blob: 8c4984262e2897813623ea43bc13af7e76c62c34 [file] [log] [blame]
/**
****************************************************************************************
*
* @file smpc.h
*
* @brief Header file - SMPC.
*
* Copyright (C) RivieraWaves 2009-2016
* Copyright (C) Atmosic 2023
*
****************************************************************************************
*/
#ifndef SMPC_H_
#define SMPC_H_
/**
****************************************************************************************
* @addtogroup SMP Security Manager Protocol
* @ingroup HOST
* @brief Security Manager Protocol.
*
* The SMP is responsible for the over-all security policies of BLE.
* It defines methods for pairing and key distribution, handles encryption,
* data signing and privacy features such as random addressing generation and resolution.
*
* Pairing is performed to exchange pairing features and generate a short term
* key for link encryption.
* A transport specific key distribution is performed to
* share the keys that can be used to encrypt the link in the future
* reconnection process, signed data verification and random address
* resolution.
*
* There exist 3 phases in the complete security procedure:
* 1. Feature exchange (IO capabilities, OOB flags, Authentication Requirements, Key distributions)
* 2. Short Term Key generation
* Generation method depends on exchanged features:
* - Just Works - use Temporary key = 0
* - PassKey Entry - use Temporary Key = 6-digit provided by user
* - Out of Band (OOB) - use Temporary Key = 16-octet key, available form OOB source
* 3. Transport Specific Key Distribution (TKDP)(LTK+EDIV+RAND_NB, IRK+ADDR, CSRK)
*---------------------------------------------------------------------
* @addtogroup SMPC Security Manager Protocol Controller
* @ingroup SMP
* @brief Security Manager Protocol Controller.
*
* This block handles control of SM procedures for several possible existing connections,
* for which the security procedure may be conducted simultaneously.
*
* It allows flow control for HCI access to encryption and random number generation, used
* at different moments in the procedure.
*
* It handles PDU creation and sending through L2CAP, also their reception from L2CAP
* and interpretation.
*
* Other small utilities such as maximum key size determination and TKDP organization are
* implemented in SMPC.
* @{
*
****************************************************************************************
*/
/*
* INCLUDE FILES
****************************************************************************************
*/
#include "rwip_config.h"
#if (BLE_SMPC)
#include "co_bt.h"
#include "gap.h"
#include "gapc_task.h"
#include "ke_task.h"
/*
* DEFINES
****************************************************************************************
*/
/// MAC length
#define SMPC_SIGN_MAC_LEN (8)
/// SignCounter length
#define SMPC_SIGN_COUNTER_LEN (4)
/// Signature length
#define SMPC_SIGN_LEN (SMPC_SIGN_MAC_LEN + SMPC_SIGN_COUNTER_LEN)
/**
* Repeated Attempts Timer Configuration
*/
/// Repeated Attempts Timer default value (x10ms)
#define SMPC_REP_ATTEMPTS_TIMER_DEF_VAL (200) //2s
/// Repeated Attempts Timer max value (x10ms)
#define SMPC_REP_ATTEMPTS_TIMER_MAX_VAL (3000) //30s
/// Repeated Attempts Timer multiplier
#define SMPC_REP_ATTEMPTS_TIMER_MULT (2)
/**
* Timeout Timer Configuration
*/
#define SMPC_TIMEOUT_TIMER_DURATION (3000) //30s
#define SMPC_PUBLIC_KEY_256_COORD_LEN 0x20
/*
* ENUMERATIONS
****************************************************************************************
*/
/// Information source.
enum smpc_addr_src
{
/// Local info.
SMPC_INFO_LOCAL,
/// Peer info.
SMPC_INFO_PEER,
/// Maximum info source.
