blob: 9eefc6261d9f4e97353f90f33d620eb84c67a013 [file] [log] [blame]
/*
* Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#ifndef SHARE_VM_OOPS_OOP_INLINE_HPP
#define SHARE_VM_OOPS_OOP_INLINE_HPP
#include "gc/shared/collectedHeap.hpp"
#include "memory/metaspaceShared.hpp"
#include "oops/access.inline.hpp"
#include "oops/arrayKlass.hpp"
#include "oops/arrayOop.hpp"
#include "oops/compressedOops.inline.hpp"
#include "oops/klass.inline.hpp"
#include "oops/markOop.inline.hpp"
#include "oops/oop.hpp"
#include "runtime/atomic.hpp"
#include "runtime/orderAccess.hpp"
#include "runtime/os.hpp"
#include "utilities/align.hpp"
#include "utilities/macros.hpp"
// Implementation of all inlined member functions defined in oop.hpp
// We need a separate file to avoid circular references
markOop oopDesc::mark() const {
uintptr_t v = HeapAccess<MO_VOLATILE>::load_at(as_oop(), mark_offset_in_bytes());
return markOop(v);
}
markOop oopDesc::mark_raw() const {
return Atomic::load(&_mark);;
}
markOop* oopDesc::mark_addr_raw() const {
return (markOop*) &_mark;
}
void oopDesc::set_mark(markOop m) {
HeapAccess<MO_VOLATILE>::store_at(as_oop(), mark_offset_in_bytes(), m.value());
}
void oopDesc::set_mark_raw(markOop m) {
Atomic::store(m, &_mark);
}
void oopDesc::set_mark_raw(HeapWord* mem, markOop m) {
*(markOop*)(((char*)mem) + mark_offset_in_bytes()) = m;
}
void oopDesc::release_set_mark(markOop m) {
HeapAccess<MO_RELEASE>::store_at(as_oop(), mark_offset_in_bytes(), m.value());
}
markOop oopDesc::cas_set_mark(markOop new_mark, markOop old_mark) {
uintptr_t v = HeapAccess<>::atomic_cmpxchg_at(new_mark.value(), as_oop(), mark_offset_in_bytes(), old_mark.value());
return markOop(v);
}
markOop oopDesc::cas_set_mark_raw(markOop new_mark, markOop old_mark, atomic_memory_order order) {
return Atomic::cmpxchg(new_mark, &_mark, old_mark, order);
}
void oopDesc::init_mark() {
set_mark(markOop::prototype_for_object(this));
}
void oopDesc::init_mark_raw() {
set_mark_raw(markOop::prototype_for_object(this));
}
Klass* oopDesc::klass() const {
if (UseCompressedClassPointers) {
return Klass::decode_klass_not_null(_metadata._compressed_klass);
} else {
return _metadata._klass;
}
}
Klass* oopDesc::klass_or_null() const volatile {
if (UseCompressedClassPointers) {
return Klass::decode_klass(_metadata._compressed_klass);
} else {
return _metadata._klass;
}
}
Klass* oopDesc::klass_or_null_acquire() const volatile {
if (UseCompressedClassPointers) {
// Workaround for non-const load_acquire parameter.
