmp_lo, xcrc_lo);
xor3(xcrc_hi, xtmp_hi, xcrc_hi);
}
void MacroAssembler::fold_128bit_crc32(Register xcrc_hi, Register xcrc_lo, Register xK_hi, Register xK_lo, Register xtmp_hi, Register xtmp_lo, Register xbuf_hi, Register xbuf_lo) {
mov(xcrc_lo, xtmp_lo);
mov(xcrc_hi, xtmp_hi);
xmulx(xtmp_hi, xK_hi, xtmp_lo);
xmulxhi(xtmp_hi, xK_hi, xtmp_hi);
xmulxhi(xcrc_lo, xK_lo, xcrc_hi);
xmulx(xcrc_lo, xK_lo, xcrc_lo);
xor3(xcrc_lo, xbuf_lo, xcrc_lo);
xor3(xcrc_hi, xbuf_hi, xcrc_hi);
xor3(xcrc_lo, xtmp_lo, xcrc_lo);
xor3(xcrc_hi, xtmp_hi, xcrc_hi);
}
void MacroAssembler::fold_8bit_crc32(Register xcrc, Register table, Register xtmp, Register tmp) {
and3(xcrc, 0xFF, tmp);
sllx(tmp, 2, tmp);
lduw(table, tmp, xtmp);
srlx(xcrc, 8, xcrc);
xor3(xtmp, xcrc, xcrc);
}
void MacroAssembler::fold_8bit_crc32(Register crc, Register table, Register tmp) {
and3(crc, 0xFF, tmp);
srlx(crc, 8, crc);
sllx(tmp, 2, tmp);
lduw(table, tmp, tmp);
xor3(tmp, crc, crc);
}
#define CRC32_TMP_REG_NUM 18
#define CRC32_CONST_64 0x163cd6124
#define CRC32_CONST_96 0x0ccaa009e
#define CRC32_CONST_160 0x1751997d0
#define CRC32_CONST_480 0x1c6e41596
#define CRC32_CONST_544 0x154442bd4
void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, Register table) {
Label L_cleanup_loop, L_cleanup_check, L_align_loop, L_align_check;
Label L_main_loop_prologue;
Label L_fold_512b, L_fold_512b_loop, L_fold_128b;
Label L_fold_tail, L_fold_tail_loop;
Label L_8byte_fold_loop, L_8byte_fold_check;
const Register tmp[CRC32_TMP_REG_NUM] = {L0, L1, L2, L3, L4, L5, L6, G1, I0, I1, I2, I3, I4, I5, I7, O4, O5, G3};
Register const_64 = tmp[CRC32_TMP_REG_NUM-1];
Register const_96 = tmp[CRC32_TMP_REG_NUM-1];
Register const_160 = tmp[CRC32_TMP_REG_NUM-2];
Register const_480 = tmp[CRC32_TMP_REG_NUM-1];
Register const_544 = tmp[CRC32_TMP_REG_NUM-2];
set(ExternalAddress(StubRoutines::crc_table_addr()), table);
not1(crc); // ~c
clruwu(crc); // clear upper 32 bits of crc
// Check if below cutoff, proceed directly to cleanup code
mov(31, G4);
cmp_and_br_short(len, G4, Assembler::lessEqualUnsigned, Assembler::pt, L_cleanup_check);
// Align buffer to 8 byte boundry
mov(8, O5);
and3(buf, 0x7, O4);
sub(O5, O4, O5);
and3(O5, 0x7, O5);
sub(len, O5, len);
ba(L_align_check);
delayed()->nop();
// Alignment loop, table look up method for up to 7 bytes
bind(L_align_loop);
ldub(buf, 0, O4);
inc(buf);
dec(O5);
xor3(O4, crc, O4);
and3(O4, 0xFF, O4);
sllx(O4, 2, O4);
lduw(table, O4, O4);
srlx(crc, 8, crc);
xor3(O4, crc, crc);
bind(L_align_check);
nop();
cmp_and_br_short(O5, 0, Assembler::notEqual, Assembler::pt, L_align_loop);
// Aligned on 64-bit (8-byte) boundry at this point
// Check if still above cutoff (31-bytes)
mov(31, G4);
cmp_and_br_short(len, G4, Assembler::lessEqualUnsigned, Assembler::pt, L_cleanup_check);
// At least 32 bytes left to process
// Free up registers by storing them to FP registers
for (int i = 0; i < CRC32_TMP_REG_NUM; i++) {
movxtod(tmp[i], as_FloatRegister(2*i));
}
// Determine which loop to enter
