blob: e36f39763443c9d826b1fa7d6a257f12260edd92 [file] [log] [blame]
/*
* Copyright (c) 2016, 2018, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2016, 2018 SAP SE. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
// Major contributions by AHa, AS, JL, ML.
#include "precompiled.hpp"
#include "asm/macroAssembler.inline.hpp"
#include "gc/shared/barrierSet.hpp"
#include "gc/shared/barrierSetAssembler.hpp"
#include "interp_masm_s390.hpp"
#include "interpreter/interpreter.hpp"
#include "interpreter/interpreterRuntime.hpp"
#include "oops/arrayOop.hpp"
#include "oops/markOop.hpp"
#include "prims/jvmtiExport.hpp"
#include "prims/jvmtiThreadState.hpp"
#include "runtime/basicLock.hpp"
#include "runtime/biasedLocking.hpp"
#include "runtime/frame.inline.hpp"
#include "runtime/safepointMechanism.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/thread.inline.hpp"
// Implementation of InterpreterMacroAssembler.
// This file specializes the assembler with interpreter-specific macros.
#ifdef PRODUCT
#define BLOCK_COMMENT(str)
#define BIND(label) bind(label);
#else
#define BLOCK_COMMENT(str) block_comment(str)
#define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
#endif
void InterpreterMacroAssembler::jump_to_entry(address entry, Register Rscratch) {
assert(entry != NULL, "Entry must have been generated by now");
assert(Rscratch != Z_R0, "Can't use R0 for addressing");
branch_optimized(Assembler::bcondAlways, entry);
}
void InterpreterMacroAssembler::empty_expression_stack(void) {
get_monitors(Z_R1_scratch);
add2reg(Z_esp, -Interpreter::stackElementSize, Z_R1_scratch);
}
// Dispatch code executed in the prolog of a bytecode which does not do it's
// own dispatch.
void InterpreterMacroAssembler::dispatch_prolog(TosState state, int bcp_incr) {
// On z/Architecture we are short on registers, therefore we do not preload the
// dispatch address of the next bytecode.
}
// Dispatch code executed in the epilog of a bytecode which does not do it's
// own dispatch.
void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
dispatch_next(state, step);
}
void InterpreterMacroAssembler::dispatch_next(TosState state, int bcp_incr, bool generate_poll) {
z_llgc(Z_bytecode, bcp_incr, Z_R0, Z_bcp); // Load next bytecode.
add2reg(Z_bcp, bcp_incr); // Advance bcp. Add2reg produces optimal code.
dispatch_base(state, Interpreter::dispatch_table(state), generate_poll);
}
// Common code to dispatch and dispatch_only.
// Dispatch value in Lbyte_code and increment Lbcp.
void InterpreterMacroAssembler::dispatch_base(TosState state, address* table, bool generate_poll) {
verify_FPU(1, state);
#ifdef ASSERT
address reentry = NULL;
{ Label OK;
// Check if the frame pointer in Z_fp is correct.
z_cg(Z_fp, 0, Z_SP);
z_bre(OK);
reentry = stop_chain_static(reentry, "invalid frame pointer Z_fp: " FILE_AND_LINE);
bind(OK);
}
{ Label OK;
// check if the locals pointer in Z_locals is correct
z_cg(Z_locals, _z_ijava_state_neg(locals), Z_fp);
z_bre(OK);
reentry = stop_chain_static(reentry, "invalid locals pointer Z_locals: " FILE_AND_LINE);
bind(OK);
}
#endif
// TODO: Maybe implement +VerifyActivationFrameSize here.
// verify_thread(); // Too slow. We will just verify on method entry & exit.
verify_oop(Z_tos, state);
// Dispatch table to use.
load_absolute_address(Z_tmp_1, (address)table); // Z_tmp_1 = table;
if (SafepointMechanism::uses_thread_local_poll() && generate_poll) {
address *sfpt_tbl = Interpreter::safept_table(state);
if (table != sfpt_tbl) {
Label dispatch;
const Address poll_byte_addr(Z_thread, in_bytes(Thread::polling_page_offset()) + 7 /* Big Endian */);
// Armed page has poll_bit set, if poll bit is cleared just continue.
z_tm(poll_byte_addr, SafepointMechanism::poll_bit());
z_braz(dispatch);
load_absolute_address(Z_tmp_1, (address)sfpt_tbl); // Z_tmp_1 = table;
bind(dispatch);
}
}
// 0 <= Z_bytecode < 256 => Use a 32 bit shift, because it is shorter than sllg.
// Z_bytecode must have been loaded zero-extended for this approach to be correct.
z_sll(Z_bytecode, LogBytesPerWord, Z_R0); // Multiply by wordSize.
z_lg(Z_tmp_1, 0, Z_bytecode, Z_tmp_1); // Get entry addr.
z_br(Z_tmp_1);
}
void InterpreterMacroAssembler::dispatch_only(TosState state, bool generate_poll) {
dispatch_base(state, Interpreter::dispatch_table(state), generate_poll);
}
void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
dispatch_base(state, Interpreter::normal_table(state));
}
void InterpreterMacroAssembler::dispatch_via(TosState state, address *table) {
// Load current bytecode.
z_llgc(Z_bytecode, Address(Z_bcp, (intptr_t)0));
dispatch_base(state, table);
}
// The following call_VM*_base() methods overload and mask the respective
// declarations/definitions in class MacroAssembler. They are meant as a "detour"
// to perform additional, template interpreter specific tasks before actually
// calling their MacroAssembler counterparts.
void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point) {
bool allow_relocation = true; // Fenerally valid variant. Assume code is relocated.
// interpreter specific
// Note: No need to save/restore bcp (Z_R13) pointer since these are callee
// saved registers and no blocking/ GC can happen in leaf calls.
// super call
MacroAssembler::call_VM_leaf_base(entry_point, allow_relocation);
}
void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point, bool allow_relocation) {
// interpreter specific
// Note: No need to save/restore bcp (Z_R13) pointer since these are callee
// saved registers and no blocking/ GC can happen in leaf calls.
// super call
MacroAssembler::call_VM_leaf_base(entry_point, allow_relocation);
}
void InterpreterMacroAssembler::call_VM_base(Register oop_result, Register last_java_sp,
address entry_point, bool check_exceptions) {
bool allow_relocation = true; // Fenerally valid variant. Assume code is relocated.
// interpreter specific
save_bcp();
save_esp();
// super call
MacroAssembler::call_VM_base(oop_result, last_java_sp,
entry_point, allow_relocation, check_exceptions);
restore_bcp();
}
void InterpreterMacroAssembler::call_VM_base(Register oop_result, Register last_java_sp,
address entry_point, bool allow_relocation,
bool check_exceptions) {
// interpreter specific
save_bcp();
save_esp();
// super call
MacroAssembler::call_VM_base(oop_result, last_java_sp,
entry_point, allow_relocation, check_exceptions);
restore_bcp();
}
void InterpreterMacroAssembler::check_and_handle_popframe(Register scratch_reg) {
if (JvmtiExport::can_pop_frame()) {
BLOCK_COMMENT("check_and_handle_popframe {");
Label L;
// Initiate popframe handling only if it is not already being
// processed. If the flag has the popframe_processing bit set, it
// means that this code is called *during* popframe handling - we
// don't want to reenter.
// TODO: Check if all four state combinations could be visible.
// If (processing and !pending) is an invisible/impossible state,
// there is optimization potential by testing both bits at once.
// Then, All_Zeroes and All_Ones means skip, Mixed means doit.
testbit(Address(Z_thread, JavaThread::popframe_condition_offset()),
exact_log2(JavaThread::popframe_pending_bit));
z_bfalse(L);
testbit(Address(Z_thread, JavaThread::popframe_condition_offset()),
exact_log2(JavaThread::popframe_processing_bit));
z_btrue(L);
// Call Interpreter::remove_activation_preserving_args_entry() to get the
// address of the same-named entrypoint in the generated interpreter code.
call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
// The above call should (as its only effect) return the contents of the field
// _remove_activation_preserving_args_entry in Z_RET.
// We just jump there to have the work done.
z_br(Z_RET);
// There is no way for control to fall thru here.
bind(L);
BLOCK_COMMENT("} check_and_handle_popframe");
}
}
void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
Register RjvmtiState = Z_R1_scratch;
int tos_off = in_bytes(JvmtiThreadState::earlyret_tos_offset());
int oop_off = in_bytes(JvmtiThreadState::earlyret_oop_offset());
int val_off = in_bytes(JvmtiThreadState::earlyret_value_offset());
int state_off = in_bytes(JavaThread::jvmti_thread_state_offset());
z_lg(RjvmtiState, state_off, Z_thread);
switch (state) {
case atos: z_lg(Z_tos, oop_off, RjvmtiState);
store_const(Address(RjvmtiState, oop_off), 0L, 8, 8, Z_R0_scratch);
break;
case ltos: z_lg(Z_tos, val_off, RjvmtiState); break;
case btos: // fall through
case ztos: // fall through
case ctos: // fall through
case stos: // fall through
case itos: z_llgf(Z_tos, val_off, RjvmtiState); break;
case ftos: z_le(Z_ftos, val_off, RjvmtiState); break;
case dtos: z_ld(Z_ftos, val_off, RjvmtiState); break;
case vtos: /* nothing to do */ break;
default : ShouldNotReachHere();
}
// Clean up tos value in the jvmti thread state.
store_const(Address(RjvmtiState, val_off), 0L, 8, 8, Z_R0_scratch);
// Set tos state field to illegal value.
store_const(Address(RjvmtiState, tos_off), ilgl, 4, 1, Z_R0_scratch);
}
void InterpreterMacroAssembler::check_and_handle_earlyret(Register scratch_reg) {
if (JvmtiExport::can_force_early_return()) {
BLOCK_COMMENT("check_and_handle_earlyret {");
Label L;
// arg regs are save, because we are just behind the call in call_VM_base
Register jvmti_thread_state = Z_ARG2;
Register tmp = Z_ARG3;
load_and_test_long(jvmti_thread_state, Address(Z_thread, JavaThread::jvmti_thread_state_offset()));
z_bre(L); // if (thread->jvmti_thread_state() == NULL) exit;
// Initiate earlyret handling only if it is not already being processed.
