blob: 796062ae6860d76e58c1ae50251213a24ffaf4e5 [file] [log] [blame]
//! Linux auxv support.
//!
//! # Safety
//!
//! This uses raw pointers to locate and read the kernel-provided auxv array.
#![allow(unsafe_code)]
use super::super::conv::{c_int, pass_usize, ret_usize};
use crate::backend::c;
use crate::fd::OwnedFd;
#[cfg(feature = "param")]
use crate::ffi::CStr;
use crate::fs::{Mode, OFlags};
use crate::utils::{as_ptr, check_raw_pointer};
#[cfg(feature = "alloc")]
use alloc::vec::Vec;
use core::mem::size_of;
use core::ptr::{null_mut, read_unaligned, NonNull};
#[cfg(feature = "runtime")]
use core::sync::atomic::AtomicU8;
use core::sync::atomic::Ordering::Relaxed;
use core::sync::atomic::{AtomicPtr, AtomicUsize};
use linux_raw_sys::elf::*;
use linux_raw_sys::general::{
AT_BASE, AT_CLKTCK, AT_EXECFN, AT_HWCAP, AT_HWCAP2, AT_NULL, AT_PAGESZ, AT_SYSINFO_EHDR,
};
#[cfg(feature = "runtime")]
use linux_raw_sys::general::{
AT_EGID, AT_ENTRY, AT_EUID, AT_GID, AT_PHDR, AT_PHENT, AT_PHNUM, AT_RANDOM, AT_SECURE, AT_UID,
};
#[cfg(feature = "alloc")]
use {alloc::borrow::Cow, alloc::vec};
#[cfg(feature = "param")]
#[inline]
pub(crate) fn page_size() -> usize {
let mut page_size = PAGE_SIZE.load(Relaxed);
if page_size == 0 {
init_auxv();
page_size = PAGE_SIZE.load(Relaxed);
}
page_size
}
#[cfg(feature = "param")]
#[inline]
pub(crate) fn clock_ticks_per_second() -> u64 {
let mut ticks = CLOCK_TICKS_PER_SECOND.load(Relaxed);
if ticks == 0 {
init_auxv();
ticks = CLOCK_TICKS_PER_SECOND.load(Relaxed);
}
ticks as u64
}
#[cfg(feature = "param")]
#[inline]
pub(crate) fn linux_hwcap() -> (usize, usize) {
let mut hwcap = HWCAP.load(Relaxed);
let mut hwcap2 = HWCAP2.load(Relaxed);
if hwcap == 0 || hwcap2 == 0 {
init_auxv();
hwcap = HWCAP.load(Relaxed);
hwcap2 = HWCAP2.load(Relaxed);
}
(hwcap, hwcap2)
}
#[cfg(feature = "param")]
#[inline]
pub(crate) fn linux_execfn() -> &'static CStr {
let mut execfn = EXECFN.load(Relaxed);
if execfn.is_null() {
init_auxv();
execfn = EXECFN.load(Relaxed);
}
// SAFETY: We assume the `AT_EXECFN` value provided by the kernel is a
// valid pointer to a valid NUL-terminated array of bytes.
unsafe { CStr::from_ptr(execfn.cast()) }
}
#[cfg(feature = "runtime")]
#[inline]
pub(crate) fn linux_secure() -> bool {
let mut secure = SECURE.load(Relaxed);
// 0 means not initialized yet.
if secure == 0 {
init_auxv();
secure = SECURE.load(Relaxed);
}
// 0 means not present. Libc `getauxval(AT_SECURE)` would return 0.
// 1 means not in secure mode.
// 2 means in secure mode.
secure > 1
}
#[cfg(feature = "runtime")]
#[inline]
pub(crate) fn exe_phdrs() -> (*const c::c_void, usize, usize) {
let mut phdr = PHDR.load(Relaxed);
let mut phent = PHENT.load(Relaxed);
let mut phnum = PHNUM.load(Relaxed);
if phdr.is_null() || phnum == 0 {
init_auxv();
phdr = PHDR.load(Relaxed);
phent = PHENT.load(Relaxed);
phnum = PHNUM.load(Relaxed);
}
(phdr.cast(), phent, phnum)
}
/// `AT_SYSINFO_EHDR` isn't present on all platforms in all configurations, so
/// if we don't see it, this function returns a null pointer.