// Shared prologue
ldxl(buf, G0, tmp[0]);
inc(buf, 8);
ldxl(buf, G0, tmp[1]);
inc(buf, 8);
xor3(tmp[0], crc, tmp[0]); // Fold CRC into first few bytes
and3(crc, 0, crc); // Clear out the crc register
// Main loop needs 128-bytes at least
mov(128, G4);
mov(64, tmp[2]);
cmp_and_br_short(len, G4, Assembler::greaterEqualUnsigned, Assembler::pt, L_main_loop_prologue);
// Less than 64 bytes
nop();
cmp_and_br_short(len, tmp[2], Assembler::lessUnsigned, Assembler::pt, L_fold_tail);
// Between 64 and 127 bytes
set64(CRC32_CONST_96, const_96, tmp[8]);
set64(CRC32_CONST_160, const_160, tmp[9]);
fold_128bit_crc32(tmp[1], tmp[0], const_96, const_160, tmp[2], tmp[3], buf, 0);
fold_128bit_crc32(tmp[1], tmp[0], const_96, const_160, tmp[4], tmp[5], buf, 16);
fold_128bit_crc32(tmp[1], tmp[0], const_96, const_160, tmp[6], tmp[7], buf, 32);
dec(len, 48);
ba(L_fold_tail);
delayed()->nop();
bind(L_main_loop_prologue);
for (int i = 2; i < 8; i++) {
ldxl(buf, G0, tmp[i]);
inc(buf, 8);
}
// Fold total 512 bits of polynomial on each iteration,
// 128 bits per each of 4 parallel streams
set64(CRC32_CONST_480, const_480, tmp[8]);
set64(CRC32_CONST_544, const_544, tmp[9]);
mov(128, G4);
bind(L_fold_512b_loop);
fold_128bit_crc32(tmp[1], tmp[0], const_480, const_544, tmp[9], tmp[8], buf, 0);
fold_128bit_crc32(tmp[3], tmp[2], const_480, const_544, tmp[11], tmp[10], buf, 16);
fold_128bit_crc32(tmp[5], tmp[4], const_480, const_544, tmp[13], tmp[12], buf, 32);
fold_128bit_crc32(tmp[7], tmp[6], const_480, const_544, tmp[15], tmp[14], buf, 64);
dec(len, 64);
cmp_and_br_short(len, G4, Assembler::greaterEqualUnsigned, Assembler::pt, L_fold_512b_loop);
// Fold 512 bits to 128 bits
bind(L_fold_512b);
set64(CRC32_CONST_96, const_96, tmp[8]);
set64(CRC32_CONST_160, const_160, tmp[9]);
fold_128bit_crc32(tmp[1], tmp[0], const_96, const_160, tmp[8], tmp[9], tmp[3], tmp[2]);
fold_128bit_crc32(tmp[1], tmp[0], const_96, const_160, tmp[8], tmp[9], tmp[5], tmp[4]);
fold_128bit_crc32(tmp[1], tmp[0], const_96, const_160, tmp[8], tmp[9], tmp[7], tmp[6]);
dec(len, 48);
// Fold the rest of 128 bits data chunks
bind(L_fold_tail);
mov(32, G4);
cmp_and_br_short(len, G4, Assembler::lessEqualUnsigned, Assembler::pt, L_fold_128b);
set64(CRC32_CONST_96, const_96, tmp[8]);
set64(CRC32_CONST_160, const_160, tmp[9]);
bind(L_fold_tail_loop);
fold_128bit_crc32(tmp[1], tmp[0], const_96, const_160, tmp[2], tmp[3], buf, 0);
sub(len, 16, len);
cmp_and_br_short(len, G4, Assembler::greaterEqualUnsigned, Assembler::pt, L_fold_tail_loop);
// Fold the 128 bits in tmps 0 - 1 into tmp 1
bind(L_fold_128b);
set64(CRC32_CONST_64, const_64, tmp[4]);
xmulx(const_64, tmp[0], tmp[2]);
xmulxhi(const_64, tmp[0], tmp[3]);
srl(tmp[2], G0, tmp[4]);
xmulx(const_64, tmp[4], tmp[4]);
srlx(tmp[2], 32, tmp[2]);
sllx(tmp[3], 32, tmp[3]);
or3(tmp[2], tmp[3], tmp[2]);
xor3(tmp[4], tmp[1], tmp[4]);
xor3(tmp[4], tmp[2], tmp[1]);
dec(len, 8);
// Use table lookup for the 8 bytes left in tmp[1]
dec(len, 8);
// 8 8-bit folds to compute 32-bit CRC.
