blob: c6f60071b21e904782c75d5fa0f5d2c52e5421f4 [file] [log] [blame]
/*
* Copyright (c) 1999, 2018, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2012, 2018 SAP SE. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
#include "precompiled.hpp"
#include "asm/macroAssembler.inline.hpp"
#include "c1/c1_MacroAssembler.hpp"
#include "c1/c1_Runtime1.hpp"
#include "classfile/systemDictionary.hpp"
#include "gc/shared/collectedHeap.hpp"
#include "interpreter/interpreter.hpp"
#include "oops/arrayOop.hpp"
#include "oops/markOop.hpp"
#include "runtime/basicLock.hpp"
#include "runtime/biasedLocking.hpp"
#include "runtime/os.hpp"
#include "runtime/sharedRuntime.hpp"
#include "runtime/stubRoutines.hpp"
#include "utilities/align.hpp"
void C1_MacroAssembler::inline_cache_check(Register receiver, Register iCache) {
const Register temp_reg = R12_scratch2;
Label Lmiss;
verify_oop(receiver);
MacroAssembler::null_check(receiver, oopDesc::klass_offset_in_bytes(), &Lmiss);
load_klass(temp_reg, receiver);
if (TrapBasedICMissChecks && TrapBasedNullChecks) {
trap_ic_miss_check(temp_reg, iCache);
} else {
Label Lok;
cmpd(CCR0, temp_reg, iCache);
beq(CCR0, Lok);
bind(Lmiss);
//load_const_optimized(temp_reg, SharedRuntime::get_ic_miss_stub(), R0);
calculate_address_from_global_toc(temp_reg, SharedRuntime::get_ic_miss_stub(), true, true, false);
mtctr(temp_reg);
bctr();
align(32, 12);
bind(Lok);
}
}
void C1_MacroAssembler::explicit_null_check(Register base) {
Unimplemented();
}
void C1_MacroAssembler::build_frame(int frame_size_in_bytes, int bang_size_in_bytes) {
// Avoid stack bang as first instruction. It may get overwritten by patch_verified_entry.
const Register return_pc = R20;
mflr(return_pc);
// Make sure there is enough stack space for this method's activation.
assert(bang_size_in_bytes >= frame_size_in_bytes, "stack bang size incorrect");
generate_stack_overflow_check(bang_size_in_bytes);
std(return_pc, _abi(lr), R1_SP); // SP->lr = return_pc
push_frame(frame_size_in_bytes, R0); // SP -= frame_size_in_bytes
}
void C1_MacroAssembler::verified_entry() {
if (C1Breakpoint) illtrap();
// build frame
}
void C1_MacroAssembler::lock_object(Register Rmark, Register Roop, Register Rbox, Register Rscratch, Label& slow_case) {
assert_different_registers(Rmark, Roop, Rbox, Rscratch);
Label done, cas_failed, slow_int;
// The following move must be the first instruction of emitted since debug
// information may be generated for it.
// Load object header.
ld(Rmark, oopDesc::mark_offset_in_bytes(), Roop);
verify_oop(Roop);
// Save object being locked into the BasicObjectLock...
std(Roop, BasicObjectLock::obj_offset_in_bytes(), Rbox);
if (UseBiasedLocking) {
biased_locking_enter(CCR0, Roop, Rmark, Rscratch, R0, done, &slow_int);
}
// ... and mark it unlocked.
ori(Rmark, Rmark, markOop::unlocked_value);
// Save unlocked object header into the displaced header location on the stack.
std(Rmark, BasicLock::displaced_header_offset_in_bytes(), Rbox);
// Compare object markOop with Rmark and if equal exchange Rscratch with object markOop.
assert(oopDesc::mark_offset_in_bytes() == 0, "cas must take a zero displacement");
cmpxchgd(/*flag=*/CCR0,
/*current_value=*/Rscratch,
/*compare_value=*/Rmark,
/*exchange_value=*/Rbox,
/*where=*/Roop/*+0==mark_offset_in_bytes*/,
MacroAssembler::MemBarRel | MacroAssembler::MemBarAcq,
MacroAssembler::cmpxchgx_hint_acquire_lock(),
noreg,
&cas_failed,
/*check without membar and ldarx first*/true);
// If compare/exchange succeeded we found an unlocked object and we now have locked it
// hence we are done.
b(done);
bind(slow_int);
b(slow_case); // far
bind(cas_failed);
// We did not find an unlocked object so see if this is a recursive case.
sub(Rscratch, Rscratch, R1_SP);
load_const_optimized(R0, (~(os::vm_page_size()-1) | markOop::lock_mask_in_place));
and_(R0/*==0?*/, Rscratch, R0);
std(R0/*==0, perhaps*/, BasicLock::displaced_header_offset_in_bytes(), Rbox);
bne(CCR0, slow_int);
bind(done);
}
void C1_MacroAssembler::unlock_object(Register Rmark, Register Roop, Register Rbox, Label& slow_case) {
assert_different_registers(Rmark, Roop, Rbox);
Label slow_int, done;
Address mark_addr(Roop, oopDesc::mark_offset_in_bytes());
assert(mark_addr.disp() == 0, "cas must take a zero displacement");
if (UseBiasedLocking) {
// Load the object out of the BasicObjectLock.
