blob: 5c71e7b5b5757c7109b3599bf2ff0df8d919fd47 [file] [log] [blame]
/*
* Copyright (c) 2016, 2018, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2016 SAP SE. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "asm/macroAssembler.inline.hpp"
#include "c1/c1_MacroAssembler.hpp"
#include "c1/c1_Runtime1.hpp"
#include "classfile/systemDictionary.hpp"
#include "gc/shared/collectedHeap.hpp"
#include "interpreter/interpreter.hpp"
#include "oops/arrayOop.hpp"
#include "oops/markOop.hpp"
#include "runtime/basicLock.hpp"
#include "runtime/biasedLocking.hpp"
#include "runtime/os.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/stubRoutines.hpp"
void C1_MacroAssembler::inline_cache_check(Register receiver, Register iCache) {
Label ic_miss, ic_hit;
verify_oop(receiver);
int klass_offset = oopDesc::klass_offset_in_bytes();
if (!ImplicitNullChecks || MacroAssembler::needs_explicit_null_check(klass_offset)) {
if (VM_Version::has_CompareBranch()) {
z_cgij(receiver, 0, Assembler::bcondEqual, ic_miss);
} else {
z_ltgr(receiver, receiver);
z_bre(ic_miss);
}
}
compare_klass_ptr(iCache, klass_offset, receiver, false);
z_bre(ic_hit);
// If icache check fails, then jump to runtime routine.
// Note: RECEIVER must still contain the receiver!
load_const_optimized(Z_R1_scratch, AddressLiteral(SharedRuntime::get_ic_miss_stub()));
z_br(Z_R1_scratch);
align(CodeEntryAlignment);
bind(ic_hit);
}
void C1_MacroAssembler::explicit_null_check(Register base) {
ShouldNotCallThis(); // unused
}
void C1_MacroAssembler::build_frame(int frame_size_in_bytes, int bang_size_in_bytes) {
assert(bang_size_in_bytes >= frame_size_in_bytes, "stack bang size incorrect");
generate_stack_overflow_check(bang_size_in_bytes);
save_return_pc();
push_frame(frame_size_in_bytes);
}
void C1_MacroAssembler::verified_entry() {
if (C1Breakpoint) z_illtrap(0xC1);
}
void C1_MacroAssembler::lock_object(Register hdr, Register obj, Register disp_hdr, Label& slow_case) {
const int hdr_offset = oopDesc::mark_offset_in_bytes();
assert_different_registers(hdr, obj, disp_hdr);
NearLabel done;
verify_oop(obj);
// Load object header.
z_lg(hdr, Address(obj, hdr_offset));
// Save object being locked into the BasicObjectLock...
z_stg(obj, Address(disp_hdr, BasicObjectLock::obj_offset_in_bytes()));
if (UseBiasedLocking) {
biased_locking_enter(obj, hdr, Z_R1_scratch, Z_R0_scratch, done, &slow_case);
}
// and mark it as unlocked.
z_oill(hdr, markOop::unlocked_value);
// Save unlocked object header into the displaced header location on the stack.
z_stg(hdr, Address(disp_hdr, (intptr_t)0));
// Test if object header is still the same (i.e. unlocked), and if so, store the
// displaced header address in the object header. If it is not the same, get the
// object header instead.
z_csg(hdr, disp_hdr, hdr_offset, obj);
// If the object header was the same, we're done.
if (PrintBiasedLockingStatistics) {
Unimplemented();
#if 0
cond_inc32(Assembler::equal,
ExternalAddress((address)BiasedLocking::fast_path_entry_count_addr()));
#endif
}
branch_optimized(Assembler::bcondEqual, done);
// If the object header was not the same, it is now in the hdr register.
// => Test if it is a stack pointer into the same stack (recursive locking), i.e.:
//
// 1) (hdr & markOop::lock_mask_in_place) == 0
// 2) rsp <= hdr
// 3) hdr <= rsp + page_size
//
// These 3 tests can be done by evaluating the following expression:
//
// (hdr - Z_SP) & (~(page_size-1) | markOop::lock_mask_in_place)
//
// assuming both the stack pointer and page_size have their least
// significant 2 bits cleared and page_size is a power of 2
z_sgr(hdr, Z_SP);
load_const_optimized(Z_R0_scratch, (~(os::vm_page_size()-1) | markOop::lock_mask_in_place));
z_ngr(hdr, Z_R0_scratch); // AND sets CC (result eq/ne 0).