// If the flag has the earlyret_processing bit set, it means that this code
// is called *during* earlyret handling - we don't want to reenter.
assert((JvmtiThreadState::earlyret_pending != 0) && (JvmtiThreadState::earlyret_inactive == 0),
"must fix this check, when changing the values of the earlyret enum");
assert(JvmtiThreadState::earlyret_pending == 1, "must fix this check, when changing the values of the earlyret enum");
load_and_test_int(tmp, Address(jvmti_thread_state, JvmtiThreadState::earlyret_state_offset()));
z_brz(L); // if (thread->jvmti_thread_state()->_earlyret_state != JvmtiThreadState::earlyret_pending) exit;
// Call Interpreter::remove_activation_early_entry() to get the address of the
// same-named entrypoint in the generated interpreter code.
assert(sizeof(TosState) == 4, "unexpected size");
z_l(Z_ARG1, Address(jvmti_thread_state, JvmtiThreadState::earlyret_tos_offset()));
call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), Z_ARG1);
// The above call should (as its only effect) return the contents of the field
// _remove_activation_preserving_args_entry in Z_RET.
// We just jump there to have the work done.
z_br(Z_RET);
// There is no way for control to fall thru here.
bind(L);
BLOCK_COMMENT("} check_and_handle_earlyret");
}
}
void InterpreterMacroAssembler::super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2) {
lgr_if_needed(Z_ARG1, arg_1);
assert(arg_2 != Z_ARG1, "smashed argument");
lgr_if_needed(Z_ARG2, arg_2);
MacroAssembler::call_VM_leaf_base(entry_point, true);
}
void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index, int bcp_offset, size_t index_size) {
Address param(Z_bcp, bcp_offset);
BLOCK_COMMENT("get_cache_index_at_bcp {");
assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
if (index_size == sizeof(u2)) {
load_sized_value(index, param, 2, false /*signed*/);
} else if (index_size == sizeof(u4)) {
load_sized_value(index, param, 4, false);
// Check if the secondary index definition is still ~x, otherwise
// we have to change the following assembler code to calculate the
// plain index.
assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line");
not_(index); // Convert to plain index.
} else if (index_size == sizeof(u1)) {
z_llgc(index, param);
} else {
ShouldNotReachHere();
}
BLOCK_COMMENT("}");
}
void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache, Register cpe_offset,
int bcp_offset, size_t index_size) {
BLOCK_COMMENT("get_cache_and_index_at_bcp {");
assert_different_registers(cache, cpe_offset);
get_cache_index_at_bcp(cpe_offset, bcp_offset, index_size);
z_lg(cache, Address(Z_fp, _z_ijava_state_neg(cpoolCache)));
// Convert from field index to ConstantPoolCache offset in bytes.
z_sllg(cpe_offset, cpe_offset, exact_log2(in_words(ConstantPoolCacheEntry::size()) * BytesPerWord));
BLOCK_COMMENT("}");
}
// Kills Z_R0_scratch.
void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache,
Register cpe_offset,
Register bytecode,
int byte_no,
int bcp_offset,
size_t index_size) {
BLOCK_COMMENT("get_cache_and_index_and_bytecode_at_bcp {");
get_cache_and_index_at_bcp(cache, cpe_offset, bcp_offset, index_size);
// We want to load (from CP cache) the bytecode that corresponds to the passed-in byte_no.
// It is located at (cache + cpe_offset + base_offset + indices_offset + (8-1) (last byte in DW) - (byte_no+1).
// Instead of loading, shifting and masking a DW, we just load that one byte of interest with z_llgc (unsigned).
const int base_ix_off = in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset());
const int off_in_DW = (8-1) - (1+byte_no);
assert(ConstantPoolCacheEntry::bytecode_1_mask == ConstantPoolCacheEntry::bytecode_2_mask, "common mask");
assert(ConstantPoolCacheEntry::bytecode_1_mask == 0xff, "");
load_sized_value(bytecode, Address(cache, cpe_offset, base_ix_off+off_in_DW), 1, false /*signed*/);
BLOCK_COMMENT("}");
}
// Load object from cpool->resolved_references(index).
void InterpreterMacroAssembler::load_resolved_reference_at_index(Register result, Register index) {
assert_different_registers(result, index);
get_constant_pool(result);
// Convert
// - from field index to resolved_references() index and
// - from word index to byte offset.
// Since this is a java object, it is potentially compressed.
Register tmp = index; // reuse
z_sllg(index, index, LogBytesPerHeapOop); // Offset into resolved references array.
// Load pointer for resolved_references[] objArray.
z_lg(result, ConstantPool::cache_offset_in_bytes(), result);
z_lg(result, ConstantPoolCache::resolved_references_offset_in_bytes(), result);
resolve_oop_handle(result); // Load resolved references array itself.
#ifdef ASSERT
NearLabel index_ok;
z_lgf(Z_R0, Address(result, arrayOopDesc::length_offset_in_bytes()));
z_sllg(Z_R0, Z_R0, LogBytesPerHeapOop);
compare64_and_branch(tmp, Z_R0, Assembler::bcondLow, index_ok);
stop("resolved reference index out of bounds", 0x09256);
bind(index_ok);
#endif
z_agr(result, index); // Address of indexed array element.
load_heap_oop(result, Address(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT)), tmp, noreg);
}
// load cpool->resolved_klass_at(index)
void InterpreterMacroAssembler::load_resolved_klass_at_offset(Register cpool, Register offset, Register iklass) {
// int value = *(Rcpool->int_at_addr(which));
// int resolved_klass_index = extract_low_short_from_int(value);
z_llgh(offset, Address(cpool, offset, sizeof(ConstantPool) + 2)); // offset = resolved_klass_index (s390 is big-endian)
z_sllg(offset, offset, LogBytesPerWord); // Convert 'index' to 'offset'
z_lg(iklass, Address(cpool, ConstantPool::resolved_klasses_offset_in_bytes())); // iklass = cpool->_resolved_klasses
z_lg(iklass, Address(iklass, offset, Array<Klass*>::base_offset_in_bytes()));
}
void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache,
Register tmp,
int bcp_offset,
size_t index_size) {
BLOCK_COMMENT("get_cache_entry_pointer_at_bcp {");
get_cache_and_index_at_bcp(cache, tmp, bcp_offset, index_size);
add2reg_with_index(cache, in_bytes(ConstantPoolCache::base_offset()), tmp, cache);
BLOCK_COMMENT("}");
}
// Generate a subtype check: branch to ok_is_subtype if sub_klass is
// a subtype of super_klass. Blows registers Rsuper_klass, Rsub_klass, tmp1, tmp2.
void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
Register Rsuper_klass,
Register Rtmp1,
Register Rtmp2,
Label &ok_is_subtype) {
// Profile the not-null value's klass.
profile_typecheck(Rtmp1, Rsub_klass, Rtmp2);
// Do the check.
check_klass_subtype(Rsub_klass, Rsuper_klass, Rtmp1, Rtmp2, ok_is_subtype);
// Profile the failure of the check.
profile_typecheck_failed(Rtmp1, Rtmp2);
}
// Pop topmost element from stack. It just disappears.
// Useful if consumed previously by access via stackTop().
void InterpreterMacroAssembler::popx(int len) {
add2reg(Z_esp, len*Interpreter::stackElementSize);
debug_only(verify_esp(Z_esp, Z_R1_scratch));
}
// Get Address object of stack top. No checks. No pop.
// Purpose: - Provide address of stack operand to exploit reg-mem operations.
// - Avoid RISC-like mem2reg - reg-reg-op sequence.
Address InterpreterMacroAssembler::stackTop() {
return Address(Z_esp, Interpreter::expr_offset_in_bytes(0));
}
void InterpreterMacroAssembler::pop_i(Register r) {
z_l(r, Interpreter::expr_offset_in_bytes(0), Z_esp);
add2reg(Z_esp, Interpreter::stackElementSize);
assert_different_registers(r, Z_R1_scratch);
debug_only(verify_esp(Z_esp, Z_R1_scratch));
}
void InterpreterMacroAssembler::pop_ptr(Register r) {
z_lg(r, Interpreter::expr_offset_in_bytes(0), Z_esp);
add2reg(Z_esp, Interpreter::stackElementSize);
assert_different_registers(r, Z_R1_scratch);
debug_only(verify_esp(Z_esp, Z_R1_scratch));
}
void InterpreterMacroAssembler::pop_l(Register r) {
z_lg(r, Interpreter::expr_offset_in_bytes(0), Z_esp);
add2reg(Z_esp, 2*Interpreter::stackElementSize);
assert_different_registers(r, Z_R1_scratch);
debug_only(verify_esp(Z_esp, Z_R1_scratch));
}
void InterpreterMacroAssembler::pop_f(FloatRegister f) {
mem2freg_opt(f, Address(Z_esp, Interpreter::expr_offset_in_bytes(0)), false);
add2reg(Z_esp, Interpreter::stackElementSize);
debug_only(verify_esp(Z_esp, Z_R1_scratch));
}
void InterpreterMacroAssembler::pop_d(FloatRegister f) {
mem2freg_opt(f, Address(Z_esp, Interpreter::expr_offset_in_bytes(0)), true);
add2reg(Z_esp, 2*Interpreter::stackElementSize);
debug_only(verify_esp(Z_esp, Z_R1_scratch));
}
void InterpreterMacroAssembler::push_i(Register r) {
assert_different_registers(r, Z_R1_scratch);
debug_only(verify_esp(Z_esp, Z_R1_scratch));
z_st(r, Address(Z_esp));
add2reg(Z_esp, -Interpreter::stackElementSize);
}
void InterpreterMacroAssembler::push_ptr(Register r) {
z_stg(r, Address(Z_esp));
add2reg(Z_esp, -Interpreter::stackElementSize);
}
void InterpreterMacroAssembler::push_l(Register r) {
assert_different_registers(r, Z_R1_scratch);
debug_only(verify_esp(Z_esp, Z_R1_scratch));
int offset = -Interpreter::stackElementSize;
z_stg(r, Address(Z_esp, offset));
clear_mem(Address(Z_esp), Interpreter::stackElementSize);
add2reg(Z_esp, 2 * offset);
}
void InterpreterMacroAssembler::push_f(FloatRegister f) {
debug_only(verify_esp(Z_esp, Z_R1_scratch));
freg2mem_opt(f, Address(Z_esp), false);
add2reg(Z_esp, -Interpreter::stackElementSize);
}
void InterpreterMacroAssembler::push_d(FloatRegister d) {
debug_only(verify_esp(Z_esp, Z_R1_scratch));
int offset = -Interpreter::stackElementSize;
freg2mem_opt(d, Address(Z_esp, offset));
add2reg(Z_esp, 2 * offset);
}
void InterpreterMacroAssembler::push(TosState state) {
verify_oop(Z_tos, state);
switch (state) {
case atos: push_ptr(); break;
case btos: push_i(); break;
case ztos:
case ctos:
case stos: push_i(); break;
case itos: push_i(); break;
case ltos: push_l(); break;
case ftos: push_f(); break;
case dtos: push_d(); break;
case vtos: /* nothing to do */ break;
default : ShouldNotReachHere();
}
}
void InterpreterMacroAssembler::pop(TosState state) {
switch (state) {
case atos: pop_ptr(Z_tos); break;
case btos: pop_i(Z_tos); break;
case ztos:
case ctos:
case stos: pop_i(Z_tos); break;
case itos: pop_i(Z_tos); break;
case ltos: pop_l(Z_tos); break;
case ftos: pop_f(Z_ftos); break;
case dtos: pop_d(Z_ftos); break;
case vtos: /* nothing to do */ break;
default : ShouldNotReachHere();
}
verify_oop(Z_tos, state);
}
// Helpers for swap and dup.
