blob: 979b344466807b849454dce1881b976b48720f25 [file] [log] [blame]
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define STATSD_DEBUG false // STOPSHIP if true
#include "Log.h"
#include "GaugeMetricProducer.h"
#include "guardrail/StatsdStats.h"
#include "metrics/parsing_utils/metrics_manager_util.h"
#include "stats_log_util.h"
using android::util::FIELD_COUNT_REPEATED;
using android::util::FIELD_TYPE_BOOL;
using android::util::FIELD_TYPE_FLOAT;
using android::util::FIELD_TYPE_INT32;
using android::util::FIELD_TYPE_INT64;
using android::util::FIELD_TYPE_MESSAGE;
using android::util::FIELD_TYPE_STRING;
using android::util::ProtoOutputStream;
using std::map;
using std::string;
using std::unordered_map;
using std::vector;
using std::make_shared;
using std::shared_ptr;
namespace android {
namespace os {
namespace statsd {
// for StatsLogReport
const int FIELD_ID_ID = 1;
const int FIELD_ID_GAUGE_METRICS = 8;
const int FIELD_ID_TIME_BASE = 9;
const int FIELD_ID_BUCKET_SIZE = 10;
const int FIELD_ID_DIMENSION_PATH_IN_WHAT = 11;
const int FIELD_ID_IS_ACTIVE = 14;
const int FIELD_ID_DIMENSION_GUARDRAIL_HIT = 17;
const int FIELD_ID_ESTIMATED_MEMORY_BYTES = 18;
// for GaugeMetricDataWrapper
const int FIELD_ID_DATA = 1;
const int FIELD_ID_SKIPPED = 2;
// for SkippedBuckets
const int FIELD_ID_SKIPPED_START_MILLIS = 3;
const int FIELD_ID_SKIPPED_END_MILLIS = 4;
const int FIELD_ID_SKIPPED_DROP_EVENT = 5;
// for DumpEvent Proto
const int FIELD_ID_BUCKET_DROP_REASON = 1;
const int FIELD_ID_DROP_TIME = 2;
// for GaugeMetricData
const int FIELD_ID_DIMENSION_IN_WHAT = 1;
const int FIELD_ID_BUCKET_INFO = 3;
const int FIELD_ID_DIMENSION_LEAF_IN_WHAT = 4;
// for GaugeBucketInfo
const int FIELD_ID_BUCKET_NUM = 6;
const int FIELD_ID_START_BUCKET_ELAPSED_MILLIS = 7;
const int FIELD_ID_END_BUCKET_ELAPSED_MILLIS = 8;
const int FIELD_ID_AGGREGATED_ATOM = 9;
// for AggregatedAtomInfo
const int FIELD_ID_ATOM_VALUE = 1;
const int FIELD_ID_ATOM_TIMESTAMPS = 2;
GaugeMetricProducer::GaugeMetricProducer(
const ConfigKey& key, const GaugeMetric& metric, const int conditionIndex,
const vector<ConditionState>& initialConditionCache, const sp<ConditionWizard>& wizard,
const uint64_t protoHash, const int whatMatcherIndex,
const sp<EventMatcherWizard>& matcherWizard, const int pullTagId, const int triggerAtomId,
const int atomId, const int64_t timeBaseNs, const int64_t startTimeNs,
const sp<StatsPullerManager>& pullerManager,
const wp<ConfigMetadataProvider> configMetadataProvider,
const unordered_map<int, shared_ptr<Activation>>& eventActivationMap,
const unordered_map<int, vector<shared_ptr<Activation>>>& eventDeactivationMap,
const size_t dimensionSoftLimit, const size_t dimensionHardLimit)
: MetricProducer(metric.id(), key, timeBaseNs, conditionIndex, initialConditionCache, wizard,
protoHash, eventActivationMap, eventDeactivationMap, /*slicedStateAtoms=*/{},
/*stateGroupMap=*/{}, getAppUpgradeBucketSplit(metric),
configMetadataProvider),
mWhatMatcherIndex(whatMatcherIndex),
mEventMatcherWizard(matcherWizard),
mPullerManager(pullerManager),
mPullTagId(pullTagId),
mTriggerAtomId(triggerAtomId),
mAtomId(atomId),
mIsPulled(pullTagId != -1),
mMinBucketSizeNs(metric.min_bucket_size_nanos()),
mSamplingType(metric.sampling_type()),
mMaxPullDelayNs(metric.max_pull_delay_sec() > 0 ? metric.max_pull_delay_sec() * NS_PER_SEC
: StatsdStats::kPullMaxDelayNs),
mDimensionSoftLimit(dimensionSoftLimit),
mDimensionHardLimit(dimensionHardLimit),
mGaugeAtomsPerDimensionLimit(metric.max_num_gauge_atoms_per_bucket()),
