blob: 8a6d985394d0390fe21d2cda6bd5722d85231bfe [file] [log] [blame]
# Copyright 2019 The RE2 Authors. All Rights Reserved.
# Use of this source code is governed by a BSD-style
# license that can be found in the LICENSE file.
r"""A drop-in replacement for the re module.
It uses RE2 under the hood, of course, so various PCRE features
(e.g. backreferences, look-around assertions) are not supported.
See https://github.com/google/re2/wiki/Syntax for the canonical
reference, but known syntactic "gotchas" relative to Python are:
* PCRE supports \Z and \z; RE2 supports \z; Python supports \z,
but calls it \Z. You must rewrite \Z to \z in pattern strings.
Known differences between this module's API and the re module's API:
* The error class does not provide any error information as attributes.
* The Options class replaces the re module's flags with RE2's options as
gettable/settable properties. Please see re2.h for their documentation.
* The pattern string and the input string do not have to be the same type.
Any str will be encoded to UTF-8.
* The pattern string cannot be str if the options specify Latin-1 encoding.
This module's LRU cache contains a maximum of 128 regular expression objects.
Each regular expression object's underlying RE2 object uses a maximum of 8MiB
of memory (by default). Hence, this module's LRU cache uses a maximum of 1GiB
of memory (by default), but in most cases, it should use much less than that.
"""
import codecs
import functools
import itertools
import _re2
class error(Exception):
pass
class Options(_re2.RE2.Options):
__slots__ = ()
NAMES = (
'max_mem',
'encoding',
'posix_syntax',
'longest_match',
'log_errors',
'literal',
'never_nl',
'dot_nl',
'never_capture',
'case_sensitive',
'perl_classes',
'word_boundary',
'one_line',
)
def compile(pattern, options=None):
if isinstance(pattern, _Regexp):
if options:
raise error('pattern is already compiled, so '
'options may not be specified')
pattern = pattern._pattern
options = options or Options()
values = tuple(getattr(options, name) for name in Options.NAMES)
return _Regexp._make(pattern, values)
def search(pattern, text, options=None):
return compile(pattern, options=options).search(text)
def match(pattern, text, options=None):
return compile(pattern, options=options).match(text)
def fullmatch(pattern, text, options=None):
return compile(pattern, options=options).fullmatch(text)
def finditer(pattern, text, options=None):
return compile(pattern, options=options).finditer(text)
def findall(pattern, text, options=None):
return compile(pattern, options=options).findall(text)
def split(pattern, text, maxsplit=0, options=None):
return compile(pattern, options=options).split(text, maxsplit)
def subn(pattern, repl, text, count=0, options=None):
return compile(pattern, options=options).subn(repl, text, count)
def sub(pattern, repl, text, count=0, options=None):
return compile(pattern, options=options).sub(repl, text, count)
def _encode(t):
return t.encode(encoding='utf-8')
def _decode(b):
return b.decode(encoding='utf-8')
def escape(pattern):
if isinstance(pattern, str):
encoded_pattern = _encode(pattern)
escaped = _re2.RE2.QuoteMeta(encoded_pattern)
decoded_escaped = _decode(escaped)
return decoded_escaped
else:
escaped = _re2.RE2.QuoteMeta(pattern)
return escaped
def purge():
return _Regexp._make.cache_clear()
_Anchor = _re2.RE2.Anchor
_NULL_SPAN = (-1, -1)
class _Regexp(object):
__slots__ = ('_pattern', '_regexp')
@classmethod
@functools.lru_cache(typed=True)
def _make(cls, pattern, values):
options = Options()
for name, value in zip(Options.NAMES, values):
setattr(options, name, value)
return cls(pattern, options)
def __init__(self, pattern, options):
self._pattern = pattern
if isinstance(self._pattern, str):
if options.encoding == Options.Encoding.LATIN1:
raise error('string type of pattern is str, but '
'encoding specified in options is LATIN1')
encoded_pattern = _encode(self._pattern)
self._regexp = _re2.RE2(encoded_pattern, options)
else:
self._regexp = _re2.RE2(self._pattern, options)
if not self._regexp.ok():
raise error(self._regexp.error())
def __getstate__(self):
options = {name: getattr(self.options, name) for name in Options.NAMES}
return self._pattern, options
def __setstate__(self, state):
pattern, options = state
values = tuple(options[name] for name in Options.NAMES)
other = _Regexp._make(pattern, values)
self._pattern = other._pattern
self._regexp = other._regexp
def _match(self, anchor, text, pos=None, endpos=None):
pos = 0 if pos is None else max(0, min(pos, len(text)))
endpos = len(text) if endpos is None else max(0, min(endpos, len(text)))
if pos > endpos:
return
if isinstance(text, str):
encoded_text = _encode(text)
encoded_pos = _re2.CharLenToBytes(encoded_text, 0, pos)
if endpos == len(text):