void InterpreterMacroAssembler::load_ptr(int n, Register val) {
z_lg(val, Address(Z_esp, Interpreter::expr_offset_in_bytes(n)));
}
void InterpreterMacroAssembler::store_ptr(int n, Register val) {
z_stg(val, Address(Z_esp, Interpreter::expr_offset_in_bytes(n)));
}
void InterpreterMacroAssembler::prepare_to_jump_from_interpreted(Register method) {
// Satisfy interpreter calling convention (see generate_normal_entry()).
z_lgr(Z_R10, Z_SP); // Set sender sp (aka initial caller sp, aka unextended sp).
// Record top_frame_sp, because the callee might modify it, if it's compiled.
z_stg(Z_SP, _z_ijava_state_neg(top_frame_sp), Z_fp);
save_bcp();
save_esp();
z_lgr(Z_method, method); // Set Z_method (kills Z_fp!).
}
// Jump to from_interpreted entry of a call unless single stepping is possible
// in this thread in which case we must call the i2i entry.
void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) {
assert_different_registers(method, Z_R10 /*used for initial_caller_sp*/, temp);
prepare_to_jump_from_interpreted(method);
if (JvmtiExport::can_post_interpreter_events()) {
// JVMTI events, such as single-stepping, are implemented partly by avoiding running
// compiled code in threads for which the event is enabled. Check here for
// interp_only_mode if these events CAN be enabled.
z_lg(Z_R1_scratch, Address(method, Method::from_interpreted_offset()));
MacroAssembler::load_and_test_int(Z_R0_scratch, Address(Z_thread, JavaThread::interp_only_mode_offset()));
z_bcr(bcondEqual, Z_R1_scratch); // Run compiled code if zero.
// Run interpreted.
z_lg(Z_R1_scratch, Address(method, Method::interpreter_entry_offset()));
z_br(Z_R1_scratch);
} else {
// Run compiled code.
z_lg(Z_R1_scratch, Address(method, Method::from_interpreted_offset()));
z_br(Z_R1_scratch);
}
}
#ifdef ASSERT
void InterpreterMacroAssembler::verify_esp(Register Resp, Register Rtemp) {
// About to read or write Resp[0].
// Make sure it is not in the monitors or the TOP_IJAVA_FRAME_ABI.
address reentry = NULL;
{
// Check if the frame pointer in Z_fp is correct.
NearLabel OK;
z_cg(Z_fp, 0, Z_SP);
z_bre(OK);
reentry = stop_chain_static(reentry, "invalid frame pointer Z_fp");
bind(OK);
}
{
// Resp must not point into or below the operand stack,
// i.e. IJAVA_STATE.monitors > Resp.
NearLabel OK;
Register Rmonitors = Rtemp;
z_lg(Rmonitors, _z_ijava_state_neg(monitors), Z_fp);
compareU64_and_branch(Rmonitors, Resp, bcondHigh, OK);
reentry = stop_chain_static(reentry, "too many pops: Z_esp points into monitor area");
bind(OK);
}
{
// Resp may point to the last word of TOP_IJAVA_FRAME_ABI, but not below
// i.e. !(Z_SP + frame::z_top_ijava_frame_abi_size - Interpreter::stackElementSize > Resp).
NearLabel OK;
Register Rabi_bottom = Rtemp;
add2reg(Rabi_bottom, frame::z_top_ijava_frame_abi_size - Interpreter::stackElementSize, Z_SP);
compareU64_and_branch(Rabi_bottom, Resp, bcondNotHigh, OK);
reentry = stop_chain_static(reentry, "too many pushes: Z_esp points into TOP_IJAVA_FRAME_ABI");
bind(OK);
}
}
void InterpreterMacroAssembler::asm_assert_ijava_state_magic(Register tmp) {
Label magic_ok;
load_const_optimized(tmp, frame::z_istate_magic_number);
z_cg(tmp, Address(Z_fp, _z_ijava_state_neg(magic)));
z_bre(magic_ok);
stop_static("error: wrong magic number in ijava_state access");
bind(magic_ok);
}
#endif // ASSERT
void InterpreterMacroAssembler::save_bcp() {
z_stg(Z_bcp, Address(Z_fp, _z_ijava_state_neg(bcp)));
asm_assert_ijava_state_magic(Z_bcp);
NOT_PRODUCT(z_lg(Z_bcp, Address(Z_fp, _z_ijava_state_neg(bcp))));
}
void InterpreterMacroAssembler::restore_bcp() {
asm_assert_ijava_state_magic(Z_bcp);
z_lg(Z_bcp, Address(Z_fp, _z_ijava_state_neg(bcp)));
}
void InterpreterMacroAssembler::save_esp() {
z_stg(Z_esp, Address(Z_fp, _z_ijava_state_neg(esp)));
}
void InterpreterMacroAssembler::restore_esp() {
asm_assert_ijava_state_magic(Z_esp);
z_lg(Z_esp, Address(Z_fp, _z_ijava_state_neg(esp)));
}
void InterpreterMacroAssembler::get_monitors(Register reg) {
asm_assert_ijava_state_magic(reg);
mem2reg_opt(reg, Address(Z_fp, _z_ijava_state_neg(monitors)));
}
void InterpreterMacroAssembler::save_monitors(Register reg) {
reg2mem_opt(reg, Address(Z_fp, _z_ijava_state_neg(monitors)));
}
void InterpreterMacroAssembler::get_mdp(Register mdp) {
z_lg(mdp, _z_ijava_state_neg(mdx), Z_fp);
}
void InterpreterMacroAssembler::save_mdp(Register mdp) {
z_stg(mdp, _z_ijava_state_neg(mdx), Z_fp);
}
// Values that are only read (besides initialization).
void InterpreterMacroAssembler::restore_locals() {
asm_assert_ijava_state_magic(Z_locals);
z_lg(Z_locals, Address(Z_fp, _z_ijava_state_neg(locals)));
}
void InterpreterMacroAssembler::get_method(Register reg) {
asm_assert_ijava_state_magic(reg);
z_lg(reg, Address(Z_fp, _z_ijava_state_neg(method)));
}
void InterpreterMacroAssembler::get_2_byte_integer_at_bcp(Register Rdst, int bcp_offset,
signedOrNot is_signed) {
// Rdst is an 8-byte return value!!!
// Unaligned loads incur only a small penalty on z/Architecture. The penalty
// is a few (2..3) ticks, even when the load crosses a cache line
// boundary. In case of a cache miss, the stall could, of course, be
// much longer.
switch (is_signed) {
case Signed:
z_lgh(Rdst, bcp_offset, Z_R0, Z_bcp);
break;
case Unsigned:
z_llgh(Rdst, bcp_offset, Z_R0, Z_bcp);
break;
default:
ShouldNotReachHere();
}
}
void InterpreterMacroAssembler::get_4_byte_integer_at_bcp(Register Rdst, int bcp_offset,
setCCOrNot set_cc) {
// Rdst is an 8-byte return value!!!
// Unaligned loads incur only a small penalty on z/Architecture. The penalty
// is a few (2..3) ticks, even when the load crosses a cache line
// boundary. In case of a cache miss, the stall could, of course, be
// much longer.
// Both variants implement a sign-extending int2long load.
if (set_cc == set_CC) {
load_and_test_int2long(Rdst, Address(Z_bcp, (intptr_t)bcp_offset));
} else {
mem2reg_signed_opt( Rdst, Address(Z_bcp, (intptr_t)bcp_offset));
}
}
void InterpreterMacroAssembler::get_constant_pool(Register Rdst) {
get_method(Rdst);
mem2reg_opt(Rdst, Address(Rdst, Method::const_offset()));
mem2reg_opt(Rdst, Address(Rdst, ConstMethod::constants_offset()));
}
void InterpreterMacroAssembler::get_cpool_and_tags(Register Rcpool, Register Rtags) {
get_constant_pool(Rcpool);
mem2reg_opt(Rtags, Address(Rcpool, ConstantPool::tags_offset_in_bytes()));
}
// Unlock if synchronized method.
//
// Unlock the receiver if this is a synchronized method.
// Unlock any Java monitors from syncronized blocks.