mDimensionGuardrailHit(false),
mSamplingPercentage(metric.sampling_percentage()),
mPullProbability(metric.pull_probability()) {
mCurrentSlicedBucket = std::make_shared<DimToGaugeAtomsMap>();
mCurrentSlicedBucketForAnomaly = std::make_shared<DimToValMap>();
int64_t bucketSizeMills = 0;
if (metric.has_bucket()) {
bucketSizeMills = TimeUnitToBucketSizeInMillisGuardrailed(key.GetUid(), metric.bucket());
} else {
bucketSizeMills = TimeUnitToBucketSizeInMillis(ONE_HOUR);
}
mBucketSizeNs = bucketSizeMills * 1000000;
if (!metric.gauge_fields_filter().include_all()) {
translateFieldMatcher(metric.gauge_fields_filter().fields(), &mFieldMatchers);
}
if (metric.has_dimensions_in_what()) {
translateFieldMatcher(metric.dimensions_in_what(), &mDimensionsInWhat);
mContainANYPositionInDimensionsInWhat = HasPositionANY(metric.dimensions_in_what());
}
if (metric.links().size() > 0) {
for (const auto& link : metric.links()) {
Metric2Condition mc;
mc.conditionId = link.condition();
translateFieldMatcher(link.fields_in_what(), &mc.metricFields);
translateFieldMatcher(link.fields_in_condition(), &mc.conditionFields);
mMetric2ConditionLinks.push_back(mc);
}
mConditionSliced = true;
}
mShouldUseNestedDimensions = ShouldUseNestedDimensions(metric.dimensions_in_what());
flushIfNeededLocked(startTimeNs);
// Kicks off the puller immediately.
if (mIsPulled && isRandomNSamples()) {
mPullerManager->RegisterReceiver(mPullTagId, mConfigKey, this, getCurrentBucketEndTimeNs(),
mBucketSizeNs);
}
// Adjust start for partial first bucket and then pull if needed
mCurrentBucketStartTimeNs = startTimeNs;
VLOG("Gauge metric %lld created. bucket size %lld start_time: %lld sliced %d",
(long long)mMetricId, (long long)mBucketSizeNs, (long long)mTimeBaseNs, mConditionSliced);
}
GaugeMetricProducer::~GaugeMetricProducer() {
VLOG("~GaugeMetricProducer() called");
if (mIsPulled && isRandomNSamples()) {
mPullerManager->UnRegisterReceiver(mPullTagId, mConfigKey, this);
}
}
optional<InvalidConfigReason> GaugeMetricProducer::onConfigUpdatedLocked(
const StatsdConfig& config, const int configIndex, const int metricIndex,
const vector<sp<AtomMatchingTracker>>& allAtomMatchingTrackers,
const unordered_map<int64_t, int>& oldAtomMatchingTrackerMap,
const unordered_map<int64_t, int>& newAtomMatchingTrackerMap,
const sp<EventMatcherWizard>& matcherWizard,
const vector<sp<ConditionTracker>>& allConditionTrackers,
const unordered_map<int64_t, int>& conditionTrackerMap, const sp<ConditionWizard>& wizard,
const unordered_map<int64_t, int>& metricToActivationMap,
unordered_map<int, vector<int>>& trackerToMetricMap,
unordered_map<int, vector<int>>& conditionToMetricMap,
unordered_map<int, vector<int>>& activationAtomTrackerToMetricMap,
unordered_map<int, vector<int>>& deactivationAtomTrackerToMetricMap,
vector<int>& metricsWithActivation) {
optional<InvalidConfigReason> invalidConfigReason = MetricProducer::onConfigUpdatedLocked(
config, configIndex, metricIndex, allAtomMatchingTrackers, oldAtomMatchingTrackerMap,
newAtomMatchingTrackerMap, matcherWizard, allConditionTrackers, conditionTrackerMap,
wizard, metricToActivationMap, trackerToMetricMap, conditionToMetricMap,
activationAtomTrackerToMetricMap, deactivationAtomTrackerToMetricMap,
metricsWithActivation);
if (invalidConfigReason.has_value()) {
return invalidConfigReason;
}
const GaugeMetric& metric = config.gauge_metric(configIndex);
// Update appropriate indices: mWhatMatcherIndex, mConditionIndex and MetricsManager maps.
