blob: 38eb71ba271d06b7c682882cc59fbd102976bb2b [file] [log] [blame]
//===- llvm/Analysis/ProfileSummaryInfo.h - profile summary ---*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains a pass that provides access to profile summary
// information.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_PROFILESUMMARYINFO_H
#define LLVM_ANALYSIS_PROFILESUMMARYINFO_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/ProfileSummary.h"
#include "llvm/Pass.h"
#include <memory>
#include <optional>
namespace llvm {
class BasicBlock;
class CallBase;
class MachineFunction;
/// Analysis providing profile information.
///
/// This is an immutable analysis pass that provides ability to query global
/// (program-level) profile information. The main APIs are isHotCount and
/// isColdCount that tells whether a given profile count is considered hot/cold
/// based on the profile summary. This also provides convenience methods to
/// check whether a function is hot or cold.
// FIXME: Provide convenience methods to determine hotness/coldness of other IR
// units. This would require making this depend on BFI.
class ProfileSummaryInfo {
private:
const Module *M;
std::unique_ptr<ProfileSummary> Summary;
void computeThresholds();
// Count thresholds to answer isHotCount and isColdCount queries.
std::optional<uint64_t> HotCountThreshold, ColdCountThreshold;
// True if the working set size of the code is considered huge,
// because the number of profile counts required to reach the hot
// percentile is above a huge threshold.
std::optional<bool> HasHugeWorkingSetSize;
// True if the working set size of the code is considered large,
// because the number of profile counts required to reach the hot
// percentile is above a large threshold.
std::optional<bool> HasLargeWorkingSetSize;
// Compute the threshold for a given cutoff.
std::optional<uint64_t> computeThreshold(int PercentileCutoff) const;
// The map that caches the threshold values. The keys are the percentile
// cutoff values and the values are the corresponding threshold values.
mutable DenseMap<int, uint64_t> ThresholdCache;
public:
ProfileSummaryInfo(const Module &M) : M(&M) { refresh(); }
ProfileSummaryInfo(ProfileSummaryInfo &&Arg) = default;
/// If no summary is present, attempt to refresh.
void refresh();
/// Returns true if profile summary is available.
bool hasProfileSummary() const { return Summary != nullptr; }
/// Returns true if module \c M has sample profile.
bool hasSampleProfile() const {
return hasProfileSummary() &&
Summary->getKind() == ProfileSummary::PSK_Sample;
}
/// Returns true if module \c M has instrumentation profile.
bool hasInstrumentationProfile() const {
return hasProfileSummary() &&
Summary->getKind() == ProfileSummary::PSK_Instr;
}
/// Returns true if module \c M has context sensitive instrumentation profile.
bool hasCSInstrumentationProfile() const {
return hasProfileSummary() &&
Summary->getKind() == ProfileSummary::PSK_CSInstr;
}
/// Handle the invalidation of this information.
///
/// When used as a result of \c ProfileSummaryAnalysis this method will be
/// called when the module this was computed for changes. Since profile
/// summary is immutable after it is annotated on the module, we return false
/// here.
bool invalidate(Module &, const PreservedAnalyses &,
ModuleAnalysisManager::Invalidator &) {
return false;
}
/// Returns the profile count for \p CallInst.
std::optional<uint64_t> getProfileCount(const CallBase &CallInst,
BlockFrequencyInfo *BFI,
bool AllowSynthetic = false) const;
/// Returns true if module \c M has partial-profile sample profile.
bool hasPartialSampleProfile() const;
/// Returns true if the working set size of the code is considered huge.
bool hasHugeWorkingSetSize() const;
/// Returns true if the working set size of the code is considered large.
bool hasLargeWorkingSetSize() const;
/// Returns true if \p F has hot function entry. If it returns false, it
/// either means it is not hot or it is unknown whether it is hot or not (for
/// example, no profile data is available).
template <typename FuncT> bool isFunctionEntryHot(const FuncT *F) const {
if (!F || !hasProfileSummary())
return false;
std::optional<Function::ProfileCount> FunctionCount = getEntryCount(F);
// FIXME: The heuristic used below for determining hotness is based on
// preliminary SPEC tuning for inliner. This will eventually be a
// convenience method that calls isHotCount.
return FunctionCount && isHotCount(FunctionCount->getCount());
}
/// Returns true if \p F contains hot code.
template <typename FuncT, typename BFIT>
bool isFunctionHotInCallGraph(const FuncT *F, BFIT &BFI) const {
if (!F || !hasProfileSummary())
return false;
if (auto FunctionCount = getEntryCount(F))
if (isHotCount(FunctionCount->getCount()))
return true;
if (auto TotalCallCount = getTotalCallCount(F))
if (isHotCount(*TotalCallCount))
return true;
for (const auto &BB : *F)
if (isHotBlock(&BB, &BFI))
return true;
return false;
}
/// Returns true if \p F has cold function entry.
bool isFunctionEntryCold(const Function *F) const;
/// Returns true if \p F contains only cold code.