///
/// And, this function returns a null pointer, rather than panicking, if the
/// auxv records can't be read.
#[inline]
pub(in super::super) fn sysinfo_ehdr() -> *const Elf_Ehdr {
let mut ehdr = SYSINFO_EHDR.load(Relaxed);
if ehdr.is_null() {
// Use `maybe_init_auxv` to to read the aux vectors if it can, but do
// nothing if it can't. If it can't, then we'll get a null pointer
// here, which our callers are prepared to deal with.
maybe_init_auxv();
ehdr = SYSINFO_EHDR.load(Relaxed);
}
ehdr
}
#[cfg(feature = "runtime")]
#[inline]
pub(crate) fn entry() -> usize {
let mut entry = ENTRY.load(Relaxed);
if entry == 0 {
init_auxv();
entry = ENTRY.load(Relaxed);
}
entry
}
#[cfg(feature = "runtime")]
#[inline]
pub(crate) fn random() -> *const [u8; 16] {
let mut random = RANDOM.load(Relaxed);
if random.is_null() {
init_auxv();
random = RANDOM.load(Relaxed);
}
random
}
static PAGE_SIZE: AtomicUsize = AtomicUsize::new(0);
static CLOCK_TICKS_PER_SECOND: AtomicUsize = AtomicUsize::new(0);
static HWCAP: AtomicUsize = AtomicUsize::new(0);
static HWCAP2: AtomicUsize = AtomicUsize::new(0);
static EXECFN: AtomicPtr<c::c_char> = AtomicPtr::new(null_mut());
static SYSINFO_EHDR: AtomicPtr<Elf_Ehdr> = AtomicPtr::new(null_mut());
#[cfg(feature = "runtime")]
static SECURE: AtomicU8 = AtomicU8::new(0);
#[cfg(feature = "runtime")]
static PHDR: AtomicPtr<Elf_Phdr> = AtomicPtr::new(null_mut());
#[cfg(feature = "runtime")]
static PHENT: AtomicUsize = AtomicUsize::new(0);
#[cfg(feature = "runtime")]
static PHNUM: AtomicUsize = AtomicUsize::new(0);
#[cfg(feature = "runtime")]
static ENTRY: AtomicUsize = AtomicUsize::new(0);
#[cfg(feature = "runtime")]
static RANDOM: AtomicPtr<[u8; 16]> = AtomicPtr::new(null_mut());
const PR_GET_AUXV: c::c_int = 0x4155_5856;
/// Use Linux >= 6.4's `PR_GET_AUXV` to read the aux records, into a provided
/// statically-sized buffer. Return:
/// - `Ok(...)` if the buffer is big enough.
/// - `Err(Ok(len))` if we need a buffer of length `len`.
/// - `Err(Err(err))` if we failed with `err`.
#[cold]
fn pr_get_auxv_static(buffer: &mut [u8; 512]) -> Result<&mut [u8], crate::io::Result<usize>> {
let len = unsafe {
ret_usize(syscall_always_asm!(
__NR_prctl,
c_int(PR_GET_AUXV),
buffer.as_mut_ptr(),
pass_usize(buffer.len()),
pass_usize(0),
pass_usize(0)
))
.map_err(Err)?
};
if len <= buffer.len() {
return Ok(&mut buffer[..len]);
}
Err(Ok(len))
}
/// Use Linux >= 6.4's `PR_GET_AUXV` to read the aux records, using a provided
/// statically-sized buffer if possible, or a dynamically allocated buffer
/// otherwise. Return:
/// - Ok(...) on success.
/// - Err(err) on failure.