invalidConfigReason = handleMetricWithAtomMatchingTrackers(
metric.what(), mMetricId, metricIndex, /*enforceOneAtom=*/false,
allAtomMatchingTrackers, newAtomMatchingTrackerMap, trackerToMetricMap,
mWhatMatcherIndex);
if (invalidConfigReason.has_value()) {
return invalidConfigReason;
}
// Need to update maps since the index changed, but mTriggerAtomId will not change.
int triggerTrackerIndex;
if (metric.has_trigger_event()) {
invalidConfigReason = handleMetricWithAtomMatchingTrackers(
metric.trigger_event(), mMetricId, metricIndex,
/*enforceOneAtom=*/true, allAtomMatchingTrackers, newAtomMatchingTrackerMap,
trackerToMetricMap, triggerTrackerIndex);
if (invalidConfigReason.has_value()) {
return invalidConfigReason;
}
}
if (metric.has_condition()) {
invalidConfigReason = handleMetricWithConditions(
metric.condition(), mMetricId, metricIndex, conditionTrackerMap, metric.links(),
allConditionTrackers, mConditionTrackerIndex, conditionToMetricMap);
if (invalidConfigReason.has_value()) {
return invalidConfigReason;
}
}
sp<EventMatcherWizard> tmpEventWizard = mEventMatcherWizard;
mEventMatcherWizard = matcherWizard;
// If this is a config update, we must have just forced a partial bucket. Pull if needed to get
// data for the new bucket.
if (mCondition == ConditionState::kTrue && mIsActive && mIsPulled && isRandomNSamples()) {
pullAndMatchEventsLocked(mCurrentBucketStartTimeNs);
}
return nullopt;
}
void GaugeMetricProducer::dumpStatesLocked(int out, bool verbose) const {
if (mCurrentSlicedBucket == nullptr ||
mCurrentSlicedBucket->size() == 0) {
return;
}
dprintf(out, "GaugeMetric %lld dimension size %lu\n", (long long)mMetricId,
(unsigned long)mCurrentSlicedBucket->size());
if (verbose) {
for (const auto& it : *mCurrentSlicedBucket) {
dprintf(out, "\t(what)%s\t(states)%s %d atoms\n",
it.first.getDimensionKeyInWhat().toString().c_str(),
it.first.getStateValuesKey().toString().c_str(), (int)it.second.size());
}
}
}
void GaugeMetricProducer::clearPastBucketsLocked(const int64_t dumpTimeNs) {
flushIfNeededLocked(dumpTimeNs);
mPastBuckets.clear();
mSkippedBuckets.clear();
mTotalDataSize = 0;
}
void GaugeMetricProducer::onDumpReportLocked(const int64_t dumpTimeNs,
const bool include_current_partial_bucket,
const bool erase_data,
const DumpLatency dumpLatency,
std::set<string> *str_set,
ProtoOutputStream* protoOutput) {
VLOG("Gauge metric %lld report now...", (long long)mMetricId);
if (include_current_partial_bucket) {
flushLocked(dumpTimeNs);
} else {
flushIfNeededLocked(dumpTimeNs);
}
protoOutput->write(FIELD_TYPE_INT64 | FIELD_ID_ID, (long long)mMetricId);
protoOutput->write(FIELD_TYPE_BOOL | FIELD_ID_IS_ACTIVE, isActiveLocked());
if (mPastBuckets.empty() && mSkippedBuckets.empty()) {
return;
}
protoOutput->write(FIELD_TYPE_INT64 | FIELD_ID_ESTIMATED_MEMORY_BYTES,
(long long)byteSizeLocked());
if (mDimensionGuardrailHit) {
protoOutput->write(FIELD_TYPE_BOOL | FIELD_ID_DIMENSION_GUARDRAIL_HIT,
mDimensionGuardrailHit);
}
protoOutput->write(FIELD_TYPE_INT64 | FIELD_ID_TIME_BASE, (long long)mTimeBaseNs);
protoOutput->write(FIELD_TYPE_INT64 | FIELD_ID_BUCKET_SIZE, (long long)mBucketSizeNs);
// Fills the dimension path if not slicing by a primitive repeated field or position ALL.