template <typename FuncT, typename BFIT>
bool isFunctionColdInCallGraph(const FuncT *F, BFIT &BFI) const {
if (!F || !hasProfileSummary())
return false;
if (auto FunctionCount = getEntryCount(F))
if (!isColdCount(FunctionCount->getCount()))
return false;
if (auto TotalCallCount = getTotalCallCount(F))
if (!isColdCount(*TotalCallCount))
return false;
for (const auto &BB : *F)
if (!isColdBlock(&BB, &BFI))
return false;
return true;
}
/// Returns true if the hotness of \p F is unknown.
bool isFunctionHotnessUnknown(const Function &F) const;
/// Returns true if \p F contains hot code with regard to a given hot
/// percentile cutoff value.
template <typename FuncT, typename BFIT>
bool isFunctionHotInCallGraphNthPercentile(int PercentileCutoff,
const FuncT *F, BFIT &BFI) const {
return isFunctionHotOrColdInCallGraphNthPercentile<true, FuncT, BFIT>(
PercentileCutoff, F, BFI);
}
/// Returns true if \p F contains cold code with regard to a given cold
/// percentile cutoff value.
template <typename FuncT, typename BFIT>
bool isFunctionColdInCallGraphNthPercentile(int PercentileCutoff,
const FuncT *F, BFIT &BFI) const {
return isFunctionHotOrColdInCallGraphNthPercentile<false, FuncT, BFIT>(
PercentileCutoff, F, BFI);
}
/// Returns true if count \p C is considered hot.
bool isHotCount(uint64_t C) const;
/// Returns true if count \p C is considered cold.
bool isColdCount(uint64_t C) const;
/// Returns true if count \p C is considered hot with regard to a given
/// hot percentile cutoff value.
/// PercentileCutoff is encoded as a 6 digit decimal fixed point number, where
/// the first two digits are the whole part. E.g. 995000 for 99.5 percentile.
bool isHotCountNthPercentile(int PercentileCutoff, uint64_t C) const;
/// Returns true if count \p C is considered cold with regard to a given
/// cold percentile cutoff value.
/// PercentileCutoff is encoded as a 6 digit decimal fixed point number, where
/// the first two digits are the whole part. E.g. 995000 for 99.5 percentile.
bool isColdCountNthPercentile(int PercentileCutoff, uint64_t C) const;
/// Returns true if BasicBlock \p BB is considered hot.
template <typename BBType, typename BFIT>
bool isHotBlock(const BBType *BB, BFIT *BFI) const {
auto Count = BFI->getBlockProfileCount(BB);
return Count && isHotCount(*Count);
}
/// Returns true if BasicBlock \p BB is considered cold.
template <typename BBType, typename BFIT>
bool isColdBlock(const BBType *BB, BFIT *BFI) const {
auto Count = BFI->getBlockProfileCount(BB);
return Count && isColdCount(*Count);
}
template <typename BFIT>
bool isColdBlock(BlockFrequency BlockFreq, const BFIT *BFI) const {
auto Count = BFI->getProfileCountFromFreq(BlockFreq.getFrequency());
return Count && isColdCount(*Count);
}
template <typename BBType, typename BFIT>
bool isHotBlockNthPercentile(int PercentileCutoff, const BBType *BB,
BFIT *BFI) const {
return isHotOrColdBlockNthPercentile<true, BBType, BFIT>(PercentileCutoff,
BB, BFI);
}
template <typename BFIT>
bool isHotBlockNthPercentile(int PercentileCutoff, BlockFrequency BlockFreq,
BFIT *BFI) const {
return isHotOrColdBlockNthPercentile<true, BFIT>(PercentileCutoff,
BlockFreq, BFI);
}
/// Returns true if BasicBlock \p BB is considered cold with regard to a given
/// cold percentile cutoff value.
/// PercentileCutoff is encoded as a 6 digit decimal fixed point number, where
/// the first two digits are the whole part. E.g. 995000 for 99.5 percentile.
template <typename BBType, typename BFIT>
bool isColdBlockNthPercentile(int PercentileCutoff, const BBType *BB,
BFIT *BFI) const {
return isHotOrColdBlockNthPercentile<false, BBType, BFIT>(PercentileCutoff,
BB, BFI);
}
template <typename BFIT>
bool isColdBlockNthPercentile(int PercentileCutoff, BlockFrequency BlockFreq,
BFIT *BFI) const {
return isHotOrColdBlockNthPercentile<false, BFIT>(PercentileCutoff,
BlockFreq, BFI);
}
/// Returns true if the call site \p CB is considered hot.
bool isHotCallSite(const CallBase &CB, BlockFrequencyInfo *BFI) const;
/// Returns true if call site \p CB is considered cold.
bool isColdCallSite(const CallBase &CB, BlockFrequencyInfo *BFI) const;
/// Returns HotCountThreshold if set. Recompute HotCountThreshold
/// if not set.