const volatile narrowKlass* addr = &_metadata._compressed_klass;
volatile narrowKlass* xaddr = const_cast<volatile narrowKlass*>(addr);
return Klass::decode_klass(OrderAccess::load_acquire(xaddr));
} else {
return OrderAccess::load_acquire(&_metadata._klass);
}
}
Klass** oopDesc::klass_addr(HeapWord* mem) {
// Only used internally and with CMS and will not work with
// UseCompressedOops
assert(!UseCompressedClassPointers, "only supported with uncompressed klass pointers");
ByteSize offset = byte_offset_of(oopDesc, _metadata._klass);
return (Klass**) (((char*)mem) + in_bytes(offset));
}
narrowKlass* oopDesc::compressed_klass_addr(HeapWord* mem) {
assert(UseCompressedClassPointers, "only called by compressed klass pointers");
ByteSize offset = byte_offset_of(oopDesc, _metadata._compressed_klass);
return (narrowKlass*) (((char*)mem) + in_bytes(offset));
}
Klass** oopDesc::klass_addr() {
return klass_addr((HeapWord*)this);
}
narrowKlass* oopDesc::compressed_klass_addr() {
return compressed_klass_addr((HeapWord*)this);
}
#define CHECK_SET_KLASS(k) \
do { \
assert(Universe::is_bootstrapping() || k != NULL, "NULL Klass"); \
assert(Universe::is_bootstrapping() || k->is_klass(), "not a Klass"); \
} while (0)
void oopDesc::set_klass(Klass* k) {
CHECK_SET_KLASS(k);
if (UseCompressedClassPointers) {
*compressed_klass_addr() = Klass::encode_klass_not_null(k);
} else {
*klass_addr() = k;
}
}
void oopDesc::release_set_klass(HeapWord* mem, Klass* klass) {
CHECK_SET_KLASS(klass);
if (UseCompressedClassPointers) {
OrderAccess::release_store(compressed_klass_addr(mem),
Klass::encode_klass_not_null(klass));
} else {
OrderAccess::release_store(klass_addr(mem), klass);
}
}
#undef CHECK_SET_KLASS
int oopDesc::klass_gap() const {
return *(int*)(((intptr_t)this) + klass_gap_offset_in_bytes());
}
void oopDesc::set_klass_gap(HeapWord* mem, int v) {
if (UseCompressedClassPointers) {
*(int*)(((char*)mem) + klass_gap_offset_in_bytes()) = v;
}
}
void oopDesc::set_klass_gap(int v) {
set_klass_gap((HeapWord*)this, v);
}
void oopDesc::set_klass_to_list_ptr(oop k) {
// This is only to be used during GC, for from-space objects, so no
// barrier is needed.
if (UseCompressedClassPointers) {
_metadata._compressed_klass = (narrowKlass)CompressedOops::encode(k); // may be null (parnew overflow handling)
} else {
_metadata._klass = (Klass*)(address)k;
}
}
oop oopDesc::list_ptr_from_klass() {
// This is only to be used during GC, for from-space objects.
if (UseCompressedClassPointers) {
return CompressedOops::decode((narrowOop)_metadata._compressed_klass);
} else {
// Special case for GC
return (oop)(address)_metadata._klass;
}
}
bool oopDesc::is_a(Klass* k) const {
return klass()->is_subtype_of(k);
}
int oopDesc::size() {
return size_given_klass(klass());
}
int oopDesc::size_given_klass(Klass* klass) {
int lh = klass->layout_helper();
int s;
// lh is now a value computed at class initialization that may hint
// at the size. For instances, this is positive and equal to the
// size. For arrays, this is negative and provides log2 of the
// array element size. For other oops, it is zero and thus requires
// a virtual call.
//
// We go to all this trouble because the size computation is at the
// heart of phase 2 of mark-compaction, and called for every object,
// alive or dead. So the speed here is equal in importance to the
// speed of allocation.
if (lh > Klass::_lh_neutral_value) {
if (!Klass::layout_helper_needs_slow_path(lh)) {
s = lh >> LogHeapWordSize; // deliver size scaled by wordSize
} else {
s = klass->oop_size(this);
}
} else if (lh <= Klass::_lh_neutral_value) {
// The most common case is instances; fall through if so.
if (lh < Klass::_lh_neutral_value) {
// Second most common case is arrays. We have to fetch the
// length of the array, shift (multiply) it appropriately,
// up to wordSize, add the header, and align to object size.