if (!mShouldUseNestedDimensions) {
if (!mDimensionsInWhat.empty()) {
uint64_t dimenPathToken = protoOutput->start(
FIELD_TYPE_MESSAGE | FIELD_ID_DIMENSION_PATH_IN_WHAT);
writeDimensionPathToProto(mDimensionsInWhat, protoOutput);
protoOutput->end(dimenPathToken);
}
}
uint64_t protoToken = protoOutput->start(FIELD_TYPE_MESSAGE | FIELD_ID_GAUGE_METRICS);
for (const auto& skippedBucket : mSkippedBuckets) {
uint64_t wrapperToken =
protoOutput->start(FIELD_TYPE_MESSAGE | FIELD_COUNT_REPEATED | FIELD_ID_SKIPPED);
protoOutput->write(FIELD_TYPE_INT64 | FIELD_ID_SKIPPED_START_MILLIS,
(long long)(NanoToMillis(skippedBucket.bucketStartTimeNs)));
protoOutput->write(FIELD_TYPE_INT64 | FIELD_ID_SKIPPED_END_MILLIS,
(long long)(NanoToMillis(skippedBucket.bucketEndTimeNs)));
for (const auto& dropEvent : skippedBucket.dropEvents) {
uint64_t dropEventToken = protoOutput->start(FIELD_TYPE_MESSAGE | FIELD_COUNT_REPEATED |
FIELD_ID_SKIPPED_DROP_EVENT);
protoOutput->write(FIELD_TYPE_INT32 | FIELD_ID_BUCKET_DROP_REASON, dropEvent.reason);
protoOutput->write(FIELD_TYPE_INT64 | FIELD_ID_DROP_TIME, (long long) (NanoToMillis(dropEvent.dropTimeNs)));
protoOutput->end(dropEventToken);
}
protoOutput->end(wrapperToken);
}
for (const auto& pair : mPastBuckets) {
const MetricDimensionKey& dimensionKey = pair.first;
VLOG("Gauge dimension key %s", dimensionKey.toString().c_str());
uint64_t wrapperToken =
protoOutput->start(FIELD_TYPE_MESSAGE | FIELD_COUNT_REPEATED | FIELD_ID_DATA);
// First fill dimension.
if (mShouldUseNestedDimensions) {
uint64_t dimensionToken = protoOutput->start(
FIELD_TYPE_MESSAGE | FIELD_ID_DIMENSION_IN_WHAT);
writeDimensionToProto(dimensionKey.getDimensionKeyInWhat(), str_set, protoOutput);
protoOutput->end(dimensionToken);
} else {
writeDimensionLeafNodesToProto(dimensionKey.getDimensionKeyInWhat(),
FIELD_ID_DIMENSION_LEAF_IN_WHAT, str_set, protoOutput);
}
// Then fill bucket_info (GaugeBucketInfo).
for (const auto& bucket : pair.second) {
uint64_t bucketInfoToken = protoOutput->start(
FIELD_TYPE_MESSAGE | FIELD_COUNT_REPEATED | FIELD_ID_BUCKET_INFO);
if (bucket.mBucketEndNs - bucket.mBucketStartNs != mBucketSizeNs) {
protoOutput->write(FIELD_TYPE_INT64 | FIELD_ID_START_BUCKET_ELAPSED_MILLIS,
(long long)NanoToMillis(bucket.mBucketStartNs));
protoOutput->write(FIELD_TYPE_INT64 | FIELD_ID_END_BUCKET_ELAPSED_MILLIS,
(long long)NanoToMillis(bucket.mBucketEndNs));
} else {
protoOutput->write(FIELD_TYPE_INT64 | FIELD_ID_BUCKET_NUM,
(long long)(getBucketNumFromEndTimeNs(bucket.mBucketEndNs)));
}
if (!bucket.mAggregatedAtoms.empty()) {
for (const auto& [atomDimensionKey, elapsedTimestampsNs] :
bucket.mAggregatedAtoms) {
uint64_t aggregatedAtomToken = protoOutput->start(
FIELD_TYPE_MESSAGE | FIELD_COUNT_REPEATED | FIELD_ID_AGGREGATED_ATOM);
uint64_t atomToken =
protoOutput->start(FIELD_TYPE_MESSAGE | FIELD_ID_ATOM_VALUE);
writeFieldValueTreeToStream(mAtomId,
atomDimensionKey.getAtomFieldValues().getValues(),
protoOutput);
protoOutput->end(atomToken);
for (int64_t timestampNs : elapsedTimestampsNs) {
protoOutput->write(
FIELD_TYPE_INT64 | FIELD_COUNT_REPEATED | FIELD_ID_ATOM_TIMESTAMPS,
(long long)timestampNs);
}
protoOutput->end(aggregatedAtomToken);
}
}
protoOutput->end(bucketInfoToken);
VLOG("Gauge \t bucket [%lld - %lld] includes %d atoms.",
(long long)bucket.mBucketStartNs, (long long)bucket.mBucketEndNs,
(int)bucket.mAggregatedAtoms.size());
}
protoOutput->end(wrapperToken);
}
protoOutput->end(protoToken);
if (erase_data) {
mPastBuckets.clear();
mSkippedBuckets.clear();
mDimensionGuardrailHit = false;
mTotalDataSize = 0;
}
}
void GaugeMetricProducer::prepareFirstBucketLocked() {
if (mCondition == ConditionState::kTrue && mIsActive && mIsPulled && isRandomNSamples()) {
pullAndMatchEventsLocked(mCurrentBucketStartTimeNs);
}
}
// Only call if mCondition == ConditionState::kTrue && metric is active.
