blob: 83fb101e77cd633400360fea80fa57ddbdd597e5 [file] [log] [blame]
// Copyright 2022 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
use proc_macro2::TokenStream;
use quote::{format_ident, quote, quote_spanned, ToTokens};
use syn::parse::{Parse, ParseStream};
use syn::spanned::Spanned;
use syn::{parse_macro_input, Error, Ident, ItemFn, ItemImpl, LitStr, Token, Type};
/// The prefix attached to a Gtest factory function by the
/// RUST_GTEST_TEST_SUITE_FACTORY() macro.
const RUST_GTEST_FACTORY_PREFIX: &str = "RustGtestFactory_";
struct GtestArgs {
suite_name: String,
test_name: String,
}
impl Parse for GtestArgs {
fn parse(input: ParseStream) -> Result<Self, Error> {
let suite_name = input.parse::<Ident>()?.to_string();
input.parse::<Token![,]>()?;
let test_name = input.parse::<Ident>()?.to_string();
Ok(GtestArgs { suite_name, test_name })
}
}
struct GtestSuiteArgs {
rust_type: Type,
}
impl Parse for GtestSuiteArgs {
fn parse(input: ParseStream) -> Result<Self, Error> {
let rust_type = input.parse::<Type>()?;
Ok(GtestSuiteArgs { rust_type })
}
}
struct ExternTestSuiteArgs {
cpp_type: TokenStream,
}
impl Parse for ExternTestSuiteArgs {
fn parse(input: ParseStream) -> Result<Self, Error> {
// TODO(b/229791967): With CXX it is not possible to get the C++ typename and
// path from the Rust wrapper type, so we require specifying it by hand in
// the macro. It would be nice to remove this opportunity for mistakes.
let cpp_type_as_lit_str = input.parse::<LitStr>()?;
// TODO(danakj): This code drops the C++ namespaces, because we can't produce a
// mangled name and can't generate bindings involving fn pointers, so we require
// the C++ function to be `extern "C"` which means it has no namespace.
// Eventually we should drop the `extern "C"` on the C++ side and use the
// full path here.
match cpp_type_as_lit_str.value().split("::").last() {
Some(name) => {
Ok(ExternTestSuiteArgs { cpp_type: format_ident!("{}", name).into_token_stream() })
}
None => Err(Error::new(cpp_type_as_lit_str.span(), "invalid C++ class name")),
}
}
}
struct CppPrefixArgs {
cpp_prefix: String,
}
impl Parse for CppPrefixArgs {
fn parse(input: ParseStream) -> Result<Self, Error> {
let cpp_prefix_as_lit_str = input.parse::<LitStr>()?;
Ok(CppPrefixArgs { cpp_prefix: cpp_prefix_as_lit_str.value() })
}
}
/// The `gtest` macro can be placed on a function to make it into a Gtest unit
/// test, when linked into a C++ binary that invokes Gtest.
///
/// The `gtest` macro takes two arguments, which are Rust identifiers. The first
/// is the name of the test suite and the second is the name of the test, each
/// of which are converted to a string and given to Gtest. The name of the test
/// function itself does not matter, and need not be unique (it's placed into a
/// unique module based on the Gtest suite + test names.
///
/// The test function must have no arguments. The return value must be either
/// `()` or `std::result::Result<(), E>`. If another return type is found, the
/// test will fail when run. If the return type is a `Result`, then an `Err` is
/// treated as a test failure.
///
/// # Examples
/// ```
/// #[gtest(MathTest, Addition)]
/// fn my_test() {
/// expect_eq!(1 + 1, 2);
/// }
/// ```
///
/// The above adds the function to the Gtest binary as `MathTest.Addtition`:
/// ```
/// [ RUN ] MathTest.Addition
/// [ OK ] MathTest.Addition (0 ms)
/// ```
///
/// A test with a Result return type, and which uses the `?` operator. It will
/// fail if the test returns an `Err`, and print the resulting error string:
/// ```
/// #[gtest(ResultTest, CheckThingWithResult)]
/// fn my_test() -> std::result::Result<(), String> {
/// call_thing_with_result()?;
/// }
/// ```
#[proc_macro_attribute]
pub fn gtest(
args: proc_macro::TokenStream,
input: proc_macro::TokenStream,
) -> proc_macro::TokenStream {
let GtestArgs { suite_name, test_name } = parse_macro_input!(args as GtestArgs);
let (input_fn, gtest_suite_attr) = {
let mut input_fn = parse_macro_input!(input as ItemFn);
if let Some(asyncness) = input_fn.sig.asyncness {
// TODO(crbug.com/1288947): We can support async functions once we have
// block_on() support which will run a RunLoop until the async test
// completes. The run_test_fn just needs to be generated to `block_on(||
// #test_fn)` instead of calling `#test_fn` synchronously.