size_t size_in_bytes;
size_t array_length = (size_t) ((arrayOop)this)->length();
size_in_bytes = array_length << Klass::layout_helper_log2_element_size(lh);
size_in_bytes += Klass::layout_helper_header_size(lh);
// This code could be simplified, but by keeping array_header_in_bytes
// in units of bytes and doing it this way we can round up just once,
// skipping the intermediate round to HeapWordSize.
s = (int)(align_up(size_in_bytes, MinObjAlignmentInBytes) / HeapWordSize);
// ParNew (used by CMS), UseParallelGC and UseG1GC can change the length field
// of an "old copy" of an object array in the young gen so it indicates
// the grey portion of an already copied array. This will cause the first
// disjunct below to fail if the two comparands are computed across such
// a concurrent change.
// ParNew also runs with promotion labs (which look like int
// filler arrays) which are subject to changing their declared size
// when finally retiring a PLAB; this also can cause the first disjunct
// to fail for another worker thread that is concurrently walking the block
// offset table. Both these invariant failures are benign for their
// current uses; we relax the assertion checking to cover these two cases below:
// is_objArray() && is_forwarded() // covers first scenario above
// || is_typeArray() // covers second scenario above
// If and when UseParallelGC uses the same obj array oop stealing/chunking
// technique, we will need to suitably modify the assertion.
assert((s == klass->oop_size(this)) ||
(Universe::heap()->is_gc_active() &&
((is_typeArray() && UseConcMarkSweepGC) ||
(is_objArray() && is_forwarded() && (UseConcMarkSweepGC || UseParallelGC || UseG1GC)))),
"wrong array object size");
} else {
// Must be zero, so bite the bullet and take the virtual call.
s = klass->oop_size(this);
}
}
assert(s > 0, "Oop size must be greater than zero, not %d", s);
assert(is_object_aligned(s), "Oop size is not properly aligned: %d", s);
return s;
}
bool oopDesc::is_instance() const { return klass()->is_instance_klass(); }
bool oopDesc::is_array() const { return klass()->is_array_klass(); }
bool oopDesc::is_objArray() const { return klass()->is_objArray_klass(); }
bool oopDesc::is_typeArray() const { return klass()->is_typeArray_klass(); }
void* oopDesc::field_addr_raw(int offset) const { return reinterpret_cast<void*>(cast_from_oop<intptr_t>(as_oop()) + offset); }
void* oopDesc::field_addr(int offset) const { return Access<>::resolve(as_oop())->field_addr_raw(offset); }
template <class T>
T* oopDesc::obj_field_addr_raw(int offset) const { return (T*) field_addr_raw(offset); }
template <typename T>
size_t oopDesc::field_offset(T* p) const { return pointer_delta((void*)p, (void*)this, 1); }
template <DecoratorSet decorators>
inline oop oopDesc::obj_field_access(int offset) const { return HeapAccess<decorators>::oop_load_at(as_oop(), offset); }
inline oop oopDesc::obj_field(int offset) const { return HeapAccess<>::oop_load_at(as_oop(), offset); }
inline void oopDesc::obj_field_put(int offset, oop value) { HeapAccess<>::oop_store_at(as_oop(), offset, value); }
inline jbyte oopDesc::byte_field(int offset) const { return HeapAccess<>::load_at(as_oop(), offset); }
inline void oopDesc::byte_field_put(int offset, jbyte value) { HeapAccess<>::store_at(as_oop(), offset, value); }
inline jchar oopDesc::char_field(int offset) const { return HeapAccess<>::load_at(as_oop(), offset); }
inline void oopDesc::char_field_put(int offset, jchar value) { HeapAccess<>::store_at(as_oop(), offset, value); }
inline jboolean oopDesc::bool_field(int offset) const { return HeapAccess<>::load_at(as_oop(), offset); }
inline void oopDesc::bool_field_put(int offset, jboolean value) { HeapAccess<>::store_at(as_oop(), offset, jboolean(value & 1)); }