void GaugeMetricProducer::pullAndMatchEventsLocked(const int64_t timestampNs) {
bool triggerPuller = false;
switch(mSamplingType) {
// When the metric wants to do random sampling and there is already one gauge atom for the
// current bucket, do not do it again.
case GaugeMetric::RANDOM_ONE_SAMPLE: {
triggerPuller = mCurrentSlicedBucket->empty();
break;
}
case GaugeMetric::CONDITION_CHANGE_TO_TRUE:
case GaugeMetric::FIRST_N_SAMPLES: {
triggerPuller = true;
break;
}
default:
break;
}
if (!triggerPuller || !shouldKeepRandomSample(mPullProbability)) {
return;
}
vector<std::shared_ptr<LogEvent>> allData;
if (!mPullerManager->Pull(mPullTagId, mConfigKey, timestampNs, &allData)) {
ALOGE("Gauge Stats puller failed for tag: %d at %lld", mPullTagId, (long long)timestampNs);
return;
}
const int64_t pullDelayNs = getElapsedRealtimeNs() - timestampNs;
StatsdStats::getInstance().notePullDelay(mPullTagId, pullDelayNs);
if (pullDelayNs > mMaxPullDelayNs) {
ALOGE("Pull finish too late for atom %d", mPullTagId);
StatsdStats::getInstance().notePullExceedMaxDelay(mPullTagId);
return;
}
for (const auto& data : allData) {
const auto [matchResult, transformedEvent] =
mEventMatcherWizard->matchLogEvent(*data, mWhatMatcherIndex);
if (matchResult == MatchingState::kMatched) {
LogEvent localCopy = transformedEvent == nullptr ? *data : *transformedEvent;
localCopy.setElapsedTimestampNs(timestampNs);
onMatchedLogEventLocked(mWhatMatcherIndex, localCopy);
}
}
}
void GaugeMetricProducer::onActiveStateChangedLocked(const int64_t eventTimeNs,
const bool isActive) {
MetricProducer::onActiveStateChangedLocked(eventTimeNs, isActive);
if (ConditionState::kTrue != mCondition) {
return;
}
if (isActive && mIsPulled && isRandomNSamples()) {
pullAndMatchEventsLocked(eventTimeNs);
}
}
void GaugeMetricProducer::onConditionChangedLocked(const bool conditionMet,
const int64_t eventTimeNs) {
VLOG("GaugeMetric %lld onConditionChanged", (long long)mMetricId);
mCondition = conditionMet ? ConditionState::kTrue : ConditionState::kFalse;
if (!mIsActive) {
return;
}
flushIfNeededLocked(eventTimeNs);
if (conditionMet && mIsPulled &&
(isRandomNSamples() || mSamplingType == GaugeMetric::CONDITION_CHANGE_TO_TRUE)) {
pullAndMatchEventsLocked(eventTimeNs);
} // else: Push mode. No need to proactively pull the gauge data.