ld(Roop, BasicObjectLock::obj_offset_in_bytes(), Rbox);
verify_oop(Roop);
biased_locking_exit(CCR0, Roop, R0, done);
}
// Test first it it is a fast recursive unlock.
ld(Rmark, BasicLock::displaced_header_offset_in_bytes(), Rbox);
cmpdi(CCR0, Rmark, 0);
beq(CCR0, done);
if (!UseBiasedLocking) {
// Load object.
ld(Roop, BasicObjectLock::obj_offset_in_bytes(), Rbox);
verify_oop(Roop);
}
// Check if it is still a light weight lock, this is is true if we see
// the stack address of the basicLock in the markOop of the object.
cmpxchgd(/*flag=*/CCR0,
/*current_value=*/R0,
/*compare_value=*/Rbox,
/*exchange_value=*/Rmark,
/*where=*/Roop,
MacroAssembler::MemBarRel,
MacroAssembler::cmpxchgx_hint_release_lock(),
noreg,
&slow_int);
b(done);
bind(slow_int);
b(slow_case); // far
// Done
bind(done);
}
void C1_MacroAssembler::try_allocate(
Register obj, // result: pointer to object after successful allocation
Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
int con_size_in_bytes, // object size in bytes if known at compile time
Register t1, // temp register, must be global register for incr_allocated_bytes
Register t2, // temp register
Label& slow_case // continuation point if fast allocation fails
) {
if (UseTLAB) {
tlab_allocate(obj, var_size_in_bytes, con_size_in_bytes, t1, slow_case);
} else {
eden_allocate(obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case);
RegisterOrConstant size_in_bytes = var_size_in_bytes->is_valid()
? RegisterOrConstant(var_size_in_bytes)
: RegisterOrConstant(con_size_in_bytes);
incr_allocated_bytes(size_in_bytes, t1, t2);
}
}
void C1_MacroAssembler::initialize_header(Register obj, Register klass, Register len, Register t1, Register t2) {
assert_different_registers(obj, klass, len, t1, t2);
if (UseBiasedLocking && !len->is_valid()) {
ld(t1, in_bytes(Klass::prototype_header_offset()), klass);
} else {
load_const_optimized(t1, (intx)markOop::prototype());
}
std(t1, oopDesc::mark_offset_in_bytes(), obj);
store_klass(obj, klass);
if (len->is_valid()) {
stw(len, arrayOopDesc::length_offset_in_bytes(), obj);
} else if (UseCompressedClassPointers) {
// Otherwise length is in the class gap.
store_klass_gap(obj);
}
}
void C1_MacroAssembler::initialize_body(Register base, Register index) {
assert_different_registers(base, index);
srdi(index, index, LogBytesPerWord);
clear_memory_doubleword(base, index);
}
void C1_MacroAssembler::initialize_body(Register obj, Register tmp1, Register tmp2,
int obj_size_in_bytes, int hdr_size_in_bytes) {
const int index = (obj_size_in_bytes - hdr_size_in_bytes) / HeapWordSize;
// 2x unrolled loop is shorter with more than 9 HeapWords.
if (index <= 9) {
clear_memory_unrolled(obj, index, R0, hdr_size_in_bytes);
} else {
const Register base_ptr = tmp1,
cnt_dwords = tmp2;
addi(base_ptr, obj, hdr_size_in_bytes); // Compute address of first element.
clear_memory_doubleword(base_ptr, cnt_dwords, R0, index);
}
}
void C1_MacroAssembler::allocate_object(
Register obj, // result: pointer to object after successful allocation
Register t1, // temp register
Register t2, // temp register
Register t3, // temp register
int hdr_size, // object header size in words
int obj_size, // object size in words
Register klass, // object klass
Label& slow_case // continuation point if fast allocation fails
) {
assert_different_registers(obj, t1, t2, t3, klass);
// allocate space & initialize header
if (!is_simm16(obj_size * wordSize)) {
// Would need to use extra register to load
// object size => go the slow case for now.
b(slow_case);
return;
}
try_allocate(obj, noreg, obj_size * wordSize, t2, t3, slow_case);
initialize_object(obj, klass, noreg, obj_size * HeapWordSize, t1, t2);
}
void C1_MacroAssembler::initialize_object(
Register obj, // result: pointer to object after successful allocation
Register klass, // object klass
Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
int con_size_in_bytes, // object size in bytes if known at compile time
Register t1, // temp register
Register t2 // temp register
) {
const int hdr_size_in_bytes = instanceOopDesc::header_size() * HeapWordSize;
initialize_header(obj, klass, noreg, t1, t2);
#ifdef ASSERT
{
lwz(t1, in_bytes(Klass::layout_helper_offset()), klass);
if (var_size_in_bytes != noreg) {
cmpw(CCR0, t1, var_size_in_bytes);
} else {
cmpwi(CCR0, t1, con_size_in_bytes);
}
asm_assert_eq("bad size in initialize_object", 0x753);
}
#endif
// Initialize body.