inline jshort oopDesc::short_field(int offset) const { return HeapAccess<>::load_at(as_oop(), offset); }
inline void oopDesc::short_field_put(int offset, jshort value) { HeapAccess<>::store_at(as_oop(), offset, value); }
inline jint oopDesc::int_field(int offset) const { return HeapAccess<>::load_at(as_oop(), offset); }
inline void oopDesc::int_field_put(int offset, jint value) { HeapAccess<>::store_at(as_oop(), offset, value); }
inline jlong oopDesc::long_field(int offset) const { return HeapAccess<>::load_at(as_oop(), offset); }
inline void oopDesc::long_field_put(int offset, jlong value) { HeapAccess<>::store_at(as_oop(), offset, value); }
inline jfloat oopDesc::float_field(int offset) const { return HeapAccess<>::load_at(as_oop(), offset); }
inline void oopDesc::float_field_put(int offset, jfloat value) { HeapAccess<>::store_at(as_oop(), offset, value); }
inline jdouble oopDesc::double_field(int offset) const { return HeapAccess<>::load_at(as_oop(), offset); }
inline void oopDesc::double_field_put(int offset, jdouble value) { HeapAccess<>::store_at(as_oop(), offset, value); }
bool oopDesc::is_locked() const {
return mark().is_locked();
}
bool oopDesc::is_unlocked() const {
return mark().is_unlocked();
}
bool oopDesc::has_bias_pattern() const {
return mark().has_bias_pattern();
}
bool oopDesc::has_bias_pattern_raw() const {
return mark_raw().has_bias_pattern();
}
// Used only for markSweep, scavenging
bool oopDesc::is_gc_marked() const {
return mark_raw().is_marked();
}
// Used by scavengers
bool oopDesc::is_forwarded() const {
// The extra heap check is needed since the obj might be locked, in which case the
// mark would point to a stack location and have the sentinel bit cleared
return mark_raw().is_marked();
}
// Used by scavengers
void oopDesc::forward_to(oop p) {
assert(check_obj_alignment(p),
"forwarding to something not aligned");
assert(Universe::heap()->is_in_reserved(p),
"forwarding to something not in heap");
assert(!MetaspaceShared::is_archive_object(oop(this)) &&
!MetaspaceShared::is_archive_object(p),
"forwarding archive object");
markOop m = markOop::encode_pointer_as_mark(p);
assert(m.decode_pointer() == p, "encoding must be reversable");
set_mark_raw(m);
}
// Used by parallel scavengers
bool oopDesc::cas_forward_to(oop p, markOop compare, atomic_memory_order order) {
assert(check_obj_alignment(p),
"forwarding to something not aligned");
assert(Universe::heap()->is_in_reserved(p),
"forwarding to something not in heap");
markOop m = markOop::encode_pointer_as_mark(p);
assert(m.decode_pointer() == p, "encoding must be reversable");
return cas_set_mark_raw(m, compare, order) == compare;
}
oop oopDesc::forward_to_atomic(oop p, atomic_memory_order order) {
markOop oldMark = mark_raw();
markOop forwardPtrMark = markOop::encode_pointer_as_mark(p);
markOop curMark;
assert(forwardPtrMark.decode_pointer() == p, "encoding must be reversable");
assert(sizeof(markOop) == sizeof(intptr_t), "CAS below requires this.");
while (!oldMark.is_marked()) {
curMark = cas_set_mark_raw(forwardPtrMark, oldMark, order);
assert(is_forwarded(), "object should have been forwarded");
if (curMark == oldMark) {
return NULL;
}
// If the CAS was unsuccessful then curMark->is_marked()
// should return true as another thread has CAS'd in another
// forwarding pointer.
oldMark = curMark;
}
return forwardee();
}
// Note that the forwardee is not the same thing as the displaced_mark.
// The forwardee is used when copying during scavenge and mark-sweep.
// It does need to clear the low two locking- and GC-related bits.
oop oopDesc::forwardee() const {
return (oop) mark_raw().decode_pointer();
}
// Note that the forwardee is not the same thing as the displaced_mark.