}
void GaugeMetricProducer::onSlicedConditionMayChangeLocked(bool overallCondition,
const int64_t eventTimeNs) {
VLOG("GaugeMetric %lld onSlicedConditionMayChange overall condition %d", (long long)mMetricId,
overallCondition);
mCondition = overallCondition ? ConditionState::kTrue : ConditionState::kFalse;
if (!mIsActive) {
return;
}
flushIfNeededLocked(eventTimeNs);
// If the condition is sliced, mCondition is true if any of the dimensions is true. And we will
// pull for every dimension.
if (overallCondition && mIsPulled && mTriggerAtomId == -1) {
pullAndMatchEventsLocked(eventTimeNs);
} // else: Push mode. No need to proactively pull the gauge data.
}
std::shared_ptr<vector<FieldValue>> GaugeMetricProducer::getGaugeFields(const LogEvent& event) {
std::shared_ptr<vector<FieldValue>> gaugeFields;
if (mFieldMatchers.size() > 0) {
gaugeFields = std::make_shared<vector<FieldValue>>();
filterGaugeValues(mFieldMatchers, event.getValues(), gaugeFields.get());
} else {
gaugeFields = std::make_shared<vector<FieldValue>>(event.getValues());
}
// Trim all dimension fields from output. Dimensions will appear in output report and will
// benefit from dictionary encoding. For large pulled atoms, this can give the benefit of
// optional repeated field.
for (const auto& field : mDimensionsInWhat) {
for (auto it = gaugeFields->begin(); it != gaugeFields->end();) {
if (it->mField.matches(field)) {
it = gaugeFields->erase(it);
} else {
it++;
}
}
}
return gaugeFields;
}
void GaugeMetricProducer::onDataPulled(const std::vector<std::shared_ptr<LogEvent>>& allData,
PullResult pullResult, int64_t originalPullTimeNs) {
std::lock_guard<std::mutex> lock(mMutex);
if (pullResult != PullResult::PULL_RESULT_SUCCESS || allData.size() == 0) {
return;
}
const int64_t pullDelayNs = getElapsedRealtimeNs() - originalPullTimeNs;
StatsdStats::getInstance().notePullDelay(mPullTagId, pullDelayNs);
if (pullDelayNs > mMaxPullDelayNs) {
ALOGE("Pull finish too late for atom %d", mPullTagId);
StatsdStats::getInstance().notePullExceedMaxDelay(mPullTagId);
return;
}
for (const auto& data : allData) {
const auto [matchResult, transformedEvent] =
mEventMatcherWizard->matchLogEvent(*data, mWhatMatcherIndex);
if (matchResult == MatchingState::kMatched) {
onMatchedLogEventLocked(mWhatMatcherIndex,
transformedEvent == nullptr ? *data : *transformedEvent);
}
}
}
bool GaugeMetricProducer::hitGuardRailLocked(const MetricDimensionKey& newKey) {
if (mCurrentSlicedBucket->find(newKey) != mCurrentSlicedBucket->end()) {
return false;
}
// 1. Report the tuple count if the tuple count > soft limit
if (mCurrentSlicedBucket->size() >= mDimensionSoftLimit) {
size_t newTupleCount = mCurrentSlicedBucket->size() + 1;
StatsdStats::getInstance().noteMetricDimensionSize(mConfigKey, mMetricId, newTupleCount);
// 2. Don't add more tuples, we are above the allowed threshold. Drop the data.
if (newTupleCount > mDimensionHardLimit) {
if (!mHasHitGuardrail) {
ALOGE("GaugeMetric %lld dropping data for dimension key %s", (long long)mMetricId,
newKey.toString().c_str());
mHasHitGuardrail = true;
}
mDimensionGuardrailHit = true;
StatsdStats::getInstance().noteHardDimensionLimitReached(mMetricId);
return true;
}
}
return false;
}
void GaugeMetricProducer::onMatchedLogEventInternalLocked(
const size_t matcherIndex, const MetricDimensionKey& eventKey,
const ConditionKey& conditionKey, bool condition, const LogEvent& event,
const map<int, HashableDimensionKey>& statePrimaryKeys) {
if (condition == false) {
return;
}
if (mPullTagId == -1 && mSamplingPercentage < 100 &&
!shouldKeepRandomSample(mSamplingPercentage)) {
return;
}
int64_t eventTimeNs = event.GetElapsedTimestampNs();
if (eventTimeNs < mCurrentBucketStartTimeNs) {
VLOG("Gauge Skip event due to late arrival: %lld vs %lld", (long long)eventTimeNs,
(long long)mCurrentBucketStartTimeNs);
return;
}
flushIfNeededLocked(eventTimeNs);
if (mTriggerAtomId == event.GetTagId()) {
// Both Active state and Condition are true here.