if (var_size_in_bytes != noreg) {
// Use a loop.
addi(t1, obj, hdr_size_in_bytes); // Compute address of first element.
addi(t2, var_size_in_bytes, -hdr_size_in_bytes); // Compute size of body.
initialize_body(t1, t2);
} else if (con_size_in_bytes > hdr_size_in_bytes) {
// Use a loop.
initialize_body(obj, t1, t2, con_size_in_bytes, hdr_size_in_bytes);
}
if (CURRENT_ENV->dtrace_alloc_probes()) {
Unimplemented();
// assert(obj == O0, "must be");
// call(CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::dtrace_object_alloc_id)),
// relocInfo::runtime_call_type);
}
verify_oop(obj);
}
void C1_MacroAssembler::allocate_array(
Register obj, // result: pointer to array after successful allocation
Register len, // array length
Register t1, // temp register
Register t2, // temp register
Register t3, // temp register
int hdr_size, // object header size in words
int elt_size, // element size in bytes
Register klass, // object klass
Label& slow_case // continuation point if fast allocation fails
) {
assert_different_registers(obj, len, t1, t2, t3, klass);
// Determine alignment mask.
assert(!(BytesPerWord & 1), "must be a multiple of 2 for masking code to work");
int log2_elt_size = exact_log2(elt_size);
// Check for negative or excessive length.
size_t max_length = max_array_allocation_length >> log2_elt_size;
if (UseTLAB) {
size_t max_tlab = align_up(ThreadLocalAllocBuffer::max_size() >> log2_elt_size, 64*K);
if (max_tlab < max_length) { max_length = max_tlab; }
}
load_const_optimized(t1, max_length);
cmpld(CCR0, len, t1);
bc_far_optimized(Assembler::bcondCRbiIs1, bi0(CCR0, Assembler::greater), slow_case);
// compute array size
// note: If 0 <= len <= max_length, len*elt_size + header + alignment is
// smaller or equal to the largest integer; also, since top is always
// aligned, we can do the alignment here instead of at the end address
// computation.
const Register arr_size = t1;
Register arr_len_in_bytes = len;
if (elt_size != 1) {
sldi(t1, len, log2_elt_size);
arr_len_in_bytes = t1;
}
addi(arr_size, arr_len_in_bytes, hdr_size * wordSize + MinObjAlignmentInBytesMask); // Add space for header & alignment.
clrrdi(arr_size, arr_size, LogMinObjAlignmentInBytes); // Align array size.
// Allocate space & initialize header.
if (UseTLAB) {
tlab_allocate(obj, arr_size, 0, t2, slow_case);
} else {
eden_allocate(obj, arr_size, 0, t2, t3, slow_case);
}
initialize_header(obj, klass, len, t2, t3);
// Initialize body.
const Register base = t2;
const Register index = t3;
addi(base, obj, hdr_size * wordSize); // compute address of first element
addi(index, arr_size, -(hdr_size * wordSize)); // compute index = number of bytes to clear
initialize_body(base, index);
if (CURRENT_ENV->dtrace_alloc_probes()) {
Unimplemented();
//assert(obj == O0, "must be");
//call(CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::dtrace_object_alloc_id)),
// relocInfo::runtime_call_type);
}
verify_oop(obj);
}
#ifndef PRODUCT
void C1_MacroAssembler::verify_stack_oop(int stack_offset) {
verify_oop_addr((RegisterOrConstant)(stack_offset + STACK_BIAS), R1_SP, "broken oop in stack slot");
}
void C1_MacroAssembler::verify_not_null_oop(Register r) {
Label not_null;
cmpdi(CCR0, r, 0);
bne(CCR0, not_null);
stop("non-null oop required");
bind(not_null);
if (!VerifyOops) return;
verify_oop(r);
}
#endif // PRODUCT
void C1_MacroAssembler::null_check(Register r, Label* Lnull) {
if (TrapBasedNullChecks) { // SIGTRAP based
trap_null_check(r);
} else { // explicit
//const address exception_entry = Runtime1::entry_for(Runtime1::throw_null_pointer_exception_id);
assert(Lnull != NULL, "must have Label for explicit check");
cmpdi(CCR0, r, 0);
bc_far_optimized(Assembler::bcondCRbiIs1, bi0(CCR0, Assembler::equal), *Lnull);
}
}
address C1_MacroAssembler::call_c_with_frame_resize(address dest, int frame_resize) {
if (frame_resize) { resize_frame(-frame_resize, R0); }
#if defined(ABI_ELFv2)
address return_pc = call_c(dest, relocInfo::runtime_call_type);
#else
address return_pc = call_c(CAST_FROM_FN_PTR(FunctionDescriptor*, dest), relocInfo::runtime_call_type);
#endif
if (frame_resize) { resize_frame(frame_resize, R0); }
return return_pc;
}