#[cfg(feature = "alloc")]
#[cold]
fn pr_get_auxv_dynamic(buffer: &mut [u8; 512]) -> crate::io::Result<Cow<'_, [u8]>> {
// First try use the static buffer.
let len = match pr_get_auxv_static(buffer) {
Ok(buffer) => return Ok(Cow::Borrowed(buffer)),
Err(Ok(len)) => len,
Err(Err(err)) => return Err(err),
};
// If that indicates it needs a bigger buffer, allocate one.
let mut buffer = vec![0u8; len];
let len = unsafe {
ret_usize(syscall_always_asm!(
__NR_prctl,
c_int(PR_GET_AUXV),
buffer.as_mut_ptr(),
pass_usize(buffer.len()),
pass_usize(0),
pass_usize(0)
))?
};
assert_eq!(len, buffer.len());
Ok(Cow::Owned(buffer))
}
/// Read the auxv records and initialize the various static variables. Panic
/// if an error is encountered.
#[cold]
fn init_auxv() {
init_auxv_impl().unwrap();
}
/// Like `init_auxv`, but don't panic if an error is encountered. The caller
/// must be prepared for initialization to be skipped.
#[cold]
fn maybe_init_auxv() {
if let Ok(()) = init_auxv_impl() {
return;
}
}
/// If we don't have "use-explicitly-provided-auxv" or "use-libc-auxv", we
/// read the aux vector via the `prctl` `PR_GET_AUXV`, with a fallback to
/// /proc/self/auxv for kernels that don't support `PR_GET_AUXV`.
#[cold]
fn init_auxv_impl() -> Result<(), ()> {
let mut buffer = [0u8; 512];
// If we don't have "alloc", just try to read into our statically-sized
// buffer. This might fail due to the buffer being insufficient; we're
// prepared to cope, though we may do suboptimal things.
#[cfg(not(feature = "alloc"))]
let result = pr_get_auxv_static(&mut buffer);
// If we do have "alloc" then read into our statically-sized buffer if
// it fits, or fall back to a dynamically-allocated buffer.
#[cfg(feature = "alloc")]
let result = pr_get_auxv_dynamic(&mut buffer);
if let Ok(buffer) = result {
// SAFETY: We assume the kernel returns a valid auxv.
unsafe {
init_from_aux_iter(AuxPointer(buffer.as_ptr().cast())).unwrap();
}
return Ok(());
}
// If `PR_GET_AUXV` is unavailable, or if we don't have "alloc" and
// the aux records don't fit in our static buffer, then fall back to trying
// to open "/proc/self/auxv". We don't use `proc_self_fd` because its extra
// checking breaks on QEMU.
if let Ok(file) = crate::fs::open("/proc/self/auxv", OFlags::RDONLY, Mode::empty()) {
#[cfg(feature = "alloc")]
init_from_auxv_file(file).unwrap();
#[cfg(not(feature = "alloc"))]
unsafe {
init_from_aux_iter(AuxFile(file)).unwrap();
}
return Ok(());
}
Err(())
}
/// Process auxv entries from the open file `auxv`.
#[cfg(feature = "alloc")]
#[cold]
#[must_use]
fn init_from_auxv_file(auxv: OwnedFd) -> Option<()> {
let mut buffer = Vec::<u8>::with_capacity(512);
loop {
let cur = buffer.len();
// Request one extra byte; `Vec` will often allocate more.
buffer.reserve(1);
// Use all the space it allocated.
buffer.resize(buffer.capacity(), 0);
// Read up to that many bytes.
let n = match crate::io::read(&auxv, &mut buffer[cur..]) {
Err(crate::io::Errno::INTR) => 0,
Err(_err) => panic!(),
Ok(0) => break,
Ok(n) => n,
};
// Account for the number of bytes actually read.
buffer.resize(cur + n, 0_u8);
}
// SAFETY: We loaded from an auxv file into the buffer.
unsafe { init_from_aux_iter(AuxPointer(buffer.as_ptr().cast())) }
}
/// Process auxv entries from the auxv array pointed to by `auxp`.
///
/// # Safety
///
/// This must be passed a pointer to an auxv array.
///
/// The buffer contains `Elf_aux_t` elements, though it need not be aligned;
/// function uses `read_unaligned` to read from it.
