blob: cb8fa380a3aa3f682ee7a78021f3a50131dd0a8d [file] [log] [blame]
//===- FunctionSpecialization.h - Function Specialization -----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Overview:
// ---------
// Function Specialization is a transformation which propagates the constant
// parameters of a function call from the caller to the callee. It is part of
// the Inter-Procedural Sparse Conditional Constant Propagation (IPSCCP) pass.
// The transformation runs iteratively a number of times which is controlled
// by the option `funcspec-max-iters`. Running it multiple times is needed
// for specializing recursive functions, but also exposes new opportunities
// arising from specializations which return constant values or contain calls
// which can be specialized.
//
// Function Specialization supports propagating constant parameters like
// function pointers, literal constants and addresses of global variables.
// By propagating function pointers, indirect calls become direct calls. This
// exposes inlining opportunities which we would have otherwise missed. That's
// why function specialization is run before the inliner in the optimization
// pipeline; that is by design.
//
// Cost Model:
// -----------
// The cost model facilitates a utility for estimating the specialization bonus
// from propagating a constant argument. This is the InstCostVisitor, a class
// that inherits from the InstVisitor. The bonus itself is expressed as codesize
// and latency savings. Codesize savings means the amount of code that becomes
// dead in the specialization from propagating the constant, whereas latency
// savings represents the cycles we are saving from replacing instructions with
// constant values. The InstCostVisitor overrides a set of `visit*` methods to
// be able to handle different types of instructions. These attempt to constant-
// fold the instruction in which case a constant is returned and propagated
// further.
//
// Function pointers are not handled by the InstCostVisitor. They are treated
// separately as they could expose inlining opportunities via indirect call
// promotion. The inlining bonus contributes to the total specialization score.
//
// For a specialization to be profitable its bonus needs to exceed a minimum
// threshold. There are three options for controlling the threshold which are
// expressed as percentages of the original function size:
// * funcspec-min-codesize-savings
// * funcspec-min-latency-savings
// * funcspec-min-inlining-bonus
// There's also an option for controlling the codesize growth from recursive
// specializations. That is `funcspec-max-codesize-growth`.
//
// Once we have all the potential specializations with their score we need to
// choose the best ones, which fit in the module specialization budget. That
// is controlled by the option `funcspec-max-clones`. To find the best `NSpec`
// specializations we use a max-heap. For more details refer to D139346.
//
// Ideas:
// ------
// - With a function specialization attribute for arguments, we could have
// a direct way to steer function specialization, avoiding the cost-model,
// and thus control compile-times / code-size.
//
// - Perhaps a post-inlining function specialization pass could be more
// aggressive on literal constants.
//
// References:
// -----------
// 2021 LLVM Dev Mtg “Introducing function specialisation, and can we enable
// it by default?”, https://www.youtube.com/watch?v=zJiCjeXgV5Q
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_TRANSFORMS_IPO_FUNCTIONSPECIALIZATION_H
#define LLVM_TRANSFORMS_IPO_FUNCTIONSPECIALIZATION_H
#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/Analysis/CodeMetrics.h"
#include "llvm/Analysis/InlineCost.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/InstVisitor.h"
#include "llvm/Transforms/Scalar/SCCP.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/SCCPSolver.h"
#include "llvm/Transforms/Utils/SizeOpts.h"
using namespace llvm;
namespace llvm {
// Map of potential specializations for each function. The FunctionSpecializer
// keeps the discovered specialisation opportunities for the module in a single
// vector, where the specialisations of each function form a contiguous range.
// This map's value is the beginning and the end of that range.
using SpecMap = DenseMap<Function *, std::pair<unsigned, unsigned>>;
// Just a shorter abbreviation to improve indentation.
using Cost = InstructionCost;
// Map of known constants found during the specialization bonus estimation.
using ConstMap = DenseMap<Value *, Constant *>;
// Specialization signature, used to uniquely designate a specialization within
// a function.
struct SpecSig {
// Hashing support, used to distinguish between ordinary, empty, or tombstone
// keys.
unsigned Key = 0;
SmallVector<ArgInfo, 4> Args;
bool operator==(const SpecSig &Other) const {
if (Key != Other.Key)
return false;
return Args == Other.Args;
}
friend hash_code hash_value(const SpecSig &S) {
return hash_combine(hash_value(S.Key),
hash_combine_range(S.Args.begin(), S.Args.end()));
}
};
// Specialization instance.
struct Spec {
// Original function.