return quote_spanned! {
asyncness.span =>
compile_error!("async functions are not supported.");
}
.into();
}
// Filter out other gtest attributes on the test function and save them for
// later processing.
let mut gtest_suite_attr = None;
input_fn.attrs = input_fn
.attrs
.into_iter()
.filter_map(|attr| {
if attr.path().is_ident("gtest_suite") {
gtest_suite_attr = Some(attr);
None
} else {
Some(attr)
}
})
.collect::<Vec<_>>();
(input_fn, gtest_suite_attr)
};
// The identifier of the function which contains the body of the test.
let test_fn = &input_fn.sig.ident;
let (gtest_factory_fn, test_fn_call) = if let Some(attr) = gtest_suite_attr {
// If present, the gtest_suite attribute is expected to have the form
// `#[gtest_suite(path::to::RustType)]`. The Rust type wraps a C++
// `TestSuite` (subclass of `::testing::Test`) which should be created
// and returned by a C++ factory function.
let rust_type = match attr.parse_args::<GtestSuiteArgs>() {
Ok(x) => x.rust_type,
Err(x) => return x.to_compile_error().into(),
};
(
// Get the Gtest factory function pointer from the TestSuite trait.
quote! { <#rust_type as ::rust_gtest_interop::TestSuite>::gtest_factory_fn_ptr() },
// SAFETY: Our lambda casts the `suite` reference and does not move from it, and
// the resulting type is not Unpin.
quote! {
let p = unsafe {
suite.map_unchecked_mut(|suite: &mut ::rust_gtest_interop::OpaqueTestingTest| {
suite.as_mut()
})
};
#test_fn(p)
},
)
} else {
// Otherwise, use `rust_gtest_interop::rust_gtest_default_factory()`
// which makes a `TestSuite` with `testing::Test` directly.
(
quote! { ::rust_gtest_interop::__private::rust_gtest_default_factory },
quote! { #test_fn() },
)
};
// The test function and all code generate by this proc macroa go into a
// submodule which is uniquely named for the super module based on the Gtest
// suite and test names. If two tests have the same suite + test name, this
// will result in a compiler error—this is OK because Gtest disallows
// dynamically registering multiple tests with the same suite + test name.
let test_mod = format_ident!("__test_{}_{}", suite_name, test_name);
// In the generated code, `run_test_fn` is marked #[no_mangle] to work around a
// codegen bug where the function is seen as dead and the compiler omits it
// from the object files. Since it's #[no_mangle], the identifier must be
// globally unique or we have an ODR violation. To produce a unique
// identifier, we roll our own name mangling by combining the file name and
// path from the source tree root with the Gtest suite and test names and the
// function itself.
//
// Note that an adversary could still produce a bug here by placing two equal
// Gtest suite and names in a single .rs file but in separate inline
// submodules.
//
// TODO(dcheng): This probably can be simplified to not bother with anything
// other than the suite and test name, given Gtest's restrictions for a
// given suite + test name pair to be globally unique within a test binary.
let mangled_function_name = |f: &syn::ItemFn| -> syn::Ident {
let file_name = file!().replace(|c: char| !c.is_ascii_alphanumeric(), "_");
format_ident!("{}_{}_{}_{}", file_name, suite_name, test_name, f.sig.ident)
};
let run_test_fn = format_ident!("run_test_{}", mangled_function_name(&input_fn));
// Implements ToTokens to generate a reference to a static-lifetime,
// null-terminated, C-String literal. It is represented as an array of type
// std::os::raw::c_char which can be either signed or unsigned depending on
// the platform, and it can be passed directly to C++. This differs from
// byte strings and CStr which work with `u8`.