#[cold]
#[must_use]
unsafe fn init_from_aux_iter(aux_iter: impl Iterator<Item = Elf_auxv_t>) -> Option<()> {
let mut pagesz = 0;
let mut clktck = 0;
let mut hwcap = 0;
let mut hwcap2 = 0;
let mut execfn = null_mut();
let mut sysinfo_ehdr = null_mut();
#[cfg(feature = "runtime")]
let mut secure = 0;
#[cfg(feature = "runtime")]
let mut phdr = null_mut();
#[cfg(feature = "runtime")]
let mut phnum = 0;
#[cfg(feature = "runtime")]
let mut phent = 0;
#[cfg(feature = "runtime")]
let mut entry = 0;
#[cfg(feature = "runtime")]
let mut uid = None;
#[cfg(feature = "runtime")]
let mut euid = None;
#[cfg(feature = "runtime")]
let mut gid = None;
#[cfg(feature = "runtime")]
let mut egid = None;
#[cfg(feature = "runtime")]
let mut random = null_mut();
for Elf_auxv_t { a_type, a_val } in aux_iter {
match a_type as _ {
AT_PAGESZ => pagesz = a_val as usize,
AT_CLKTCK => clktck = a_val as usize,
AT_HWCAP => hwcap = a_val as usize,
AT_HWCAP2 => hwcap2 = a_val as usize,
AT_EXECFN => execfn = check_raw_pointer::<c::c_char>(a_val as *mut _)?.as_ptr(),
AT_SYSINFO_EHDR => sysinfo_ehdr = check_elf_base(a_val as *mut _)?.as_ptr(),
AT_BASE => {
// The `AT_BASE` value can be NULL in a static executable that
// doesn't use a dynamic linker. If so, ignore it.
if !a_val.is_null() {
let _ = check_elf_base(a_val.cast())?;
}
}
#[cfg(feature = "runtime")]
AT_SECURE => secure = (a_val as usize != 0) as u8 + 1,
#[cfg(feature = "runtime")]
AT_UID => uid = Some(a_val),
#[cfg(feature = "runtime")]
AT_EUID => euid = Some(a_val),
#[cfg(feature = "runtime")]
AT_GID => gid = Some(a_val),
#[cfg(feature = "runtime")]
AT_EGID => egid = Some(a_val),
#[cfg(feature = "runtime")]
AT_PHDR => phdr = check_raw_pointer::<Elf_Phdr>(a_val as *mut _)?.as_ptr(),
#[cfg(feature = "runtime")]
AT_PHNUM => phnum = a_val as usize,
#[cfg(feature = "runtime")]
AT_PHENT => phent = a_val as usize,
#[cfg(feature = "runtime")]
AT_ENTRY => entry = a_val as usize,
#[cfg(feature = "runtime")]
AT_RANDOM => random = check_raw_pointer::<[u8; 16]>(a_val as *mut _)?.as_ptr(),
AT_NULL => break,
_ => (),
}
}
#[cfg(feature = "runtime")]
assert_eq!(phent, size_of::<Elf_Phdr>());
// If we're running set-uid or set-gid, enable “secure execution” mode,
// which doesn't do much, but users may be depending on the things that
// it does do.
#[cfg(feature = "runtime")]
if uid != euid || gid != egid {
secure = 2;
}
// The base and sysinfo_ehdr (if present) matches our platform. Accept the
// aux values.
PAGE_SIZE.store(pagesz, Relaxed);
CLOCK_TICKS_PER_SECOND.store(clktck, Relaxed);
HWCAP.store(hwcap, Relaxed);
HWCAP2.store(hwcap2, Relaxed);
EXECFN.store(execfn, Relaxed);
SYSINFO_EHDR.store(sysinfo_ehdr, Relaxed);
#[cfg(feature = "runtime")]
SECURE.store(secure, Relaxed);
#[cfg(feature = "runtime")]
PHDR.store(phdr, Relaxed);
#[cfg(feature = "runtime")]
PHNUM.store(phnum, Relaxed);
#[cfg(feature = "runtime")]
ENTRY.store(entry, Relaxed);
#[cfg(feature = "runtime")]
RANDOM.store(random, Relaxed);
Some(())
}
/// Check that `base` is a valid pointer to the kernel-provided vDSO.