// Active state being true is checked in onMatchedLogEventLocked.
// Condition being true is checked at the start of this method.
pullAndMatchEventsLocked(eventTimeNs);
return;
}
// When gauge metric wants to randomly sample the output atom, we just simply use the first
// gauge in the given bucket.
if (mCurrentSlicedBucket->find(eventKey) != mCurrentSlicedBucket->end() &&
mSamplingType == GaugeMetric::RANDOM_ONE_SAMPLE) {
return;
}
if (hitGuardRailLocked(eventKey)) {
return;
}
if ((*mCurrentSlicedBucket)[eventKey].size() >= mGaugeAtomsPerDimensionLimit) {
return;
}
const int64_t truncatedElapsedTimestampNs = truncateTimestampIfNecessary(event);
GaugeAtom gaugeAtom(getGaugeFields(event), truncatedElapsedTimestampNs);
(*mCurrentSlicedBucket)[eventKey].push_back(gaugeAtom);
// Anomaly detection on gauge metric only works when there is one numeric
// field specified.
if (mAnomalyTrackers.size() > 0) {
if (gaugeAtom.mFields->size() == 1) {
const Value& value = gaugeAtom.mFields->begin()->mValue;
long gaugeVal = 0;
if (value.getType() == INT) {
gaugeVal = (long)value.int_value;
} else if (value.getType() == LONG) {
gaugeVal = value.long_value;
}
for (auto& tracker : mAnomalyTrackers) {
tracker->detectAndDeclareAnomaly(eventTimeNs, mCurrentBucketNum, mMetricId,
eventKey, gaugeVal);
}
}
}
}
void GaugeMetricProducer::updateCurrentSlicedBucketForAnomaly() {
for (const auto& slice : *mCurrentSlicedBucket) {
if (slice.second.empty()) {
continue;
}
const Value& value = slice.second.front().mFields->front().mValue;
long gaugeVal = 0;
if (value.getType() == INT) {
gaugeVal = (long)value.int_value;
} else if (value.getType() == LONG) {
gaugeVal = value.long_value;
}
(*mCurrentSlicedBucketForAnomaly)[slice.first] = gaugeVal;
}
}
void GaugeMetricProducer::dropDataLocked(const int64_t dropTimeNs) {
flushIfNeededLocked(dropTimeNs);
StatsdStats::getInstance().noteBucketDropped(mMetricId);
mPastBuckets.clear();
mTotalDataSize = 0;
}
// When a new matched event comes in, we check if event falls into the current
// bucket. If not, flush the old counter to past buckets and initialize the new
// bucket.
// if data is pushed, onMatchedLogEvent will only be called through onConditionChanged() inside
// the GaugeMetricProducer while holding the lock.
void GaugeMetricProducer::flushIfNeededLocked(const int64_t eventTimeNs) {
int64_t currentBucketEndTimeNs = getCurrentBucketEndTimeNs();
if (eventTimeNs < currentBucketEndTimeNs) {
VLOG("Gauge eventTime is %lld, less than next bucket start time %lld",
(long long)eventTimeNs, (long long)(mCurrentBucketStartTimeNs + mBucketSizeNs));
return;
}
// Adjusts the bucket start and end times.
int64_t numBucketsForward = 1 + (eventTimeNs - currentBucketEndTimeNs) / mBucketSizeNs;
int64_t nextBucketNs = currentBucketEndTimeNs + (numBucketsForward - 1) * mBucketSizeNs;
flushCurrentBucketLocked(eventTimeNs, nextBucketNs);
mCurrentBucketNum += numBucketsForward;
VLOG("Gauge metric %lld: new bucket start time: %lld", (long long)mMetricId,
(long long)mCurrentBucketStartTimeNs);
}
void GaugeMetricProducer::flushCurrentBucketLocked(const int64_t eventTimeNs,
const int64_t nextBucketStartTimeNs) {
int64_t fullBucketEndTimeNs = getCurrentBucketEndTimeNs();
int64_t bucketEndTime = eventTimeNs < fullBucketEndTimeNs ? eventTimeNs : fullBucketEndTimeNs;
GaugeBucket info;
info.mBucketStartNs = mCurrentBucketStartTimeNs;
info.mBucketEndNs = bucketEndTime;
// Add bucket to mPastBuckets if bucket is large enough.