// For recursive locking, the result is zero. => Save it in the displaced header
// location (NULL in the displaced hdr location indicates recursive locking).
z_stg(hdr, Address(disp_hdr, (intptr_t)0));
// Otherwise we don't care about the result and handle locking via runtime call.
branch_optimized(Assembler::bcondNotZero, slow_case);
// done
bind(done);
}
void C1_MacroAssembler::unlock_object(Register hdr, Register obj, Register disp_hdr, Label& slow_case) {
const int aligned_mask = BytesPerWord -1;
const int hdr_offset = oopDesc::mark_offset_in_bytes();
assert_different_registers(hdr, obj, disp_hdr);
NearLabel done;
if (UseBiasedLocking) {
// Load object.
z_lg(obj, Address(disp_hdr, BasicObjectLock::obj_offset_in_bytes()));
biased_locking_exit(obj, hdr, done);
}
// Load displaced header.
z_ltg(hdr, Address(disp_hdr, (intptr_t)0));
// If the loaded hdr is NULL we had recursive locking, and we are done.
z_bre(done);
if (!UseBiasedLocking) {
// Load object.
z_lg(obj, Address(disp_hdr, BasicObjectLock::obj_offset_in_bytes()));
}
verify_oop(obj);
// Test if object header is pointing to the displaced header, and if so, restore
// the displaced header in the object. If the object header is not pointing to
// the displaced header, get the object header instead.
z_csg(disp_hdr, hdr, hdr_offset, obj);
// If the object header was not pointing to the displaced header,
// we do unlocking via runtime call.
branch_optimized(Assembler::bcondNotEqual, slow_case);
// done
bind(done);
}
void C1_MacroAssembler::try_allocate(
Register obj, // result: Pointer to object after successful allocation.
Register var_size_in_bytes, // Object size in bytes if unknown at compile time; invalid otherwise.
int con_size_in_bytes, // Object size in bytes if known at compile time.
Register t1, // Temp register: Must be global register for incr_allocated_bytes.
Label& slow_case // Continuation point if fast allocation fails.
) {
if (UseTLAB) {
tlab_allocate(obj, var_size_in_bytes, con_size_in_bytes, t1, slow_case);
} else {
// Allocation in shared Eden not implemented, because sapjvm allocation trace does not allow it.
z_brul(slow_case);
}
}
void C1_MacroAssembler::initialize_header(Register obj, Register klass, Register len, Register Rzero, Register t1) {
assert_different_registers(obj, klass, len, t1, Rzero);
if (UseBiasedLocking && !len->is_valid()) {
assert_different_registers(obj, klass, len, t1);
z_lg(t1, Address(klass, Klass::prototype_header_offset()));
} else {
// This assumes that all prototype bits fit in an int32_t.
load_const_optimized(t1, (intx)markOop::prototype());
}
z_stg(t1, Address(obj, oopDesc::mark_offset_in_bytes()));
if (len->is_valid()) {
// Length will be in the klass gap, if one exists.
z_st(len, Address(obj, arrayOopDesc::length_offset_in_bytes()));
} else if (UseCompressedClassPointers) {
store_klass_gap(Rzero, obj); // Zero klass gap for compressed oops.
}
store_klass(klass, obj, t1);
}
void C1_MacroAssembler::initialize_body(Register objectFields, Register len_in_bytes, Register Rzero) {
Label done;
assert_different_registers(objectFields, len_in_bytes, Rzero);
// Initialize object fields.
// See documentation for MVCLE instruction!!!
assert(objectFields->encoding()%2==0, "objectFields must be an even register");
assert(len_in_bytes->encoding() == (objectFields->encoding()+1), "objectFields and len_in_bytes must be a register pair");
assert(Rzero->encoding()%2==1, "Rzero must be an odd register");
// Use Rzero as src length, then mvcle will copy nothing
// and fill the object with the padding value 0.
move_long_ext(objectFields, as_Register(Rzero->encoding()-1), 0);
bind(done);
}
void C1_MacroAssembler::allocate_object(
Register obj, // Result: pointer to object after successful allocation.
Register t1, // temp register
Register t2, // temp register: Must be a global register for try_allocate.
int hdr_size, // object header size in words
int obj_size, // object size in words
Register klass, // object klass
Label& slow_case // Continuation point if fast allocation fails.
) {
assert_different_registers(obj, t1, t2, klass);
// Allocate space and initialize header.
try_allocate(obj, noreg, obj_size * wordSize, t1, slow_case);
initialize_object(obj, klass, noreg, obj_size * HeapWordSize, t1, t2);
}
void C1_MacroAssembler::initialize_object(
Register obj, // result: Pointer to object after successful allocation.
Register klass, // object klass
Register var_size_in_bytes, // Object size in bytes if unknown at compile time; invalid otherwise.
int con_size_in_bytes, // Object size in bytes if known at compile time.