Function *F;
// Cloned function, a specialized version of the original one.
Function *Clone = nullptr;
// Specialization signature.
SpecSig Sig;
// Profitability of the specialization.
unsigned Score;
// List of call sites, matching this specialization.
SmallVector<CallBase *> CallSites;
Spec(Function *F, const SpecSig &S, unsigned Score)
: F(F), Sig(S), Score(Score) {}
Spec(Function *F, const SpecSig &&S, unsigned Score)
: F(F), Sig(S), Score(Score) {}
};
struct Bonus {
unsigned CodeSize = 0;
unsigned Latency = 0;
Bonus() = default;
Bonus(Cost CodeSize, Cost Latency) {
int64_t Sz = *CodeSize.getValue();
int64_t Ltc = *Latency.getValue();
assert(Sz >= 0 && Ltc >= 0 && "CodeSize and Latency cannot be negative");
// It is safe to down cast since we know the arguments
// cannot be negative and Cost is of type int64_t.
this->CodeSize = static_cast<unsigned>(Sz);
this->Latency = static_cast<unsigned>(Ltc);
}
Bonus &operator+=(const Bonus RHS) {
CodeSize += RHS.CodeSize;
Latency += RHS.Latency;
return *this;
}
Bonus operator+(const Bonus RHS) const {
return Bonus(CodeSize + RHS.CodeSize, Latency + RHS.Latency);
}
bool operator==(const Bonus RHS) const {
return CodeSize == RHS.CodeSize && Latency == RHS.Latency;
}
};
class InstCostVisitor : public InstVisitor<InstCostVisitor, Constant *> {
const DataLayout &DL;
BlockFrequencyInfo &BFI;
TargetTransformInfo &TTI;
SCCPSolver &Solver;
ConstMap KnownConstants;
// Basic blocks known to be unreachable after constant propagation.
DenseSet<BasicBlock *> DeadBlocks;
// PHI nodes we have visited before.
DenseSet<Instruction *> VisitedPHIs;
// PHI nodes we have visited once without successfully constant folding them.
// Once the InstCostVisitor has processed all the specialization arguments,
// it should be possible to determine whether those PHIs can be folded
// (some of their incoming values may have become constant or dead).
SmallVector<Instruction *> PendingPHIs;
ConstMap::iterator LastVisited;
public:
InstCostVisitor(const DataLayout &DL, BlockFrequencyInfo &BFI,
TargetTransformInfo &TTI, SCCPSolver &Solver)
: DL(DL), BFI(BFI), TTI(TTI), Solver(Solver) {}
bool isBlockExecutable(BasicBlock *BB) {
return Solver.isBlockExecutable(BB) && !DeadBlocks.contains(BB);
}
Bonus getSpecializationBonus(Argument *A, Constant *C);
Bonus getBonusFromPendingPHIs();
private:
friend class InstVisitor<InstCostVisitor, Constant *>;
static bool canEliminateSuccessor(BasicBlock *BB, BasicBlock *Succ,
DenseSet<BasicBlock *> &DeadBlocks);
Bonus getUserBonus(Instruction *User, Value *Use = nullptr,
Constant *C = nullptr);
Cost estimateBasicBlocks(SmallVectorImpl<BasicBlock *> &WorkList);
Cost estimateSwitchInst(SwitchInst &I);
Cost estimateBranchInst(BranchInst &I);
Constant *visitInstruction(Instruction &I) { return nullptr; }
Constant *visitPHINode(PHINode &I);
Constant *visitFreezeInst(FreezeInst &I);
Constant *visitCallBase(CallBase &I);
Constant *visitLoadInst(LoadInst &I);
Constant *visitGetElementPtrInst(GetElementPtrInst &I);
Constant *visitSelectInst(SelectInst &I);
Constant *visitCastInst(CastInst &I);
Constant *visitCmpInst(CmpInst &I);
Constant *visitUnaryOperator(UnaryOperator &I);
Constant *visitBinaryOperator(BinaryOperator &I);
};
class FunctionSpecializer {
/// The IPSCCP Solver.