SMPC_INFO_MAX
};
/*
* STRUCTURES DEFINITION
****************************************************************************************
*/
/// Master ID Information Structure
struct smpc_mst_id_info
{
// Encryption Diversifier
uint16_t ediv;
// Random Number
uint8_t randnb[GAP_RAND_NB_LEN];
};
#if (SECURE_CONNECTIONS)
struct smp_aes_cmac
{
uint8_t* M; // pointer to memory allocated by calling function
uint8_t M_len;
uint8_t M_last[16];
uint8_t X[16];
uint8_t Y[16];
uint8_t* K; //[16];
uint8_t K1[16];
uint8_t K2[16];
uint8_t next_block;
uint8_t num_blocks;
uint8_t state; // Only 3 States - Idle, SubKey Generation, Block AES
};
struct smp_f4
{
uint8_t M[65];
uint8_t X[16]; // The Key
};
struct smp_f5
{
uint8_t M[53];
uint8_t* W;
uint8_t T[16];
uint8_t SALT[16];
};
struct smp_f6
{
uint8_t W[16];
uint8_t M[65];
};
struct smp_g2
{
uint8_t X[16];
uint8_t M[80];
};
struct gapc_public_key
{
uint8_t x[GAP_P256_KEY_LEN];
uint8_t y[GAP_P256_KEY_LEN];
};
#endif // (SECURE_CONNECTIONS)
/// Pairing Information
struct smpc_pair_info
{
/// TK during Phase 2, LTK or IRK during Phase 3
struct gap_sec_key key;
/// Pairing request command
struct gapc_pairing pair_req_feat;
/// Pairing response feature
struct gapc_pairing pair_rsp_feat;
/// Random number value
uint8_t rand[RAND_VAL_LEN];
/// Remote random number value
uint8_t rem_rand[RAND_VAL_LEN];
/// Confirm value to check
uint8_t conf_value[GAP_KEY_LEN];
/// Pairing Method
uint8_t pair_method;
/// Authentication level
uint8_t auth;
/// check that LTK exchanged during pairing
bool ltk_exchanged;
/// Key to be exchanged (transmitted or to be received)
uint8_t keys_dist;
#if (SECURE_CONNECTIONS)
// AES_CMAC Info
struct smp_aes_cmac* aes_cmac;
// Structure for Secure Connections Crypto functions
struct smp_f4* f4_info;
struct smp_f5* f5_info;
struct smp_f6* f6_info;
struct smp_g2* g2_info;
bool dh_key_calculation_complete;
uint8_t MacKey[GAP_KEY_LEN];
uint8_t dh_key_check_peer[DHKEY_CHECK_LEN];
uint8_t dh_key_local[DH_KEY_LEN];
uint8_t dh_key_check_local[DHKEY_CHECK_LEN];
bool dh_key_check_received_from_peer;
public_key_t peer_public_key;
uint8_t passkey_bit_count;
uint32_t passkey;
// Required for OOB
uint8_t peer_r[GAP_KEY_LEN];
uint8_t local_r[GAP_KEY_LEN];
bool peer_rand_received;
bool peer_confirm_received;
#endif // (SECURE_CONNECTIONS)
};
/// Signing Information
struct smpc_sign_info
{
/// Operation requester task id
ke_task_id_t requester;
/// Message offset
uint16_t msg_offset;
/// Number of block
uint8_t block_nb;
/// Cn-1 value -> Need to kept this value to retrieve it after L generation
uint8_t cn1[GAP_KEY_LEN];
};
/// SMPC environment structure
struct smpc_env
{
/// SMPC temporary information
union smpc_info
{
/**
* Pairing Information - This structure is allocated at the beginning of a pairing
* or procedure. It is freed when a disconnection occurs or at the end of
* the pairing procedure. If not enough memory can be found, the procedure will fail
* with an "Unspecified Reason" error
*/
struct smpc_pair_info *pair;
/**
* Signature Procedure Information - This structure is allocated at the beginning of a
* signing procedure. It is freed when a disconnection occurs or at the end of
* the signing procedure. If not enough memory can be found, the procedure will fail
* with an "Unspecified Reason" error.
*/
struct smpc_sign_info *sign;
} info;
/// CSRK values (Local and remote)
struct gap_sec_key csrk[SMPC_INFO_MAX];
/// signature counter values (Local and remote)
uint32_t sign_counter[SMPC_INFO_MAX];
/// Repeated Attempt Timer value
uint16_t rep_att_timer_val;
/// Encryption key size
uint8_t key_size;
/**
* Contains the current state of the two timers needed in the SMPC task
* Bit 0 - Is Timeout Timer running
* Bit 1 - Is Repeated Attempt Timer running
* Bit 2 - Has task reached a SMP Timeout
*/
uint8_t timer_state;
/// State of the current procedure
uint8_t state;
#if (SECURE_CONNECTIONS)
bool secure_connections_enabled;
#endif // (SECURE_CONNECTIONS)
};
/*
* GLOBAL VARIABLES DEFINITION
****************************************************************************************
*/
/*
* MACROS
****************************************************************************************
*/
/*
* FUNCTION DECLARATIONS
****************************************************************************************
*/
#endif //(BLE_SMPC)
#endif //SMPC_H_
/// @} SMPC