///
/// `base` is some value we got from a `AT_SYSINFO_EHDR` aux record somewhere,
/// which hopefully holds the value of the kernel-provided vDSO in memory. Do a
/// series of checks to be as sure as we can that it's safe to use.
#[cold]
#[must_use]
unsafe fn check_elf_base(base: *const Elf_Ehdr) -> Option<NonNull<Elf_Ehdr>> {
// If we're reading a 64-bit auxv on a 32-bit platform, we'll see a zero
// `a_val` because `AT_*` values are never greater than `u32::MAX`. Zero is
// used by libc's `getauxval` to indicate errors, so it should never be a
// valid value.
if base.is_null() {
return None;
}
let hdr = match check_raw_pointer::<Elf_Ehdr>(base as *mut _) {
Some(hdr) => hdr,
None => return None,
};
let hdr = hdr.as_ref();
if hdr.e_ident[..SELFMAG] != ELFMAG {
return None; // Wrong ELF magic
}
if !matches!(hdr.e_ident[EI_OSABI], ELFOSABI_SYSV | ELFOSABI_LINUX) {
return None; // Unrecognized ELF OS ABI
}
if hdr.e_ident[EI_ABIVERSION] != ELFABIVERSION {
return None; // Unrecognized ELF ABI version
}
if hdr.e_type != ET_DYN {
return None; // Wrong ELF type
}
// If ELF is extended, we'll need to adjust.
if hdr.e_ident[EI_VERSION] != EV_CURRENT
|| hdr.e_ehsize as usize != size_of::<Elf_Ehdr>()
|| hdr.e_phentsize as usize != size_of::<Elf_Phdr>()
{
return None;
}
// We don't currently support extra-large numbers of segments.
if hdr.e_phnum == PN_XNUM {
return None;
}
// If `e_phoff` is zero, it's more likely that we're looking at memory that
// has been zeroed than that the kernel has somehow aliased the `Ehdr` and
// the `Phdr`.
if hdr.e_phoff < size_of::<Elf_Ehdr>() {
return None;
}
// Verify that the `EI_CLASS`/`EI_DATA`/`e_machine` fields match the
// architecture we're running as. This helps catch cases where we're
// running under QEMU.
if hdr.e_ident[EI_CLASS] != ELFCLASS {
return None; // Wrong ELF class
}
if hdr.e_ident[EI_DATA] != ELFDATA {
return None; // Wrong ELF data
}
if hdr.e_machine != EM_CURRENT {
return None; // Wrong machine type
}
Some(NonNull::new_unchecked(as_ptr(hdr) as *mut _))
}
// Aux reading utilities
// Read auxv records from an array in memory.
struct AuxPointer(*const Elf_auxv_t);
impl Iterator for AuxPointer {
type Item = Elf_auxv_t;
#[cold]
fn next(&mut self) -> Option<Self::Item> {
unsafe {
let value = read_unaligned(self.0);
self.0 = self.0.add(1);
Some(value)
}
}
}
// Read auxv records from a file.
#[cfg(not(feature = "alloc"))]
struct AuxFile(OwnedFd);
#[cfg(not(feature = "alloc"))]
impl Iterator for AuxFile {
type Item = Elf_auxv_t;
// This implementation does lots of `read`s and it isn't amazing, but
// hopefully we won't use it often.
#[cold]
fn next(&mut self) -> Option<Self::Item> {
let mut buf = [0_u8; size_of::<Self::Item>()];
let mut slice = &mut buf[..];
while !slice.is_empty() {
match crate::io::read(&self.0, slice) {
Ok(0) => panic!("unexpected end of auxv file"),
Ok(n) => slice = &mut slice[n..],
Err(crate::io::Errno::INTR) => continue,
Err(err) => panic!("{:?}", err),
}
}
Some(unsafe { read_unaligned(buf.as_ptr().cast()) })
}
}