// Otherwise, drop the bucket data and add bucket metadata to mSkippedBuckets.
bool isBucketLargeEnough = info.mBucketEndNs - mCurrentBucketStartTimeNs >= mMinBucketSizeNs;
if (isBucketLargeEnough) {
for (const auto& slice : *mCurrentSlicedBucket) {
info.mAggregatedAtoms.clear();
for (const GaugeAtom& atom : slice.second) {
AtomDimensionKey key(mAtomId, HashableDimensionKey(*atom.mFields));
vector<int64_t>& elapsedTimestampsNs = info.mAggregatedAtoms[key];
elapsedTimestampsNs.push_back(atom.mElapsedTimestampNs);
}
auto& bucketList = mPastBuckets[slice.first];
const bool isFirstBucket = bucketList.empty();
bucketList.push_back(info);
mTotalDataSize += computeGaugeBucketSizeLocked(eventTimeNs >= fullBucketEndTimeNs,
/*dimKey=*/slice.first, isFirstBucket,
info.mAggregatedAtoms);
VLOG("Gauge gauge metric %lld, dump key value: %s", (long long)mMetricId,
slice.first.toString().c_str());
}
} else if (mIsActive) {
mCurrentSkippedBucket.bucketStartTimeNs = mCurrentBucketStartTimeNs;
mCurrentSkippedBucket.bucketEndTimeNs = bucketEndTime;
if (!maxDropEventsReached()) {
mCurrentSkippedBucket.dropEvents.emplace_back(
buildDropEvent(eventTimeNs, BucketDropReason::BUCKET_TOO_SMALL));
}
mSkippedBuckets.emplace_back(mCurrentSkippedBucket);
mTotalDataSize += computeSkippedBucketSizeLocked(mCurrentSkippedBucket);
}
// If we have anomaly trackers, we need to update the partial bucket values.
if (mAnomalyTrackers.size() > 0) {
updateCurrentSlicedBucketForAnomaly();
if (eventTimeNs > fullBucketEndTimeNs) {
// This is known to be a full bucket, so send this data to the anomaly tracker.
for (auto& tracker : mAnomalyTrackers) {
tracker->addPastBucket(mCurrentSlicedBucketForAnomaly, mCurrentBucketNum);
}
mCurrentSlicedBucketForAnomaly = std::make_shared<DimToValMap>();
}
}
StatsdStats::getInstance().noteBucketCount(mMetricId);
mCurrentSlicedBucket = std::make_shared<DimToGaugeAtomsMap>();
mCurrentBucketStartTimeNs = nextBucketStartTimeNs;
mCurrentSkippedBucket.reset();
// Reset mHasHitGuardrail boolean since bucket was reset
mHasHitGuardrail = false;
}
// Estimate for the size of a GaugeBucket.
size_t GaugeMetricProducer::computeGaugeBucketSizeLocked(
const bool isFullBucket, const MetricDimensionKey& dimKey, const bool isFirstBucket,
const std::unordered_map<AtomDimensionKey, std::vector<int64_t>>& aggregatedAtoms) const {
size_t bucketSize =
MetricProducer::computeBucketSizeLocked(isFullBucket, dimKey, isFirstBucket);
// Gauge Atoms and timestamps
for (const auto& pair : aggregatedAtoms) {
bucketSize += getFieldValuesSizeV2(pair.first.getAtomFieldValues().getValues());
bucketSize += sizeof(int64_t) * pair.second.size();
}
return bucketSize;
}
size_t GaugeMetricProducer::byteSizeLocked() const {
sp<ConfigMetadataProvider> configMetadataProvider = getConfigMetadataProvider();
if (configMetadataProvider != nullptr && configMetadataProvider->useV2SoftMemoryCalculation()) {
return computeOverheadSizeLocked(!mPastBuckets.empty() || !mSkippedBuckets.empty(),
mDimensionGuardrailHit) +
mTotalDataSize;
}
size_t totalSize = 0;
for (const auto& pair : mPastBuckets) {
for (const auto& bucket : pair.second) {
for (const auto& [atomDimensionKey, elapsedTimestampsNs] : bucket.mAggregatedAtoms) {
totalSize += sizeof(FieldValue) *
atomDimensionKey.getAtomFieldValues().getValues().size();
totalSize += sizeof(int64_t) * elapsedTimestampsNs.size();
}
}
}
return totalSize;
}
} // namespace statsd
} // namespace os
} // namespace android