# This is the common case.
encoded_endpos = len(encoded_text)
else:
encoded_endpos = encoded_pos + _re2.CharLenToBytes(
encoded_text, encoded_pos, endpos - pos)
decoded_offsets = {0: 0}
last_offset = 0
while True:
spans = self._regexp.Match(anchor, encoded_text, encoded_pos,
encoded_endpos)
if spans[0] == _NULL_SPAN:
break
# This algorithm is linear in the length of encoded_text. Specifically,
# no matter how many groups there are for a given regular expression or
# how many iterations through the loop there are for a given generator,
# this algorithm uses a single, straightforward pass over encoded_text.
offsets = sorted(set(itertools.chain(*spans)))
if offsets[0] == -1:
offsets = offsets[1:]
# Discard the rest of the items because they are useless now - and we
# could accumulate one item per str offset in the pathological case!
decoded_offsets = {last_offset: decoded_offsets[last_offset]}
for offset in offsets:
decoded_offsets[offset] = (
decoded_offsets[last_offset] +
_re2.BytesToCharLen(encoded_text, last_offset, offset))
last_offset = offset
def decode(span):
if span == _NULL_SPAN:
return span
return decoded_offsets[span[0]], decoded_offsets[span[1]]
decoded_spans = [decode(span) for span in spans]
yield _Match(self, text, pos, endpos, decoded_spans)
if encoded_pos == encoded_endpos:
break
elif encoded_pos == spans[0][1]:
# We matched the empty string at encoded_pos and would be stuck, so
# in order to make forward progress, increment the str offset.
encoded_pos += _re2.CharLenToBytes(encoded_text, encoded_pos, 1)
else:
encoded_pos = spans[0][1]
else:
while True:
spans = self._regexp.Match(anchor, text, pos, endpos)
if spans[0] == _NULL_SPAN:
break
yield _Match(self, text, pos, endpos, spans)
if pos == endpos:
break
elif pos == spans[0][1]:
# We matched the empty string at pos and would be stuck, so in order
# to make forward progress, increment the bytes offset.
pos += 1
else:
pos = spans[0][1]
def search(self, text, pos=None, endpos=None):
return next(self._match(_Anchor.UNANCHORED, text, pos, endpos), None)
def match(self, text, pos=None, endpos=None):
return next(self._match(_Anchor.ANCHOR_START, text, pos, endpos), None)
def fullmatch(self, text, pos=None, endpos=None):
return next(self._match(_Anchor.ANCHOR_BOTH, text, pos, endpos), None)
def finditer(self, text, pos=None, endpos=None):
return self._match(_Anchor.UNANCHORED, text, pos, endpos)
def findall(self, text, pos=None, endpos=None):
empty = type(text)()
items = []
for match in self.finditer(text, pos, endpos):
if not self.groups:
item = match.group()
elif self.groups == 1:
item = match.groups(default=empty)[0]
else:
item = match.groups(default=empty)
items.append(item)
return items
def _split(self, cb, text, maxsplit=0):
if maxsplit < 0:
return [text], 0
elif maxsplit > 0:
matchiter = itertools.islice(self.finditer(text), maxsplit)
else:
matchiter = self.finditer(text)
pieces = []
end = 0
numsplit = 0
for match in matchiter:
pieces.append(text[end:match.start()])
pieces.extend(cb(match))
end = match.end()
numsplit += 1
pieces.append(text[end:])
return pieces, numsplit
def split(self, text, maxsplit=0):
cb = lambda match: [match[group] for group in range(1, self.groups + 1)]
pieces, _ = self._split(cb, text, maxsplit)
return pieces
def subn(self, repl, text, count=0):
cb = lambda match: [repl(match) if callable(repl) else match.expand(repl)]
empty = type(text)()
pieces, numsplit = self._split(cb, text, count)
joined_pieces = empty.join(pieces)
return joined_pieces, numsplit
def sub(self, repl, text, count=0):
joined_pieces, _ = self.subn(repl, text, count)
return joined_pieces
@property
def pattern(self):
return self._pattern
@property
def options(self):
return self._regexp.options()
@property
def groups(self):
return self._regexp.NumberOfCapturingGroups()
@property
def groupindex(self):
groups = self._regexp.NamedCapturingGroups()
if isinstance(self._pattern, str):
decoded_groups = [(_decode(group), index) for group, index in groups]
return dict(decoded_groups)
else:
return dict(groups)
@property
def programsize(self):
return self._regexp.ProgramSize()
@property
def reverseprogramsize(self):
return self._regexp.ReverseProgramSize()
@property
def programfanout(self):
return self._regexp.ProgramFanout()
@property
def reverseprogramfanout(self):
return self._regexp.ReverseProgramFanout()
def possiblematchrange(self, maxlen):
ok, min, max = self._regexp.PossibleMatchRange(maxlen)
if not ok:
raise error('failed to compute match range')
return min, max
class _Match(object):
__slots__ = ('_regexp', '_text', '_pos', '_endpos', '_spans')
def __init__(self, regexp, text, pos, endpos, spans):
self._regexp = regexp
self._text = text
self._pos = pos
self._endpos = endpos
self._spans = spans
# Python prioritises three-digit octal numbers over group escapes.
# For example, \100 should not be handled the same way as \g<10>0.
_OCTAL_RE = compile('\\\\[0-7][0-7][0-7]')
# Python supports \1 through \99 (inclusive) and \g<...> syntax.
_GROUP_RE = compile('\\\\[1-9][0-9]?|\\\\g<\\w+>')
@classmethod
@functools.lru_cache(typed=True)
def _split(cls, template):
if isinstance(template, str):
backslash = '\\'
else:
backslash = b'\\'
empty = type(template)()
pieces = [empty]
index = template.find(backslash)
while index != -1:
piece, template = template[:index], template[index:]
pieces[-1] += piece
octal_match = cls._OCTAL_RE.match(template)
group_match = cls._GROUP_RE.match(template)
if (not octal_match) and group_match:
index = group_match.end()
piece, template = template[:index], template[index:]
pieces.extend((piece, empty))
else:
# 2 isn't enough for \o, \x, \N, \u and \U escapes, but none of those
# should contain backslashes, so break them here and then fix them at
# the beginning of the next loop iteration or right before returning.
index = 2
piece, template = template[:index], template[index:]
pieces[-1] += piece
index = template.find(backslash)
pieces[-1] += template
return pieces
def expand(self, template):
if isinstance(template, str):
unescape = codecs.unicode_escape_decode
else:
unescape = codecs.escape_decode
empty = type(template)()