//
// If there are locked Java monitors
// If throw_monitor_exception
// throws IllegalMonitorStateException
// Else if install_monitor_exception
// installs IllegalMonitorStateException
// Else
// no error processing
void InterpreterMacroAssembler::unlock_if_synchronized_method(TosState state,
bool throw_monitor_exception,
bool install_monitor_exception) {
NearLabel unlocked, unlock, no_unlock;
{
Register R_method = Z_ARG2;
Register R_do_not_unlock_if_synchronized = Z_ARG3;
// Get the value of _do_not_unlock_if_synchronized into G1_scratch.
const Address do_not_unlock_if_synchronized(Z_thread,
JavaThread::do_not_unlock_if_synchronized_offset());
load_sized_value(R_do_not_unlock_if_synchronized, do_not_unlock_if_synchronized, 1, false /*unsigned*/);
z_mvi(do_not_unlock_if_synchronized, false); // Reset the flag.
// Check if synchronized method.
get_method(R_method);
verify_oop(Z_tos, state);
push(state); // Save tos/result.
testbit(method2_(R_method, access_flags), JVM_ACC_SYNCHRONIZED_BIT);
z_bfalse(unlocked);
// Don't unlock anything if the _do_not_unlock_if_synchronized flag
// is set.
compareU64_and_branch(R_do_not_unlock_if_synchronized, (intptr_t)0L, bcondNotEqual, no_unlock);
}
// unlock monitor
// BasicObjectLock will be first in list, since this is a
// synchronized method. However, need to check that the object has
// not been unlocked by an explicit monitorexit bytecode.
const Address monitor(Z_fp, -(frame::z_ijava_state_size + (int) sizeof(BasicObjectLock)));
// We use Z_ARG2 so that if we go slow path it will be the correct
// register for unlock_object to pass to VM directly.
load_address(Z_ARG2, monitor); // Address of first monitor.
z_lg(Z_ARG3, Address(Z_ARG2, BasicObjectLock::obj_offset_in_bytes()));
compareU64_and_branch(Z_ARG3, (intptr_t)0L, bcondNotEqual, unlock);
if (throw_monitor_exception) {
// Entry already unlocked need to throw an exception.
MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
should_not_reach_here();
} else {
// Monitor already unlocked during a stack unroll.
// If requested, install an illegal_monitor_state_exception.
// Continue with stack unrolling.
if (install_monitor_exception) {
MacroAssembler::call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::new_illegal_monitor_state_exception));
}
z_bru(unlocked);
}
bind(unlock);
unlock_object(Z_ARG2);
bind(unlocked);
// I0, I1: Might contain return value
// Check that all monitors are unlocked.
{
NearLabel loop, exception, entry, restart;
const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
// We use Z_ARG2 so that if we go slow path it will be the correct
// register for unlock_object to pass to VM directly.
Register R_current_monitor = Z_ARG2;
Register R_monitor_block_bot = Z_ARG1;
const Address monitor_block_top(Z_fp, _z_ijava_state_neg(monitors));
const Address monitor_block_bot(Z_fp, -frame::z_ijava_state_size);
bind(restart);
// Starting with top-most entry.
z_lg(R_current_monitor, monitor_block_top);
// Points to word before bottom of monitor block.
load_address(R_monitor_block_bot, monitor_block_bot);
z_bru(entry);
// Entry already locked, need to throw exception.
bind(exception);
if (throw_monitor_exception) {
// Throw exception.
MacroAssembler::call_VM(noreg,
CAST_FROM_FN_PTR(address, InterpreterRuntime::
throw_illegal_monitor_state_exception));
should_not_reach_here();
} else {
// Stack unrolling. Unlock object and install illegal_monitor_exception.
// Unlock does not block, so don't have to worry about the frame.
// We don't have to preserve c_rarg1 since we are going to throw an exception.
unlock_object(R_current_monitor);
if (install_monitor_exception) {
call_VM(noreg, CAST_FROM_FN_PTR(address,
InterpreterRuntime::
new_illegal_monitor_state_exception));
}
z_bru(restart);
}
bind(loop);
// Check if current entry is used.
load_and_test_long(Z_R0_scratch, Address(R_current_monitor, BasicObjectLock::obj_offset_in_bytes()));
z_brne(exception);
add2reg(R_current_monitor, entry_size); // Otherwise advance to next entry.
bind(entry);
compareU64_and_branch(R_current_monitor, R_monitor_block_bot, bcondNotEqual, loop);
}
bind(no_unlock);
pop(state);
verify_oop(Z_tos, state);
}
void InterpreterMacroAssembler::narrow(Register result, Register ret_type) {
get_method(ret_type);
z_lg(ret_type, Address(ret_type, in_bytes(Method::const_offset())));
z_lb(ret_type, Address(ret_type, in_bytes(ConstMethod::result_type_offset())));
Label notBool, notByte, notChar, done;
// common case first
compareU32_and_branch(ret_type, T_INT, bcondEqual, done);
compareU32_and_branch(ret_type, T_BOOLEAN, bcondNotEqual, notBool);
z_nilf(result, 0x1);
z_bru(done);
bind(notBool);
compareU32_and_branch(ret_type, T_BYTE, bcondNotEqual, notByte);
z_lbr(result, result);
z_bru(done);
bind(notByte);
compareU32_and_branch(ret_type, T_CHAR, bcondNotEqual, notChar);
z_nilf(result, 0xffff);
z_bru(done);
bind(notChar);
// compareU32_and_branch(ret_type, T_SHORT, bcondNotEqual, notShort);
z_lhr(result, result);
// Nothing to do for T_INT
bind(done);
}
// remove activation
//
// Unlock the receiver if this is a synchronized method.
// Unlock any Java monitors from syncronized blocks.
// Remove the activation from the stack.
//
// If there are locked Java monitors
// If throw_monitor_exception
// throws IllegalMonitorStateException
// Else if install_monitor_exception
// installs IllegalMonitorStateException
// Else
// no error processing
void InterpreterMacroAssembler::remove_activation(TosState state,
Register return_pc,
bool throw_monitor_exception,
bool install_monitor_exception,
bool notify_jvmti) {
BLOCK_COMMENT("remove_activation {");
unlock_if_synchronized_method(state, throw_monitor_exception, install_monitor_exception);
// Save result (push state before jvmti call and pop it afterwards) and notify jvmti.
notify_method_exit(false, state, notify_jvmti ? NotifyJVMTI : SkipNotifyJVMTI);
if (StackReservedPages > 0) {
BLOCK_COMMENT("reserved_stack_check:");
// Test if reserved zone needs to be enabled.
Label no_reserved_zone_enabling;
// Compare frame pointers. There is no good stack pointer, as with stack
// frame compression we can get different SPs when we do calls. A subsequent
// call could have a smaller SP, so that this compare succeeds for an
// inner call of the method annotated with ReservedStack.
z_lg(Z_R0, Address(Z_SP, (intptr_t)_z_abi(callers_sp)));
z_clg(Z_R0, Address(Z_thread, JavaThread::reserved_stack_activation_offset())); // Compare with frame pointer in memory.
z_brl(no_reserved_zone_enabling);
// Enable reserved zone again, throw stack overflow exception.
call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), Z_thread);
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_delayed_StackOverflowError));
should_not_reach_here();
bind(no_reserved_zone_enabling);
}
verify_oop(Z_tos, state);
verify_thread();
pop_interpreter_frame(return_pc, Z_ARG2, Z_ARG3);
BLOCK_COMMENT("} remove_activation");
}
// lock object
//
// Registers alive
// monitor - Address of the BasicObjectLock to be used for locking,
// which must be initialized with the object to lock.
// object - Address of the object to be locked.
void InterpreterMacroAssembler::lock_object(Register monitor, Register object) {
if (UseHeavyMonitors) {
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), monitor);
return;
}
// template code:
//
// markOop displaced_header = obj->mark().set_unlocked();
// monitor->lock()->set_displaced_header(displaced_header);
// if (Atomic::cmpxchg(/*ex=*/monitor, /*addr*/obj->mark_addr(), /*cmp*/displaced_header) == displaced_header) {
// // We stored the monitor address into the object's mark word.
// } else if (THREAD->is_lock_owned((address)displaced_header))
// // Simple recursive case.
// monitor->lock()->set_displaced_header(NULL);
// } else {
// // Slow path.
// InterpreterRuntime::monitorenter(THREAD, monitor);
// }
const Register displaced_header = Z_ARG5;
const Register object_mark_addr = Z_ARG4;
const Register current_header = Z_ARG5;
NearLabel done;
NearLabel slow_case;
// markOop displaced_header = obj->mark().set_unlocked();
// Load markOop from object into displaced_header.
z_lg(displaced_header, oopDesc::mark_offset_in_bytes(), object);
if (UseBiasedLocking) {
biased_locking_enter(object, displaced_header, Z_R1, Z_R0, done, &slow_case);
}
// Set displaced_header to be (markOop of object | UNLOCK_VALUE).
z_oill(displaced_header, markOop::unlocked_value);
// monitor->lock()->set_displaced_header(displaced_header);
// Initialize the box (Must happen before we update the object mark!).
z_stg(displaced_header, BasicObjectLock::lock_offset_in_bytes() +
BasicLock::displaced_header_offset_in_bytes(), monitor);
// if (Atomic::cmpxchg(/*ex=*/monitor, /*addr*/obj->mark_addr(), /*cmp*/displaced_header) == displaced_header) {
// Store stack address of the BasicObjectLock (this is monitor) into object.
add2reg(object_mark_addr, oopDesc::mark_offset_in_bytes(), object);
z_csg(displaced_header, monitor, 0, object_mark_addr);
assert(current_header==displaced_header, "must be same register"); // Identified two registers from z/Architecture.
z_bre(done);
// } else if (THREAD->is_lock_owned((address)displaced_header))
// // Simple recursive case.
// monitor->lock()->set_displaced_header(NULL);
// We did not see an unlocked object so try the fast recursive case.