for (int j = 0; j < 4; j++) {
fold_8bit_crc32(tmp[1], table, tmp[2], tmp[3]);
}
srl(tmp[1], G0, crc); // move 32 bits to general register
for (int j = 0; j < 4; j++) {
fold_8bit_crc32(crc, table, tmp[3]);
}
bind(L_8byte_fold_check);
// Restore int registers saved in FP registers
for (int i = 0; i < CRC32_TMP_REG_NUM; i++) {
movdtox(as_FloatRegister(2*i), tmp[i]);
}
ba(L_cleanup_check);
delayed()->nop();
// Table look-up method for the remaining few bytes
bind(L_cleanup_loop);
ldub(buf, 0, O4);
inc(buf);
dec(len);
xor3(O4, crc, O4);
and3(O4, 0xFF, O4);
sllx(O4, 2, O4);
lduw(table, O4, O4);
srlx(crc, 8, crc);
xor3(O4, crc, crc);
bind(L_cleanup_check);
nop();
cmp_and_br_short(len, 0, Assembler::greaterUnsigned, Assembler::pt, L_cleanup_loop);
not1(crc);
}
#define CHUNK_LEN 128 /* 128 x 8B = 1KB */
#define CHUNK_K1 0x1307a0206 /* reverseBits(pow(x, CHUNK_LEN*8*8*3 - 32) mod P(x)) << 1 */
#define CHUNK_K2 0x1a0f717c4 /* reverseBits(pow(x, CHUNK_LEN*8*8*2 - 32) mod P(x)) << 1 */
#define CHUNK_K3 0x0170076fa /* reverseBits(pow(x, CHUNK_LEN*8*8*1 - 32) mod P(x)) << 1 */
void MacroAssembler::kernel_crc32c(Register crc, Register buf, Register len, Register table) {
Label L_crc32c_head, L_crc32c_aligned;
Label L_crc32c_parallel, L_crc32c_parallel_loop;
Label L_crc32c_serial, L_crc32c_x32_loop, L_crc32c_x8, L_crc32c_x8_loop;
Label L_crc32c_done, L_crc32c_tail, L_crc32c_return;
set(ExternalAddress(StubRoutines::crc32c_table_addr()), table);
cmp_and_br_short(len, 0, Assembler::lessEqual, Assembler::pn, L_crc32c_return);
// clear upper 32 bits of crc
clruwu(crc);
and3(buf, 7, G4);
cmp_and_brx_short(G4, 0, Assembler::equal, Assembler::pt, L_crc32c_aligned);
mov(8, G1);
sub(G1, G4, G4);
// ------ process the misaligned head (7 bytes or less) ------
bind(L_crc32c_head);
// crc = (crc >>> 8) ^ byteTable[(crc ^ b) & 0xFF];
ldub(buf, 0, G1);
update_byte_crc32(crc, G1, table);
inc(buf);
dec(len);
cmp_and_br_short(len, 0, Assembler::equal, Assembler::pn, L_crc32c_return);
dec(G4);
cmp_and_br_short(G4, 0, Assembler::greater, Assembler::pt, L_crc32c_head);
// ------ process the 8-byte-aligned body ------
bind(L_crc32c_aligned);
nop();
cmp_and_br_short(len, 8, Assembler::less, Assembler::pn, L_crc32c_tail);
// reverse the byte order of lower 32 bits to big endian, and move to FP side
movitof_revbytes(crc, F0, G1, G3);
set(CHUNK_LEN*8*4, G4);
cmp_and_br_short(len, G4, Assembler::less, Assembler::pt, L_crc32c_serial);
// ------ process four 1KB chunks in parallel ------
bind(L_crc32c_parallel);
fzero(FloatRegisterImpl::D, F2);
fzero(FloatRegisterImpl::D, F4);
fzero(FloatRegisterImpl::D, F6);
mov(CHUNK_LEN - 1, G4);
bind(L_crc32c_parallel_loop);
// schedule ldf's ahead of crc32c's to hide the load-use latency
ldf(FloatRegisterImpl::D, buf, 0, F8);
ldf(FloatRegisterImpl::D, buf, CHUNK_LEN*8, F10);
ldf(FloatRegisterImpl::D, buf, CHUNK_LEN*16, F12);
ldf(FloatRegisterImpl::D, buf, CHUNK_LEN*24, F14);
crc32c(F0, F8, F0);