# Make a copy so that we don't clobber the cached pieces!
pieces = list(self._split(template))
for index, piece in enumerate(pieces):
if not index % 2:
pieces[index], _ = unescape(piece)
else:
if len(piece) <= 3: # \1 through \99 (inclusive)
group = int(piece[1:])
else: # \g<...>
group = piece[3:-1]
try:
group = int(group)
except ValueError:
pass
pieces[index] = self.__getitem__(group) or empty
joined_pieces = empty.join(pieces)
return joined_pieces
def __getitem__(self, group):
if not isinstance(group, int):
try:
group = self._regexp.groupindex[group]
except KeyError:
raise IndexError('bad group name')
if not 0 <= group <= self._regexp.groups:
raise IndexError('bad group index')
span = self._spans[group]
if span == _NULL_SPAN:
return None
return self._text[span[0]:span[1]]
def group(self, *groups):
if not groups:
groups = (0,)
items = (self.__getitem__(group) for group in groups)
return next(items) if len(groups) == 1 else tuple(items)
def groups(self, default=None):
items = []
for group in range(1, self._regexp.groups + 1):
item = self.__getitem__(group)
items.append(default if item is None else item)
return tuple(items)
def groupdict(self, default=None):
items = []
for group, index in self._regexp.groupindex.items():
item = self.__getitem__(index)
items.append((group, default) if item is None else (group, item))
return dict(items)
def start(self, group=0):
if not 0 <= group <= self._regexp.groups:
raise IndexError('bad group index')
return self._spans[group][0]
def end(self, group=0):
if not 0 <= group <= self._regexp.groups:
raise IndexError('bad group index')
return self._spans[group][1]
def span(self, group=0):
if not 0 <= group <= self._regexp.groups:
raise IndexError('bad group index')
return self._spans[group]
@property
def re(self):
return self._regexp
@property
def string(self):
return self._text
@property
def pos(self):
return self._pos
@property
def endpos(self):
return self._endpos
@property
def lastindex(self):
max_end = -1
max_group = None
# We look for the rightmost right parenthesis by keeping the first group
# that ends at max_end because that is the leftmost/outermost group when
# there are nested groups!
for group in range(1, self._regexp.groups + 1):
end = self._spans[group][1]
if max_end < end:
max_end = end
max_group = group
return max_group
@property
def lastgroup(self):
max_group = self.lastindex
if not max_group:
return None
for group, index in self._regexp.groupindex.items():
if max_group == index:
return group
return None
class Set(object):
"""A Pythonic wrapper around RE2::Set."""
__slots__ = ('_set')
def __init__(self, anchor, options=None):
options = options or Options()
self._set = _re2.Set(anchor, options)
@classmethod
def SearchSet(cls, options=None):
return cls(_Anchor.UNANCHORED, options=options)
@classmethod
def MatchSet(cls, options=None):
return cls(_Anchor.ANCHOR_START, options=options)
@classmethod
def FullMatchSet(cls, options=None):
return cls(_Anchor.ANCHOR_BOTH, options=options)
def Add(self, pattern):
if isinstance(pattern, str):
encoded_pattern = _encode(pattern)
index = self._set.Add(encoded_pattern)
else:
index = self._set.Add(pattern)
if index == -1:
raise error('failed to add %r to Set' % pattern)
return index
def Compile(self):
if not self._set.Compile():
raise error('failed to compile Set')
def Match(self, text):
if isinstance(text, str):
encoded_text = _encode(text)
matches = self._set.Match(encoded_text)
else:
matches = self._set.Match(text)
return matches or None
class Filter(object):
"""A Pythonic wrapper around FilteredRE2."""
__slots__ = ('_filter', '_patterns')
def __init__(self):
self._filter = _re2.Filter()
self._patterns = []
def Add(self, pattern, options=None):
options = options or Options()
if isinstance(pattern, str):
encoded_pattern = _encode(pattern)
index = self._filter.Add(encoded_pattern, options)
else:
index = self._filter.Add(pattern, options)
if index == -1:
raise error('failed to add %r to Filter' % pattern)
self._patterns.append(pattern)
return index
def Compile(self):
if not self._filter.Compile():
raise error('failed to compile Filter')
def Match(self, text, potential=False):
if isinstance(text, str):
encoded_text = _encode(text)
matches = self._filter.Match(encoded_text, potential)
else:
matches = self._filter.Match(text, potential)
return matches or None
def re(self, index):
if not 0 <= index < len(self._patterns):
raise IndexError('bad index')
proxy = object.__new__(_Regexp)
proxy._pattern = self._patterns[index]
proxy._regexp = self._filter.GetRE2(index)
return proxy