uint64_t getOrCompHotCountThreshold() const;
/// Returns ColdCountThreshold if set. Recompute HotCountThreshold
/// if not set.
uint64_t getOrCompColdCountThreshold() const;
/// Returns HotCountThreshold if set.
uint64_t getHotCountThreshold() const {
return HotCountThreshold.value_or(0);
}
/// Returns ColdCountThreshold if set.
uint64_t getColdCountThreshold() const {
return ColdCountThreshold.value_or(0);
}
private:
template <typename FuncT>
std::optional<uint64_t> getTotalCallCount(const FuncT *F) const {
return std::nullopt;
}
template <bool isHot, typename FuncT, typename BFIT>
bool isFunctionHotOrColdInCallGraphNthPercentile(int PercentileCutoff,
const FuncT *F,
BFIT &FI) const {
if (!F || !hasProfileSummary())
return false;
if (auto FunctionCount = getEntryCount(F)) {
if (isHot &&
isHotCountNthPercentile(PercentileCutoff, FunctionCount->getCount()))
return true;
if (!isHot && !isColdCountNthPercentile(PercentileCutoff,
FunctionCount->getCount()))
return false;
}
if (auto TotalCallCount = getTotalCallCount(F)) {
if (isHot && isHotCountNthPercentile(PercentileCutoff, *TotalCallCount))
return true;
if (!isHot &&
!isColdCountNthPercentile(PercentileCutoff, *TotalCallCount))
return false;
}
for (const auto &BB : *F) {
if (isHot && isHotBlockNthPercentile(PercentileCutoff, &BB, &FI))
return true;
if (!isHot && !isColdBlockNthPercentile(PercentileCutoff, &BB, &FI))
return false;
}
return !isHot;
}
template <bool isHot>
bool isHotOrColdCountNthPercentile(int PercentileCutoff, uint64_t C) const;
template <bool isHot, typename BBType, typename BFIT>
bool isHotOrColdBlockNthPercentile(int PercentileCutoff, const BBType *BB,
BFIT *BFI) const {
auto Count = BFI->getBlockProfileCount(BB);
if (isHot)
return Count && isHotCountNthPercentile(PercentileCutoff, *Count);
else
return Count && isColdCountNthPercentile(PercentileCutoff, *Count);
}
template <bool isHot, typename BFIT>
bool isHotOrColdBlockNthPercentile(int PercentileCutoff,
BlockFrequency BlockFreq,
BFIT *BFI) const {
auto Count = BFI->getProfileCountFromFreq(BlockFreq.getFrequency());
if (isHot)
return Count && isHotCountNthPercentile(PercentileCutoff, *Count);
else
return Count && isColdCountNthPercentile(PercentileCutoff, *Count);
}
template <typename FuncT>
std::optional<Function::ProfileCount> getEntryCount(const FuncT *F) const {
return F->getEntryCount();
}
};
template <>
inline std::optional<uint64_t>
ProfileSummaryInfo::getTotalCallCount<Function>(const Function *F) const {
if (!hasSampleProfile())
return std::nullopt;
uint64_t TotalCallCount = 0;
for (const auto &BB : *F)
for (const auto &I : BB)
if (isa<CallInst>(I) || isa<InvokeInst>(I))
if (auto CallCount = getProfileCount(cast<CallBase>(I), nullptr))
TotalCallCount += *CallCount;
return TotalCallCount;
}
// Declare template specialization for llvm::MachineFunction. Do not implement
// here, because we cannot include MachineFunction header here, that would break
// dependency rules.
template <>
std::optional<Function::ProfileCount>
ProfileSummaryInfo::getEntryCount<MachineFunction>(
const MachineFunction *F) const;
/// An analysis pass based on legacy pass manager to deliver ProfileSummaryInfo.
class ProfileSummaryInfoWrapperPass : public ImmutablePass {
std::unique_ptr<ProfileSummaryInfo> PSI;
public:
static char ID;
ProfileSummaryInfoWrapperPass();
ProfileSummaryInfo &getPSI() { return *PSI; }
const ProfileSummaryInfo &getPSI() const { return *PSI; }
bool doInitialization(Module &M) override;
bool doFinalization(Module &M) override;
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesAll();
}
};
/// An analysis pass based on the new PM to deliver ProfileSummaryInfo.
class ProfileSummaryAnalysis
: public AnalysisInfoMixin<ProfileSummaryAnalysis> {
public:
typedef ProfileSummaryInfo Result;
Result run(Module &M, ModuleAnalysisManager &);
private:
friend AnalysisInfoMixin<ProfileSummaryAnalysis>;
static AnalysisKey Key;
};
/// Printer pass that uses \c ProfileSummaryAnalysis.
class ProfileSummaryPrinterPass
: public PassInfoMixin<ProfileSummaryPrinterPass> {
raw_ostream &OS;
public:
explicit ProfileSummaryPrinterPass(raw_ostream &OS) : OS(OS) {}
PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM);
};
} // end namespace llvm
#endif