// Check if owner is self by comparing the value in the markOop of object
// (current_header) with the stack pointer.
z_sgr(current_header, Z_SP);
assert(os::vm_page_size() > 0xfff, "page size too small - change the constant");
// The prior sequence "LGR, NGR, LTGR" can be done better
// (Z_R1 is temp and not used after here).
load_const_optimized(Z_R0, (~(os::vm_page_size()-1) | markOop::lock_mask_in_place));
z_ngr(Z_R0, current_header); // AND sets CC (result eq/ne 0)
// If condition is true we are done and hence we can store 0 in the displaced
// header indicating it is a recursive lock and be done.
z_brne(slow_case);
z_release(); // Membar unnecessary on zarch AND because the above csg does a sync before and after.
z_stg(Z_R0/*==0!*/, BasicObjectLock::lock_offset_in_bytes() +
BasicLock::displaced_header_offset_in_bytes(), monitor);
z_bru(done);
// } else {
// // Slow path.
// InterpreterRuntime::monitorenter(THREAD, monitor);
// None of the above fast optimizations worked so we have to get into the
// slow case of monitor enter.
bind(slow_case);
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter), monitor);
// }
bind(done);
}
// Unlocks an object. Used in monitorexit bytecode and remove_activation.
//
// Registers alive
// monitor - address of the BasicObjectLock to be used for locking,
// which must be initialized with the object to lock.
//
// Throw IllegalMonitorException if object is not locked by current thread.
void InterpreterMacroAssembler::unlock_object(Register monitor, Register object) {
if (UseHeavyMonitors) {
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), monitor);
return;
}
// else {
// template code:
//
// if ((displaced_header = monitor->displaced_header()) == NULL) {
// // Recursive unlock. Mark the monitor unlocked by setting the object field to NULL.
// monitor->set_obj(NULL);
// } else if (Atomic::cmpxchg(displaced_header, obj->mark_addr(), monitor) == monitor) {
// // We swapped the unlocked mark in displaced_header into the object's mark word.
// monitor->set_obj(NULL);
// } else {
// // Slow path.
// InterpreterRuntime::monitorexit(THREAD, monitor);
// }
const Register displaced_header = Z_ARG4;
const Register current_header = Z_R1;
Address obj_entry(monitor, BasicObjectLock::obj_offset_in_bytes());
Label done;
if (object == noreg) {
// In the template interpreter, we must assure that the object
// entry in the monitor is cleared on all paths. Thus we move
// loading up to here, and clear the entry afterwards.
object = Z_ARG3; // Use Z_ARG3 if caller didn't pass object.
z_lg(object, obj_entry);
}
assert_different_registers(monitor, object, displaced_header, current_header);
// if ((displaced_header = monitor->displaced_header()) == NULL) {
// // Recursive unlock. Mark the monitor unlocked by setting the object field to NULL.
// monitor->set_obj(NULL);
clear_mem(obj_entry, sizeof(oop));
if (UseBiasedLocking) {
// The object address from the monitor is in object.
assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0");
biased_locking_exit(object, displaced_header, done);
}
// Test first if we are in the fast recursive case.
MacroAssembler::load_and_test_long(displaced_header,
Address(monitor, BasicObjectLock::lock_offset_in_bytes() +
BasicLock::displaced_header_offset_in_bytes()));
z_bre(done); // displaced_header == 0 -> goto done
// } else if (Atomic::cmpxchg(displaced_header, obj->mark_addr(), monitor) == monitor) {
// // We swapped the unlocked mark in displaced_header into the object's mark word.
// monitor->set_obj(NULL);
// If we still have a lightweight lock, unlock the object and be done.
// The markword is expected to be at offset 0.
assert(oopDesc::mark_offset_in_bytes() == 0, "unlock_object: review code below");
// We have the displaced header in displaced_header. If the lock is still
// lightweight, it will contain the monitor address and we'll store the
// displaced header back into the object's mark word.
z_lgr(current_header, monitor);
z_csg(current_header, displaced_header, 0, object);
z_bre(done);
// } else {
// // Slow path.
// InterpreterRuntime::monitorexit(THREAD, monitor);
// The lock has been converted into a heavy lock and hence
// we need to get into the slow case.
z_stg(object, obj_entry); // Restore object entry, has been cleared above.
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), monitor);
// }
bind(done);
}
void InterpreterMacroAssembler::test_method_data_pointer(Register mdp, Label& zero_continue) {
assert(ProfileInterpreter, "must be profiling interpreter");
load_and_test_long(mdp, Address(Z_fp, _z_ijava_state_neg(mdx)));
z_brz(zero_continue);
}
// Set the method data pointer for the current bcp.
void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
assert(ProfileInterpreter, "must be profiling interpreter");
Label set_mdp;
Register mdp = Z_ARG4;
Register method = Z_ARG5;
get_method(method);
// Test MDO to avoid the call if it is NULL.
load_and_test_long(mdp, method2_(method, method_data));
z_brz(set_mdp);
call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), method, Z_bcp);
// Z_RET: mdi
// Mdo is guaranteed to be non-zero here, we checked for it before the call.
assert(method->is_nonvolatile(), "choose nonvolatile reg or reload from frame");
z_lg(mdp, method2_(method, method_data)); // Must reload, mdp is volatile reg.
add2reg_with_index(mdp, in_bytes(MethodData::data_offset()), Z_RET, mdp);
bind(set_mdp);
save_mdp(mdp);
}
void InterpreterMacroAssembler::verify_method_data_pointer() {
assert(ProfileInterpreter, "must be profiling interpreter");
#ifdef ASSERT
NearLabel verify_continue;
Register bcp_expected = Z_ARG3;
Register mdp = Z_ARG4;
Register method = Z_ARG5;
test_method_data_pointer(mdp, verify_continue); // If mdp is zero, continue
get_method(method);
// If the mdp is valid, it will point to a DataLayout header which is
// consistent with the bcp. The converse is highly probable also.
load_sized_value(bcp_expected, Address(mdp, DataLayout::bci_offset()), 2, false /*signed*/);
z_ag(bcp_expected, Address(method, Method::const_offset()));
load_address(bcp_expected, Address(bcp_expected, ConstMethod::codes_offset()));
compareU64_and_branch(bcp_expected, Z_bcp, bcondEqual, verify_continue);
call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp), method, Z_bcp, mdp);
bind(verify_continue);
#endif // ASSERT
}
void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in, int constant, Register value) {
assert(ProfileInterpreter, "must be profiling interpreter");
z_stg(value, constant, mdp_in);
}
void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
int constant,
Register tmp,
bool decrement) {
assert_different_registers(mdp_in, tmp);
// counter address
Address data(mdp_in, constant);
const int delta = decrement ? -DataLayout::counter_increment : DataLayout::counter_increment;
add2mem_64(Address(mdp_in, constant), delta, tmp);
}
void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in,
int flag_byte_constant) {
assert(ProfileInterpreter, "must be profiling interpreter");
// Set the flag.
z_oi(Address(mdp_in, DataLayout::flags_offset()), flag_byte_constant);
}
void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
int offset,
Register value,
Register test_value_out,
Label& not_equal_continue) {
assert(ProfileInterpreter, "must be profiling interpreter");
if (test_value_out == noreg) {
z_cg(value, Address(mdp_in, offset));
z_brne(not_equal_continue);
} else {
// Put the test value into a register, so caller can use it:
z_lg(test_value_out, Address(mdp_in, offset));
compareU64_and_branch(test_value_out, value, bcondNotEqual, not_equal_continue);
}
}
void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in, int offset_of_disp) {
update_mdp_by_offset(mdp_in, noreg, offset_of_disp);
}
void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
Register dataidx,
int offset_of_disp) {
assert(ProfileInterpreter, "must be profiling interpreter");
Address disp_address(mdp_in, dataidx, offset_of_disp);
Assembler::z_ag(mdp_in, disp_address);
save_mdp(mdp_in);
}
void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in, int constant) {
assert(ProfileInterpreter, "must be profiling interpreter");
add2reg(mdp_in, constant);
save_mdp(mdp_in);
}
void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
assert(ProfileInterpreter, "must be profiling interpreter");
assert(return_bci->is_nonvolatile(), "choose nonvolatile reg or save/restore");
call_VM(noreg,
CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret),
return_bci);
}
void InterpreterMacroAssembler::profile_taken_branch(Register mdp, Register bumped_count) {
if (ProfileInterpreter) {
Label profile_continue;
// If no method data exists, go to profile_continue.
// Otherwise, assign to mdp.
test_method_data_pointer(mdp, profile_continue);
// We are taking a branch. Increment the taken count.
// We inline increment_mdp_data_at to return bumped_count in a register
//increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()));
Address data(mdp, JumpData::taken_offset());
z_lg(bumped_count, data);
// 64-bit overflow is very unlikely. Saturation to 32-bit values is
// performed when reading the counts.
add2reg(bumped_count, DataLayout::counter_increment);
z_stg(bumped_count, data); // Store back out
// The method data pointer needs to be updated to reflect the new target.
update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
bind(profile_continue);
}
}
// Kills Z_R1_scratch.
void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
if (ProfileInterpreter) {
Label profile_continue;
// If no method data exists, go to profile_continue.
test_method_data_pointer(mdp, profile_continue);
// We are taking a branch. Increment the not taken count.
increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()), Z_R1_scratch);
// The method data pointer needs to be updated to correspond to
// the next bytecode.
update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
bind(profile_continue);
}
}
// Kills: Z_R1_scratch.
void InterpreterMacroAssembler::profile_call(Register mdp) {
if (ProfileInterpreter) {
Label profile_continue;
// If no method data exists, go to profile_continue.
test_method_data_pointer(mdp, profile_continue);
// We are making a call. Increment the count.
increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
// The method data pointer needs to be updated to reflect the new target.
update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
bind(profile_continue);
}
}
void InterpreterMacroAssembler::profile_final_call(Register mdp) {
if (ProfileInterpreter) {
Label profile_continue;
// If no method data exists, go to profile_continue.
test_method_data_pointer(mdp, profile_continue);
// We are making a call. Increment the count.
increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
// The method data pointer needs to be updated to reflect the new target.
update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
bind(profile_continue);
}
}
void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
Register mdp,
Register reg2,
bool receiver_can_be_null) {
if (ProfileInterpreter) {
NearLabel profile_continue;
// If no method data exists, go to profile_continue.
test_method_data_pointer(mdp, profile_continue);
NearLabel skip_receiver_profile;
if (receiver_can_be_null) {
NearLabel not_null;
compareU64_and_branch(receiver, (intptr_t)0L, bcondNotEqual, not_null);
// We are making a call. Increment the count for null receiver.
increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
z_bru(skip_receiver_profile);
bind(not_null);
}
// Record the receiver type.
record_klass_in_profile(receiver, mdp, reg2, true);
bind(skip_receiver_profile);
// The method data pointer needs to be updated to reflect the new target.
update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
bind(profile_continue);
}
}
// This routine creates a state machine for updating the multi-row
// type profile at a virtual call site (or other type-sensitive bytecode).