Register t1, // temp register
Register t2 // temp register
) {
assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0,
"con_size_in_bytes is not multiple of alignment");
assert(var_size_in_bytes == noreg, "not implemented");
const int hdr_size_in_bytes = instanceOopDesc::header_size() * HeapWordSize;
const Register Rzero = t2;
z_xgr(Rzero, Rzero);
initialize_header(obj, klass, noreg, Rzero, t1);
// Clear rest of allocated space.
const int threshold = 4 * BytesPerWord;
if (con_size_in_bytes <= threshold) {
// Use explicit null stores.
// code size = 6*n bytes (n = number of fields to clear)
for (int i = hdr_size_in_bytes; i < con_size_in_bytes; i += BytesPerWord)
z_stg(Rzero, Address(obj, i));
} else {
// Code size generated by initialize_body() is 16.
Register object_fields = Z_R0_scratch;
Register len_in_bytes = Z_R1_scratch;
z_la(object_fields, hdr_size_in_bytes, obj);
load_const_optimized(len_in_bytes, con_size_in_bytes - hdr_size_in_bytes);
initialize_body(object_fields, len_in_bytes, Rzero);
}
// Dtrace support is unimplemented.
// if (CURRENT_ENV->dtrace_alloc_probes()) {
// assert(obj == rax, "must be");
// call(RuntimeAddress(Runtime1::entry_for (Runtime1::dtrace_object_alloc_id)));
// }
verify_oop(obj);
}
void C1_MacroAssembler::allocate_array(
Register obj, // result: Pointer to array after successful allocation.
Register len, // array length
Register t1, // temp register
Register t2, // temp register
int hdr_size, // object header size in words
int elt_size, // element size in bytes
Register klass, // object klass
Label& slow_case // Continuation point if fast allocation fails.
) {
assert_different_registers(obj, len, t1, t2, klass);
// Determine alignment mask.
assert(!(BytesPerWord & 1), "must be a multiple of 2 for masking code to work");
// Check for negative or excessive length.
compareU64_and_branch(len, (int32_t)max_array_allocation_length, bcondHigh, slow_case);
// Compute array size.
// Note: If 0 <= len <= max_length, len*elt_size + header + alignment is
// smaller or equal to the largest integer. Also, since top is always
// aligned, we can do the alignment here instead of at the end address
// computation.
const Register arr_size = t2;
switch (elt_size) {
case 1: lgr_if_needed(arr_size, len); break;
case 2: z_sllg(arr_size, len, 1); break;
case 4: z_sllg(arr_size, len, 2); break;
case 8: z_sllg(arr_size, len, 3); break;
default: ShouldNotReachHere();
}
add2reg(arr_size, hdr_size * wordSize + MinObjAlignmentInBytesMask); // Add space for header & alignment.
z_nill(arr_size, (~MinObjAlignmentInBytesMask) & 0xffff); // Align array size.
try_allocate(obj, arr_size, 0, t1, slow_case);
initialize_header(obj, klass, len, noreg, t1);
// Clear rest of allocated space.
Label done;
Register object_fields = t1;
Register Rzero = Z_R1_scratch;
z_aghi(arr_size, -(hdr_size * BytesPerWord));
z_bre(done); // Jump if size of fields is zero.
z_la(object_fields, hdr_size * BytesPerWord, obj);
z_xgr(Rzero, Rzero);
initialize_body(object_fields, arr_size, Rzero);
bind(done);
// Dtrace support is unimplemented.
// if (CURRENT_ENV->dtrace_alloc_probes()) {
// assert(obj == rax, "must be");
// call(RuntimeAddress(Runtime1::entry_for (Runtime1::dtrace_object_alloc_id)));
// }
verify_oop(obj);
}
#ifndef PRODUCT
void C1_MacroAssembler::verify_stack_oop(int stack_offset) {
Unimplemented();
// if (!VerifyOops) return;
// verify_oop_addr(Address(SP, stack_offset + STACK_BIAS));
}
void C1_MacroAssembler::verify_not_null_oop(Register r) {
if (!VerifyOops) return;
NearLabel not_null;
compareU64_and_branch(r, (intptr_t)0, bcondNotEqual, not_null);
stop("non-null oop required");
bind(not_null);
verify_oop(r);
}
void C1_MacroAssembler::invalidate_registers(Register preserve1,
Register preserve2,
Register preserve3) {
Register dead_value = noreg;
for (int i = 0; i < FrameMap::nof_cpu_regs; i++) {
Register r = as_Register(i);
if (r != preserve1 && r != preserve2 && r != preserve3 && r != Z_SP && r != Z_thread) {
if (dead_value == noreg) {
load_const_optimized(r, 0xc1dead);
dead_value = r;
} else {
z_lgr(r, dead_value);
}
}
}
}
#endif // !PRODUCT