SCCPSolver &Solver;
Module &M;
/// Analysis manager, needed to invalidate analyses.
FunctionAnalysisManager *FAM;
/// Analyses used to help determine if a function should be specialized.
std::function<BlockFrequencyInfo &(Function &)> GetBFI;
std::function<const TargetLibraryInfo &(Function &)> GetTLI;
std::function<TargetTransformInfo &(Function &)> GetTTI;
std::function<AssumptionCache &(Function &)> GetAC;
SmallPtrSet<Function *, 32> Specializations;
SmallPtrSet<Function *, 32> FullySpecialized;
DenseMap<Function *, CodeMetrics> FunctionMetrics;
DenseMap<Function *, unsigned> FunctionGrowth;
public:
FunctionSpecializer(
SCCPSolver &Solver, Module &M, FunctionAnalysisManager *FAM,
std::function<BlockFrequencyInfo &(Function &)> GetBFI,
std::function<const TargetLibraryInfo &(Function &)> GetTLI,
std::function<TargetTransformInfo &(Function &)> GetTTI,
std::function<AssumptionCache &(Function &)> GetAC)
: Solver(Solver), M(M), FAM(FAM), GetBFI(GetBFI), GetTLI(GetTLI),
GetTTI(GetTTI), GetAC(GetAC) {}
~FunctionSpecializer();
bool run();
InstCostVisitor getInstCostVisitorFor(Function *F) {
auto &BFI = GetBFI(*F);
auto &TTI = GetTTI(*F);
return InstCostVisitor(M.getDataLayout(), BFI, TTI, Solver);
}
private:
Constant *getPromotableAlloca(AllocaInst *Alloca, CallInst *Call);
/// A constant stack value is an AllocaInst that has a single constant
/// value stored to it. Return this constant if such an alloca stack value
/// is a function argument.
Constant *getConstantStackValue(CallInst *Call, Value *Val);
/// See if there are any new constant values for the callers of \p F via
/// stack variables and promote them to global variables.
void promoteConstantStackValues(Function *F);
/// Clean up fully specialized functions.
void removeDeadFunctions();
/// Remove any ssa_copy intrinsics that may have been introduced.
void cleanUpSSA();
/// @brief Find potential specialization opportunities.
/// @param F Function to specialize
/// @param FuncSize Cost of specializing a function.
/// @param AllSpecs A vector to add potential specializations to.
/// @param SM A map for a function's specialisation range
/// @return True, if any potential specializations were found
bool findSpecializations(Function *F, unsigned FuncSize,
SmallVectorImpl<Spec> &AllSpecs, SpecMap &SM);
/// Compute the inlining bonus for replacing argument \p A with constant \p C.
unsigned getInliningBonus(Argument *A, Constant *C);
bool isCandidateFunction(Function *F);
/// @brief Create a specialization of \p F and prime the SCCPSolver
/// @param F Function to specialize
/// @param S Which specialization to create
/// @return The new, cloned function
Function *createSpecialization(Function *F, const SpecSig &S);
/// Determine if it is possible to specialise the function for constant values
/// of the formal parameter \p A.
bool isArgumentInteresting(Argument *A);
/// Check if the value \p V (an actual argument) is a constant or can only
/// have a constant value. Return that constant.
Constant *getCandidateConstant(Value *V);
/// @brief Find and update calls to \p F, which match a specialization
/// @param F Orginal function
/// @param Begin Start of a range of possibly matching specialisations
/// @param End End of a range (exclusive) of possibly matching specialisations
void updateCallSites(Function *F, const Spec *Begin, const Spec *End);
};
} // namespace llvm
#endif // LLVM_TRANSFORMS_IPO_FUNCTIONSPECIALIZATION_H