// The machine visits each row (of receiver/count) until the receiver type
// is found, or until it runs out of rows. At the same time, it remembers
// the location of the first empty row. (An empty row records null for its
// receiver, and can be allocated for a newly-observed receiver type.)
// Because there are two degrees of freedom in the state, a simple linear
// search will not work; it must be a decision tree. Hence this helper
// function is recursive, to generate the required tree structured code.
// It's the interpreter, so we are trading off code space for speed.
// See below for example code.
void InterpreterMacroAssembler::record_klass_in_profile_helper(
Register receiver, Register mdp,
Register reg2, int start_row,
Label& done, bool is_virtual_call) {
if (TypeProfileWidth == 0) {
if (is_virtual_call) {
increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
}
return;
}
int last_row = VirtualCallData::row_limit() - 1;
assert(start_row <= last_row, "must be work left to do");
// Test this row for both the receiver and for null.
// Take any of three different outcomes:
// 1. found receiver => increment count and goto done
// 2. found null => keep looking for case 1, maybe allocate this cell
// 3. found something else => keep looking for cases 1 and 2
// Case 3 is handled by a recursive call.
for (int row = start_row; row <= last_row; row++) {
NearLabel next_test;
bool test_for_null_also = (row == start_row);
// See if the receiver is receiver[n].
int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
test_mdp_data_at(mdp, recvr_offset, receiver,
(test_for_null_also ? reg2 : noreg),
next_test);
// (Reg2 now contains the receiver from the CallData.)
// The receiver is receiver[n]. Increment count[n].
int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
increment_mdp_data_at(mdp, count_offset);
z_bru(done);
bind(next_test);
if (test_for_null_also) {
Label found_null;
// Failed the equality check on receiver[n]... Test for null.
z_ltgr(reg2, reg2);
if (start_row == last_row) {
// The only thing left to do is handle the null case.
if (is_virtual_call) {
z_brz(found_null);
// Receiver did not match any saved receiver and there is no empty row for it.
// Increment total counter to indicate polymorphic case.
increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
z_bru(done);
bind(found_null);
} else {
z_brnz(done);
}
break;
}
// Since null is rare, make it be the branch-taken case.
z_brz(found_null);
// Put all the "Case 3" tests here.
record_klass_in_profile_helper(receiver, mdp, reg2, start_row + 1, done, is_virtual_call);
// Found a null. Keep searching for a matching receiver,
// but remember that this is an empty (unused) slot.
bind(found_null);
}
}
// In the fall-through case, we found no matching receiver, but we
// observed the receiver[start_row] is NULL.
// Fill in the receiver field and increment the count.
int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
set_mdp_data_at(mdp, recvr_offset, receiver);
int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
load_const_optimized(reg2, DataLayout::counter_increment);
set_mdp_data_at(mdp, count_offset, reg2);
if (start_row > 0) {
z_bru(done);
}
}
// Example state machine code for three profile rows:
// // main copy of decision tree, rooted at row[1]
// if (row[0].rec == rec) { row[0].incr(); goto done; }
// if (row[0].rec != NULL) {
// // inner copy of decision tree, rooted at row[1]
// if (row[1].rec == rec) { row[1].incr(); goto done; }
// if (row[1].rec != NULL) {
// // degenerate decision tree, rooted at row[2]
// if (row[2].rec == rec) { row[2].incr(); goto done; }
// if (row[2].rec != NULL) { count.incr(); goto done; } // overflow
// row[2].init(rec); goto done;
// } else {
// // remember row[1] is empty
// if (row[2].rec == rec) { row[2].incr(); goto done; }
// row[1].init(rec); goto done;
// }
// } else {
// // remember row[0] is empty
// if (row[1].rec == rec) { row[1].incr(); goto done; }
// if (row[2].rec == rec) { row[2].incr(); goto done; }
// row[0].init(rec); goto done;
// }
// done:
void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
Register mdp, Register reg2,
bool is_virtual_call) {
assert(ProfileInterpreter, "must be profiling");
Label done;
record_klass_in_profile_helper(receiver, mdp, reg2, 0, done, is_virtual_call);
bind (done);
}
void InterpreterMacroAssembler::profile_ret(Register return_bci, Register mdp) {
if (ProfileInterpreter) {
NearLabel profile_continue;
uint row;
// If no method data exists, go to profile_continue.
test_method_data_pointer(mdp, profile_continue);
// Update the total ret count.
increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
for (row = 0; row < RetData::row_limit(); row++) {
NearLabel next_test;
// See if return_bci is equal to bci[n]:
test_mdp_data_at(mdp,
in_bytes(RetData::bci_offset(row)),
return_bci, noreg,
next_test);
// Return_bci is equal to bci[n]. Increment the count.
increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
// The method data pointer needs to be updated to reflect the new target.
update_mdp_by_offset(mdp, in_bytes(RetData::bci_displacement_offset(row)));
z_bru(profile_continue);
bind(next_test);
}
update_mdp_for_ret(return_bci);
bind(profile_continue);
}
}
void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
if (ProfileInterpreter) {
Label profile_continue;
// If no method data exists, go to profile_continue.
test_method_data_pointer(mdp, profile_continue);
set_mdp_flag_at(mdp, BitData::null_seen_byte_constant());
// The method data pointer needs to be updated.
int mdp_delta = in_bytes(BitData::bit_data_size());
if (TypeProfileCasts) {
mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
}
update_mdp_by_constant(mdp, mdp_delta);
bind(profile_continue);
}
}
void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp, Register tmp) {
if (ProfileInterpreter && TypeProfileCasts) {
Label profile_continue;
// If no method data exists, go to profile_continue.
test_method_data_pointer(mdp, profile_continue);
int count_offset = in_bytes(CounterData::count_offset());
// Back up the address, since we have already bumped the mdp.
count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
// *Decrement* the counter. We expect to see zero or small negatives.
increment_mdp_data_at(mdp, count_offset, tmp, true);
bind (profile_continue);
}
}
void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) {
if (ProfileInterpreter) {
Label profile_continue;
// If no method data exists, go to profile_continue.
test_method_data_pointer(mdp, profile_continue);
// The method data pointer needs to be updated.
int mdp_delta = in_bytes(BitData::bit_data_size());
if (TypeProfileCasts) {
mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
// Record the object type.
record_klass_in_profile(klass, mdp, reg2, false);
}
update_mdp_by_constant(mdp, mdp_delta);
bind(profile_continue);
}
}
void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
if (ProfileInterpreter) {
Label profile_continue;
// If no method data exists, go to profile_continue.
test_method_data_pointer(mdp, profile_continue);
// Update the default case count.
increment_mdp_data_at(mdp, in_bytes(MultiBranchData::default_count_offset()));
// The method data pointer needs to be updated.
update_mdp_by_offset(mdp, in_bytes(MultiBranchData::default_displacement_offset()));
bind(profile_continue);
}
}
// Kills: index, scratch1, scratch2.
void InterpreterMacroAssembler::profile_switch_case(Register index,
Register mdp,
Register scratch1,
Register scratch2) {
if (ProfileInterpreter) {
Label profile_continue;
assert_different_registers(index, mdp, scratch1, scratch2);
// If no method data exists, go to profile_continue.
test_method_data_pointer(mdp, profile_continue);
// Build the base (index * per_case_size_in_bytes()) +
// case_array_offset_in_bytes().
z_sllg(index, index, exact_log2(in_bytes(MultiBranchData::per_case_size())));
add2reg(index, in_bytes(MultiBranchData::case_array_offset()));
// Add the calculated base to the mdp -> address of the case' data.
Address case_data_addr(mdp, index);
Register case_data = scratch1;
load_address(case_data, case_data_addr);
// Update the case count.
increment_mdp_data_at(case_data,
in_bytes(MultiBranchData::relative_count_offset()),
scratch2);
// The method data pointer needs to be updated.
update_mdp_by_offset(mdp,
index,
in_bytes(MultiBranchData::relative_displacement_offset()));
bind(profile_continue);
}
}
// kills: R0, R1, flags, loads klass from obj (if not null)
void InterpreterMacroAssembler::profile_obj_type(Register obj, Address mdo_addr, Register klass, bool cmp_done) {
NearLabel null_seen, init_klass, do_nothing, do_update;
// Klass = obj is allowed.
const Register tmp = Z_R1;
assert_different_registers(obj, mdo_addr.base(), tmp, Z_R0);
assert_different_registers(klass, mdo_addr.base(), tmp, Z_R0);
z_lg(tmp, mdo_addr);
if (cmp_done) {
z_brz(null_seen);
} else {
compareU64_and_branch(obj, (intptr_t)0, Assembler::bcondEqual, null_seen);
}
verify_oop(obj);
load_klass(klass, obj);
// Klass seen before, nothing to do (regardless of unknown bit).
z_lgr(Z_R0, tmp);
assert(Immediate::is_uimm(~TypeEntries::type_klass_mask, 16), "or change following instruction");
z_nill(Z_R0, TypeEntries::type_klass_mask & 0xFFFF);
compareU64_and_branch(Z_R0, klass, Assembler::bcondEqual, do_nothing);
// Already unknown. Nothing to do anymore.