crc32c(F2, F10, F2);
crc32c(F4, F12, F4);
crc32c(F6, F14, F6);
inc(buf, 8);
dec(G4);
cmp_and_br_short(G4, 0, Assembler::greater, Assembler::pt, L_crc32c_parallel_loop);
ldf(FloatRegisterImpl::D, buf, 0, F8);
ldf(FloatRegisterImpl::D, buf, CHUNK_LEN*8, F10);
ldf(FloatRegisterImpl::D, buf, CHUNK_LEN*16, F12);
crc32c(F0, F8, F0);
crc32c(F2, F10, F2);
crc32c(F4, F12, F4);
inc(buf, CHUNK_LEN*24);
ldfl(FloatRegisterImpl::D, buf, G0, F14); // load in little endian
inc(buf, 8);
prefetch(buf, 0, Assembler::severalReads);
prefetch(buf, CHUNK_LEN*8, Assembler::severalReads);
prefetch(buf, CHUNK_LEN*16, Assembler::severalReads);
prefetch(buf, CHUNK_LEN*24, Assembler::severalReads);
// move to INT side, and reverse the byte order of lower 32 bits to little endian
movftoi_revbytes(F0, O4, G1, G4);
movftoi_revbytes(F2, O5, G1, G4);
movftoi_revbytes(F4, G5, G1, G4);
// combine the results of 4 chunks
set64(CHUNK_K1, G3, G1);
xmulx(O4, G3, O4);
set64(CHUNK_K2, G3, G1);
xmulx(O5, G3, O5);
set64(CHUNK_K3, G3, G1);
xmulx(G5, G3, G5);
movdtox(F14, G4);
xor3(O4, O5, O5);
xor3(G5, O5, O5);
xor3(G4, O5, O5);
// reverse the byte order to big endian, via stack, and move to FP side
// TODO: use new revb instruction
add(SP, -8, G1);
srlx(G1, 3, G1);
sllx(G1, 3, G1);
stx(O5, G1, G0);
ldfl(FloatRegisterImpl::D, G1, G0, F2); // load in little endian
crc32c(F6, F2, F0);
set(CHUNK_LEN*8*4, G4);
sub(len, G4, len);
cmp_and_br_short(len, G4, Assembler::greaterEqual, Assembler::pt, L_crc32c_parallel);
nop();
cmp_and_br_short(len, 0, Assembler::equal, Assembler::pt, L_crc32c_done);
bind(L_crc32c_serial);
mov(32, G4);
cmp_and_br_short(len, G4, Assembler::less, Assembler::pn, L_crc32c_x8);
// ------ process 32B chunks ------
bind(L_crc32c_x32_loop);
ldf(FloatRegisterImpl::D, buf, 0, F2);
crc32c(F0, F2, F0);
ldf(FloatRegisterImpl::D, buf, 8, F2);
crc32c(F0, F2, F0);
ldf(FloatRegisterImpl::D, buf, 16, F2);
crc32c(F0, F2, F0);
ldf(FloatRegisterImpl::D, buf, 24, F2);
inc(buf, 32);
crc32c(F0, F2, F0);
dec(len, 32);
cmp_and_br_short(len, G4, Assembler::greaterEqual, Assembler::pt, L_crc32c_x32_loop);
bind(L_crc32c_x8);
nop();
cmp_and_br_short(len, 8, Assembler::less, Assembler::pt, L_crc32c_done);
// ------ process 8B chunks ------
bind(L_crc32c_x8_loop);
ldf(FloatRegisterImpl::D, buf, 0, F2);
inc(buf, 8);
crc32c(F0, F2, F0);
dec(len, 8);
cmp_and_br_short(len, 8, Assembler::greaterEqual, Assembler::pt, L_crc32c_x8_loop);
bind(L_crc32c_done);
// move to INT side, and reverse the byte order of lower 32 bits to little endian
movftoi_revbytes(F0, crc, G1, G3);
cmp_and_br_short(len, 0, Assembler::equal, Assembler::pt, L_crc32c_return);
// ------ process the misaligned tail (7 bytes or less) ------
bind(L_crc32c_tail);
// crc = (crc >>> 8) ^ byteTable[(crc ^ b) & 0xFF];
ldub(buf, 0, G1);
update_byte_crc32(crc, G1, table);
inc(buf);
dec(len);
cmp_and_br_short(len, 0, Assembler::greater, Assembler::pt, L_crc32c_tail);
bind(L_crc32c_return);
nop();
}