// The forwardee is used when copying during scavenge and mark-sweep.
// It does need to clear the low two locking- and GC-related bits.
oop oopDesc::forwardee_acquire() const {
return (oop) OrderAccess::load_acquire(&_mark).decode_pointer();
}
// The following method needs to be MT safe.
uint oopDesc::age() const {
assert(!is_forwarded(), "Attempt to read age from forwarded mark");
if (has_displaced_mark_raw()) {
return displaced_mark_raw().age();
} else {
return mark_raw().age();
}
}
void oopDesc::incr_age() {
assert(!is_forwarded(), "Attempt to increment age of forwarded mark");
if (has_displaced_mark_raw()) {
set_displaced_mark_raw(displaced_mark_raw().incr_age());
} else {
set_mark_raw(mark_raw().incr_age());
}
}
#if INCLUDE_PARALLELGC
void oopDesc::pc_follow_contents(ParCompactionManager* cm) {
klass()->oop_pc_follow_contents(this, cm);
}
void oopDesc::pc_update_contents(ParCompactionManager* cm) {
Klass* k = klass();
if (!k->is_typeArray_klass()) {
// It might contain oops beyond the header, so take the virtual call.
k->oop_pc_update_pointers(this, cm);
}
// Else skip it. The TypeArrayKlass in the header never needs scavenging.
}
void oopDesc::ps_push_contents(PSPromotionManager* pm) {
Klass* k = klass();
if (!k->is_typeArray_klass()) {
// It might contain oops beyond the header, so take the virtual call.
k->oop_ps_push_contents(this, pm);
}
// Else skip it. The TypeArrayKlass in the header never needs scavenging.
}
#endif // INCLUDE_PARALLELGC
template <typename OopClosureType>
void oopDesc::oop_iterate(OopClosureType* cl) {
OopIteratorClosureDispatch::oop_oop_iterate(cl, this, klass());
}
template <typename OopClosureType>
void oopDesc::oop_iterate(OopClosureType* cl, MemRegion mr) {
OopIteratorClosureDispatch::oop_oop_iterate(cl, this, klass(), mr);
}
template <typename OopClosureType>
int oopDesc::oop_iterate_size(OopClosureType* cl) {
Klass* k = klass();
int size = size_given_klass(k);
OopIteratorClosureDispatch::oop_oop_iterate(cl, this, k);
return size;
}
template <typename OopClosureType>
int oopDesc::oop_iterate_size(OopClosureType* cl, MemRegion mr) {
Klass* k = klass();
int size = size_given_klass(k);
OopIteratorClosureDispatch::oop_oop_iterate(cl, this, k, mr);
return size;
}
template <typename OopClosureType>
void oopDesc::oop_iterate_backwards(OopClosureType* cl) {
OopIteratorClosureDispatch::oop_oop_iterate_backwards(cl, this, klass());
}
bool oopDesc::is_instanceof_or_null(oop obj, Klass* klass) {
return obj == NULL || obj->klass()->is_subtype_of(klass);
}
intptr_t oopDesc::identity_hash() {
// Fast case; if the object is unlocked and the hash value is set, no locking is needed
// Note: The mark must be read into local variable to avoid concurrent updates.
markOop mrk = mark();
if (mrk.is_unlocked() && !mrk.has_no_hash()) {
return mrk.hash();
} else if (mrk.is_marked()) {
return mrk.hash();
} else {
return slow_identity_hash();
}
}
bool oopDesc::has_displaced_mark_raw() const {
return mark_raw().has_displaced_mark_helper();
}
markOop oopDesc::displaced_mark_raw() const {
return mark_raw().displaced_mark_helper();
}
void oopDesc::set_displaced_mark_raw(markOop m) {
mark_raw().set_displaced_mark_helper(m);
}
#endif // SHARE_VM_OOPS_OOP_INLINE_HPP