z_tmll(tmp, TypeEntries::type_unknown);
z_brc(Assembler::bcondAllOne, do_nothing);
z_lgr(Z_R0, tmp);
assert(Immediate::is_uimm(~TypeEntries::type_mask, 16), "or change following instruction");
z_nill(Z_R0, TypeEntries::type_mask & 0xFFFF);
compareU64_and_branch(Z_R0, (intptr_t)0, Assembler::bcondEqual, init_klass);
// Different than before. Cannot keep accurate profile.
z_oill(tmp, TypeEntries::type_unknown);
z_bru(do_update);
bind(init_klass);
// Combine klass and null_seen bit (only used if (tmp & type_mask)==0).
z_ogr(tmp, klass);
z_bru(do_update);
bind(null_seen);
// Set null_seen if obj is 0.
z_oill(tmp, TypeEntries::null_seen);
// fallthru: z_bru(do_update);
bind(do_update);
z_stg(tmp, mdo_addr);
bind(do_nothing);
}
void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) {
if (!ProfileInterpreter) {
return;
}
assert_different_registers(mdp, callee, tmp);
if (MethodData::profile_arguments() || MethodData::profile_return()) {
Label profile_continue;
test_method_data_pointer(mdp, profile_continue);
int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size());
z_cliy(in_bytes(DataLayout::tag_offset()) - off_to_start, mdp,
is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag);
z_brne(profile_continue);
if (MethodData::profile_arguments()) {
NearLabel done;
int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset());
add2reg(mdp, off_to_args);
for (int i = 0; i < TypeProfileArgsLimit; i++) {
if (i > 0 || MethodData::profile_return()) {
// If return value type is profiled we may have no argument to profile.
z_lg(tmp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args, mdp);
add2reg(tmp, -i*TypeStackSlotEntries::per_arg_count());
compare64_and_branch(tmp, TypeStackSlotEntries::per_arg_count(), Assembler::bcondLow, done);
}
z_lg(tmp, Address(callee, Method::const_offset()));
z_lgh(tmp, Address(tmp, ConstMethod::size_of_parameters_offset()));
// Stack offset o (zero based) from the start of the argument
// list. For n arguments translates into offset n - o - 1 from
// the end of the argument list. But there is an extra slot at
// the top of the stack. So the offset is n - o from Lesp.
z_sg(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))-off_to_args));
z_sllg(tmp, tmp, Interpreter::logStackElementSize);
Address stack_slot_addr(tmp, Z_esp);
z_ltg(tmp, stack_slot_addr);
Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i))-off_to_args);
profile_obj_type(tmp, mdo_arg_addr, tmp, /*ltg did compare to 0*/ true);
int to_add = in_bytes(TypeStackSlotEntries::per_arg_size());
add2reg(mdp, to_add);
off_to_args += to_add;
}
if (MethodData::profile_return()) {
z_lg(tmp, in_bytes(TypeEntriesAtCall::cell_count_offset())-off_to_args, mdp);
add2reg(tmp, -TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count());
}
bind(done);
if (MethodData::profile_return()) {
// We're right after the type profile for the last
// argument. Tmp is the number of cells left in the
// CallTypeData/VirtualCallTypeData to reach its end. Non null
// if there's a return to profile.
assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type");
z_sllg(tmp, tmp, exact_log2(DataLayout::cell_size));
z_agr(mdp, tmp);
}
z_stg(mdp, _z_ijava_state_neg(mdx), Z_fp);
} else {
assert(MethodData::profile_return(), "either profile call args or call ret");
update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size()));
}
// Mdp points right after the end of the
// CallTypeData/VirtualCallTypeData, right after the cells for the
// return value type if there's one.
bind(profile_continue);
}
}
void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) {
assert_different_registers(mdp, ret, tmp);
if (ProfileInterpreter && MethodData::profile_return()) {
Label profile_continue;
test_method_data_pointer(mdp, profile_continue);
if (MethodData::profile_return_jsr292_only()) {
// If we don't profile all invoke bytecodes we must make sure
// it's a bytecode we indeed profile. We can't go back to the
// beginning of the ProfileData we intend to update to check its
// type because we're right after it and we don't known its
// length.
NearLabel do_profile;
Address bc(Z_bcp);
z_lb(tmp, bc);
compare32_and_branch(tmp, Bytecodes::_invokedynamic, Assembler::bcondEqual, do_profile);
compare32_and_branch(tmp, Bytecodes::_invokehandle, Assembler::bcondEqual, do_profile);
get_method(tmp);
// Supplement to 8139891: _intrinsic_id exceeded 1-byte size limit.
if (Method::intrinsic_id_size_in_bytes() == 1) {
z_cli(Method::intrinsic_id_offset_in_bytes(), tmp, vmIntrinsics::_compiledLambdaForm);
} else {
assert(Method::intrinsic_id_size_in_bytes() == 2, "size error: check Method::_intrinsic_id");
z_lh(tmp, Method::intrinsic_id_offset_in_bytes(), Z_R0, tmp);
z_chi(tmp, vmIntrinsics::_compiledLambdaForm);
}
z_brne(profile_continue);
bind(do_profile);
}
Address mdo_ret_addr(mdp, -in_bytes(ReturnTypeEntry::size()));
profile_obj_type(ret, mdo_ret_addr, tmp);
bind(profile_continue);
}
}
void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) {
if (ProfileInterpreter && MethodData::profile_parameters()) {
Label profile_continue, done;
test_method_data_pointer(mdp, profile_continue);
// Load the offset of the area within the MDO used for
// parameters. If it's negative we're not profiling any parameters.
Address parm_di_addr(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset()));
load_and_test_int2long(tmp1, parm_di_addr);
z_brl(profile_continue);
// Compute a pointer to the area for parameters from the offset
// and move the pointer to the slot for the last
// parameters. Collect profiling from last parameter down.
// mdo start + parameters offset + array length - 1
// Pointer to the parameter area in the MDO.
z_agr(mdp, tmp1);
// Offset of the current profile entry to update.
const Register entry_offset = tmp1;
// entry_offset = array len in number of cells.
z_lg(entry_offset, Address(mdp, ArrayData::array_len_offset()));
// entry_offset (number of cells) = array len - size of 1 entry
add2reg(entry_offset, -TypeStackSlotEntries::per_arg_count());
// entry_offset in bytes
z_sllg(entry_offset, entry_offset, exact_log2(DataLayout::cell_size));
Label loop;
bind(loop);
Address arg_off(mdp, entry_offset, ParametersTypeData::stack_slot_offset(0));
Address arg_type(mdp, entry_offset, ParametersTypeData::type_offset(0));
// Load offset on the stack from the slot for this parameter.
z_lg(tmp2, arg_off);
z_sllg(tmp2, tmp2, Interpreter::logStackElementSize);
z_lcgr(tmp2); // Negate.
// Profile the parameter.
z_ltg(tmp2, Address(Z_locals, tmp2));
profile_obj_type(tmp2, arg_type, tmp2, /*ltg did compare to 0*/ true);
// Go to next parameter.
z_aghi(entry_offset, -TypeStackSlotEntries::per_arg_count() * DataLayout::cell_size);
z_brnl(loop);
bind(profile_continue);
}
}
// Jump if ((*counter_addr += increment) & mask) satisfies the condition.
void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr,
int increment,
Address mask,
Register scratch,
bool preloaded,
branch_condition cond,
Label *where) {
assert_different_registers(counter_addr.base(), scratch);
if (preloaded) {
add2reg(scratch, increment);
reg2mem_opt(scratch, counter_addr, false);
} else {
if (VM_Version::has_MemWithImmALUOps() && Immediate::is_simm8(increment) && counter_addr.is_RSYform()) {
z_alsi(counter_addr.disp20(), counter_addr.base(), increment);
mem2reg_signed_opt(scratch, counter_addr);
} else {
mem2reg_signed_opt(scratch, counter_addr);
add2reg(scratch, increment);
reg2mem_opt(scratch, counter_addr, false);
}
}
z_n(scratch, mask);
if (where) { z_brc(cond, *where); }
}
// Get MethodCounters object for given method. Lazily allocated if necessary.
// method - Ptr to Method object.
// Rcounters - Ptr to MethodCounters object associated with Method object.
// skip - Exit point if MethodCounters object can't be created (OOM condition).
void InterpreterMacroAssembler::get_method_counters(Register Rmethod,
Register Rcounters,
Label& skip) {
assert_different_registers(Rmethod, Rcounters);
BLOCK_COMMENT("get MethodCounters object {");
Label has_counters;
load_and_test_long(Rcounters, Address(Rmethod, Method::method_counters_offset()));
z_brnz(has_counters);
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::build_method_counters), Rmethod);
z_ltgr(Rcounters, Z_RET); // Runtime call returns MethodCounters object.
z_brz(skip); // No MethodCounters, out of memory.
bind(has_counters);
BLOCK_COMMENT("} get MethodCounters object");
}
// Increment invocation counter in MethodCounters object.
// Return (invocation_counter+backedge_counter) as "result" in RctrSum.
// Counter values are all unsigned.
void InterpreterMacroAssembler::increment_invocation_counter(Register Rcounters, Register RctrSum) {
assert(UseCompiler || LogTouchedMethods, "incrementing must be useful");
assert_different_registers(Rcounters, RctrSum);
int increment = InvocationCounter::count_increment;
int inv_counter_offset = in_bytes(MethodCounters::invocation_counter_offset() + InvocationCounter::counter_offset());
int be_counter_offset = in_bytes(MethodCounters::backedge_counter_offset() + InvocationCounter::counter_offset());
BLOCK_COMMENT("Increment invocation counter {");
if (VM_Version::has_MemWithImmALUOps() && Immediate::is_simm8(increment)) {
// Increment the invocation counter in place,
// then add the incremented value to the backedge counter.
z_l(RctrSum, be_counter_offset, Rcounters);
z_alsi(inv_counter_offset, Rcounters, increment); // Atomic increment @no extra cost!
z_nilf(RctrSum, InvocationCounter::count_mask_value); // Mask off state bits.
z_al(RctrSum, inv_counter_offset, Z_R0, Rcounters);
} else {
// This path is optimized for low register consumption
// at the cost of somewhat higher operand delays.
