blob: ea168afe6975cb2b752a4098b2d25129b52bc074 [file] [log] [blame]
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/allocator/partition_allocator/src/partition_alloc/partition_alloc_base/cpu.h"
#include "build/build_config.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace partition_alloc {
// Tests whether we can run extended instructions represented by the CPU
// information. This test actually executes some extended instructions (such as
// MMX, SSE, etc.) supported by the CPU and sees we can run them without
// "undefined instruction" exceptions. That is, this test succeeds when this
// test finishes without a crash.
TEST(CPUPA, RunExtendedInstructions) {
// Retrieve the CPU information.
internal::base::CPU cpu;
#if defined(ARCH_CPU_X86_FAMILY)
ASSERT_TRUE(cpu.has_mmx());
ASSERT_TRUE(cpu.has_sse());
ASSERT_TRUE(cpu.has_sse2());
ASSERT_TRUE(cpu.has_sse3());
// GCC and clang instruction test.
#if defined(COMPILER_GCC)
// Execute an MMX instruction.
__asm__ __volatile__("emms\n" : : : "mm0");
// Execute an SSE instruction.
__asm__ __volatile__("xorps %%xmm0, %%xmm0\n" : : : "xmm0");
// Execute an SSE 2 instruction.
__asm__ __volatile__("psrldq $0, %%xmm0\n" : : : "xmm0");
// Execute an SSE 3 instruction.
__asm__ __volatile__("addsubpd %%xmm0, %%xmm0\n" : : : "xmm0");
if (cpu.has_ssse3()) {
// Execute a Supplimental SSE 3 instruction.
__asm__ __volatile__("psignb %%xmm0, %%xmm0\n" : : : "xmm0");
}
if (cpu.has_sse41()) {
// Execute an SSE 4.1 instruction.
__asm__ __volatile__("pmuldq %%xmm0, %%xmm0\n" : : : "xmm0");
}
if (cpu.has_sse42()) {
// Execute an SSE 4.2 instruction.
__asm__ __volatile__("crc32 %%eax, %%eax\n" : : : "eax");
}
if (cpu.has_popcnt()) {
// Execute a POPCNT instruction.
__asm__ __volatile__("popcnt %%eax, %%eax\n" : : : "eax");
}
if (cpu.has_avx()) {
// Execute an AVX instruction.
__asm__ __volatile__("vzeroupper\n" : : : "xmm0");
}
if (cpu.has_fma3()) {
// Execute a FMA3 instruction.
__asm__ __volatile__("vfmadd132ps %%xmm0, %%xmm0, %%xmm0\n" : : : "xmm0");
}
if (cpu.has_avx2()) {
// Execute an AVX 2 instruction.
__asm__ __volatile__("vpunpcklbw %%ymm0, %%ymm0, %%ymm0\n" : : : "xmm0");
}
if (cpu.has_pku()) {
// rdpkru
uint32_t pkru;
__asm__ __volatile__(".byte 0x0f,0x01,0xee\n"
: "=a"(pkru)
: "c"(0), "d"(0));
}
// Visual C 32 bit and ClangCL 32/64 bit test.
#elif defined(COMPILER_MSVC) && \
(defined(ARCH_CPU_32_BITS) || \
(defined(ARCH_CPU_64_BITS) && defined(__clang__)))
// Execute an MMX instruction.
__asm emms;
// Execute an SSE instruction.
__asm xorps xmm0, xmm0;
// Execute an SSE 2 instruction.
__asm psrldq xmm0, 0;
// Execute an SSE 3 instruction.
__asm addsubpd xmm0, xmm0;
if (cpu.has_ssse3()) {
// Execute a Supplimental SSE 3 instruction.
__asm psignb xmm0, xmm0;
}
if (cpu.has_sse41()) {
// Execute an SSE 4.1 instruction.
__asm pmuldq xmm0, xmm0;
}
if (cpu.has_sse42()) {
// Execute an SSE 4.2 instruction.
__asm crc32 eax, eax;
}
if (cpu.has_popcnt()) {
// Execute a POPCNT instruction.
__asm popcnt eax, eax;
}
if (cpu.has_avx()) {
// Execute an AVX instruction.
__asm vzeroupper;
}
if (cpu.has_fma3()) {
// Execute an AVX instruction.
__asm vfmadd132ps xmm0, xmm0, xmm0;
}
if (cpu.has_avx2()) {
// Execute an AVX 2 instruction.
__asm vpunpcklbw ymm0, ymm0, ymm0
}
#endif // defined(COMPILER_GCC)
#endif // defined(ARCH_CPU_X86_FAMILY)
#if defined(ARCH_CPU_ARM64)
// Check that the CPU is correctly reporting support for the Armv8.5-A memory
// tagging extension. The new MTE instructions aren't encoded in NOP space
// like BTI/Pointer Authentication and will crash older cores with a SIGILL if
// used incorrectly. This test demonstrates how it should be done and that
// this approach works.
if (cpu.has_mte()) {
#if !defined(__ARM_FEATURE_MEMORY_TAGGING)
// In this section, we're running on an MTE-compatible core, but we're
// building this file without MTE support. Fail this test to indicate that
// there's a problem with the base/ build configuration.
GTEST_FAIL()
<< "MTE support detected (but base/ built without MTE support)";
#else
char ptr[32];
uint64_t val;
// Execute a trivial MTE instruction. Normally, MTE should be used via the
// intrinsics documented at
// https://developer.arm.com/documentation/101028/0012/10--Memory-tagging-intrinsics,
// this test uses the irg (Insert Random Tag) instruction directly to make
// sure that it's not optimized out by the compiler.
__asm__ __volatile__("irg %0, %1" : "=r"(val) : "r"(ptr));
#endif // __ARM_FEATURE_MEMORY_TAGGING
}
#endif // ARCH_CPU_ARM64
}
} // namespace partition_alloc