// It does not need an extra temp register.
// Update the invocation counter.
z_l(RctrSum, inv_counter_offset, Rcounters);
if (RctrSum == Z_R0) {
z_ahi(RctrSum, increment);
} else {
add2reg(RctrSum, increment);
}
z_st(RctrSum, inv_counter_offset, Rcounters);
// Mask off the state bits.
z_nilf(RctrSum, InvocationCounter::count_mask_value);
// Add the backedge counter to the updated invocation counter to
// form the result.
z_al(RctrSum, be_counter_offset, Z_R0, Rcounters);
}
BLOCK_COMMENT("} Increment invocation counter");
// Note that this macro must leave the backedge_count + invocation_count in Rtmp!
}
// increment backedge counter in MethodCounters object.
// return (invocation_counter+backedge_counter) as "result" in RctrSum
// counter values are all unsigned!
void InterpreterMacroAssembler::increment_backedge_counter(Register Rcounters, Register RctrSum) {
assert(UseCompiler, "incrementing must be useful");
assert_different_registers(Rcounters, RctrSum);
int increment = InvocationCounter::count_increment;
int inv_counter_offset = in_bytes(MethodCounters::invocation_counter_offset() + InvocationCounter::counter_offset());
int be_counter_offset = in_bytes(MethodCounters::backedge_counter_offset() + InvocationCounter::counter_offset());
BLOCK_COMMENT("Increment backedge counter {");
if (VM_Version::has_MemWithImmALUOps() && Immediate::is_simm8(increment)) {
// Increment the invocation counter in place,
// then add the incremented value to the backedge counter.
z_l(RctrSum, inv_counter_offset, Rcounters);
z_alsi(be_counter_offset, Rcounters, increment); // Atomic increment @no extra cost!
z_nilf(RctrSum, InvocationCounter::count_mask_value); // Mask off state bits.
z_al(RctrSum, be_counter_offset, Z_R0, Rcounters);
} else {
// This path is optimized for low register consumption
// at the cost of somewhat higher operand delays.
// It does not need an extra temp register.
// Update the invocation counter.
z_l(RctrSum, be_counter_offset, Rcounters);
if (RctrSum == Z_R0) {
z_ahi(RctrSum, increment);
} else {
add2reg(RctrSum, increment);
}
z_st(RctrSum, be_counter_offset, Rcounters);
// Mask off the state bits.
z_nilf(RctrSum, InvocationCounter::count_mask_value);
// Add the backedge counter to the updated invocation counter to
// form the result.
z_al(RctrSum, inv_counter_offset, Z_R0, Rcounters);
}
BLOCK_COMMENT("} Increment backedge counter");
// Note that this macro must leave the backedge_count + invocation_count in Rtmp!
}
// Add an InterpMonitorElem to stack (see frame_s390.hpp).
void InterpreterMacroAssembler::add_monitor_to_stack(bool stack_is_empty,
Register Rtemp1,
Register Rtemp2,
Register Rtemp3) {
const Register Rcurr_slot = Rtemp1;
const Register Rlimit = Rtemp2;
const jint delta = -frame::interpreter_frame_monitor_size() * wordSize;
assert((delta & LongAlignmentMask) == 0,
"sizeof BasicObjectLock must be even number of doublewords");
assert(2 * wordSize == -delta, "this works only as long as delta == -2*wordSize");
assert(Rcurr_slot != Z_R0, "Register must be usable as base register");
assert_different_registers(Rlimit, Rcurr_slot, Rtemp3);
get_monitors(Rlimit);
// Adjust stack pointer for additional monitor entry.
resize_frame(RegisterOrConstant((intptr_t) delta), Z_fp, false);
if (!stack_is_empty) {
// Must copy stack contents down.
NearLabel next, done;
// Rtemp := addr(Tos), Z_esp is pointing below it!
add2reg(Rcurr_slot, wordSize, Z_esp);
// Nothing to do, if already at monitor area.
compareU64_and_branch(Rcurr_slot, Rlimit, bcondNotLow, done);
bind(next);
// Move one stack slot.
mem2reg_opt(Rtemp3, Address(Rcurr_slot));
reg2mem_opt(Rtemp3, Address(Rcurr_slot, delta));
add2reg(Rcurr_slot, wordSize);
compareU64_and_branch(Rcurr_slot, Rlimit, bcondLow, next); // Are we done?
bind(done);
// Done copying stack.
}
// Adjust expression stack and monitor pointers.
add2reg(Z_esp, delta);
add2reg(Rlimit, delta);
save_monitors(Rlimit);
}
// Note: Index holds the offset in bytes afterwards.
// You can use this to store a new value (with Llocals as the base).
void InterpreterMacroAssembler::access_local_int(Register index, Register dst) {
z_sllg(index, index, LogBytesPerWord);
mem2reg_opt(dst, Address(Z_locals, index), false);
}
void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) {
if (state == atos) { MacroAssembler::verify_oop(reg); }
}
// Inline assembly for:
//
// if (thread is in interp_only_mode) {
// InterpreterRuntime::post_method_entry();
// }
void InterpreterMacroAssembler::notify_method_entry() {
// JVMTI
// Whenever JVMTI puts a thread in interp_only_mode, method
// entry/exit events are sent for that thread to track stack
// depth. If it is possible to enter interp_only_mode we add
// the code to check if the event should be sent.
if (JvmtiExport::can_post_interpreter_events()) {
Label jvmti_post_done;
MacroAssembler::load_and_test_int(Z_R0, Address(Z_thread, JavaThread::interp_only_mode_offset()));
z_bre(jvmti_post_done);
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_entry));
bind(jvmti_post_done);
}
}
// Inline assembly for:
//
// if (thread is in interp_only_mode) {
// if (!native_method) save result
// InterpreterRuntime::post_method_exit();
// if (!native_method) restore result
// }
// if (DTraceMethodProbes) {
// SharedRuntime::dtrace_method_exit(thread, method);
// }
//
// For native methods their result is stored in z_ijava_state.lresult
// and z_ijava_state.fresult before coming here.
// Java methods have their result stored in the expression stack.
//
// Notice the dependency to frame::interpreter_frame_result().
void InterpreterMacroAssembler::notify_method_exit(bool native_method,
TosState state,
NotifyMethodExitMode mode) {
// JVMTI
// Whenever JVMTI puts a thread in interp_only_mode, method
// entry/exit events are sent for that thread to track stack
// depth. If it is possible to enter interp_only_mode we add
// the code to check if the event should be sent.
if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
Label jvmti_post_done;
MacroAssembler::load_and_test_int(Z_R0, Address(Z_thread, JavaThread::interp_only_mode_offset()));
z_bre(jvmti_post_done);
if (!native_method) push(state); // see frame::interpreter_frame_result()
call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
if (!native_method) pop(state);
bind(jvmti_post_done);
}
#if 0
// Dtrace currently not supported on z/Architecture.
{
SkipIfEqual skip(this, &DTraceMethodProbes, false);
push(state);
get_method(c_rarg1);
call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
r15_thread, c_rarg1);
pop(state);
}
#endif
}
void InterpreterMacroAssembler::skip_if_jvmti_mode(Label &Lskip, Register Rscratch) {
if (!JvmtiExport::can_post_interpreter_events()) {
return;
}
load_and_test_int(Rscratch, Address(Z_thread, JavaThread::interp_only_mode_offset()));
z_brnz(Lskip);
}
// Pop the topmost TOP_IJAVA_FRAME and set it's sender_sp as new Z_SP.
// The return pc is loaded into the register return_pc.
//
// Registers updated:
// return_pc - The return pc of the calling frame.
// tmp1, tmp2 - scratch
void InterpreterMacroAssembler::pop_interpreter_frame(Register return_pc, Register tmp1, Register tmp2) {
// F0 Z_SP -> caller_sp (F1's)
// ...
// sender_sp (F1's)
// ...
// F1 Z_fp -> caller_sp (F2's)
// return_pc (Continuation after return from F0.)
// ...
// F2 caller_sp
// Remove F0's activation. Restoring Z_SP to sender_sp reverts modifications
// (a) by a c2i adapter and (b) by generate_fixed_frame().
// In case (a) the new top frame F1 is an unextended compiled frame.
// In case (b) F1 is converted from PARENT_IJAVA_FRAME to TOP_IJAVA_FRAME.
// Case (b) seems to be redundant when returning to a interpreted caller,
// because then the caller's top_frame_sp is installed as sp (see
// TemplateInterpreterGenerator::generate_return_entry_for ()). But
// pop_interpreter_frame() is also used in exception handling and there the
// frame type of the caller is unknown, therefore top_frame_sp cannot be used,
// so it is important that sender_sp is the caller's sp as TOP_IJAVA_FRAME.
Register R_f1_sender_sp = tmp1;
Register R_f2_sp = tmp2;
// Tirst check the for the interpreter frame's magic.
asm_assert_ijava_state_magic(R_f2_sp/*tmp*/);
z_lg(R_f2_sp, _z_parent_ijava_frame_abi(callers_sp), Z_fp);
z_lg(R_f1_sender_sp, _z_ijava_state_neg(sender_sp), Z_fp);
if (return_pc->is_valid())
z_lg(return_pc, _z_parent_ijava_frame_abi(return_pc), Z_fp);
// Pop F0 by resizing to R_f1_sender_sp and using R_f2_sp as fp.
resize_frame_absolute(R_f1_sender_sp, R_f2_sp, false/*load fp*/);
#ifdef ASSERT
// The return_pc in the new top frame is dead... at least that's my
// current understanding; to assert this I overwrite it.
load_const_optimized(Z_ARG3, 0xb00b1);
z_stg(Z_ARG3, _z_parent_ijava_frame_abi(return_pc), Z_SP);
#endif
}
void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
if (VerifyFPU) {
unimplemented("verfiyFPU");
}
}