//
// TODO(crbug.com/1298175): Would it make sense to write a c_str_literal!()
// macro that takes a Rust string literal and produces a null-terminated
// array of `c_char`? Then you could write `c_str_literal!(file!())` for
// example, or implement a `file_c_str!()` in this way. Explore using https://crates.io/crates/cstr.
//
// TODO(danakj): Write unit tests for this, and consider pulling this out into
// its own crate, if we don't replace it with c_str_literal!() or the "cstr"
// crate.
struct CStringLiteral<'a>(&'a str);
impl quote::ToTokens for CStringLiteral<'_> {
fn to_tokens(&self, tokens: &mut proc_macro2::TokenStream) {
let mut c_chars = self.0.chars().map(|c| c as std::os::raw::c_char).collect::<Vec<_>>();
c_chars.push(0);
// Verify there's no embedded nulls as that would be invalid if the literal were
// put in a std::ffi::CString.
assert_eq!(c_chars.iter().filter(|x| **x == 0).count(), 1);
let comment = format!("\"{}\" as [c_char]", self.0);
tokens.extend(quote! {
{
#[doc=#comment]
&[#(#c_chars as std::os::raw::c_char),*]
}
});
}
}
// C-compatible string literals, that can be inserted into the quote! macro.
let suite_name_c_bytes = CStringLiteral(&suite_name);
let test_name_c_bytes = CStringLiteral(&test_name);
let file_c_bytes = CStringLiteral(file!());
let output = quote! {
#[cfg(not(is_gtest_unittests))]
compile_error!(
"#[gtest(...)] can only be used in targets where the GN \
variable `is_gtest_unittests` is set to `true`.");
mod #test_mod {
use super::*;
#[::rust_gtest_interop::small_ctor::ctor]
unsafe fn register_test() {
let r = ::rust_gtest_interop::__private::TestRegistration {
func: #run_test_fn,
test_suite_name: #suite_name_c_bytes,
test_name: #test_name_c_bytes,
file: #file_c_bytes,
line: line!(),
factory: #gtest_factory_fn,
};
::rust_gtest_interop::__private::register_test(r);
}
// The function is extern "C" so `register_test()` can pass this fn as a pointer to C++
// where it's registered with gtest.
//
// TODO(crbug.com/1296284): Removing #[no_mangle] makes rustc drop the symbol for the
// test function in the generated rlib which produces linker errors. If we resolve the
// linked bug and emit real object files from rustc for linking, then all the required
// symbols are present and `#[no_mangle]` should go away along with the custom-mangling
// of `run_test_fn`. We can not use `pub` to resolve this unfortunately. When `#[used]`
// is fixed in https://github.com/rust-lang/rust/issues/47384, this may also be
// resolved as well.
#[no_mangle]
extern "C" fn #run_test_fn(
suite: std::pin::Pin<&mut ::rust_gtest_interop::OpaqueTestingTest>
) {
let catch_result = std::panic::catch_unwind(std::panic::AssertUnwindSafe(|| {
#test_fn_call
}));
use ::rust_gtest_interop::TestResult;
let err_message: Option<String> = match catch_result {
Ok(fn_result) => TestResult::into_error_message(fn_result),
Err(_) => Some("Test panicked".to_string()),
};
if let Some(m) = err_message.as_ref() {
::rust_gtest_interop::__private::add_failure_at(file!(), line!(), &m);
}
}
#input_fn
}
};
output.into()
}
/// The `#[extern_test_suite()]` macro is used to implement the unsafe
/// `TestSuite` trait.
///
/// The `TestSuite` trait is used to mark a Rust type as being a wrapper of a
/// C++ subclass of `testing::Test`. This makes it valid to cast from a `*mut
/// testing::Test` to a pointer of the marked Rust type.
///
/// It also marks a promise that on the C++, there exists an instantiation of
/// the RUST_GTEST_TEST_SUITE_FACTORY() macro for the C++ subclass type which
/// will be linked with the Rust crate.
///
/// The macro takes a single parameter which is the fully specified C++ typename
/// of the C++ subclass for which the implementing Rust type is a wrapper. It
/// expects the body of the trait implementation to be empty, as it will fill in
/// the required implementation.
///
/// # Example
/// If in C++ we have:
/// ```cpp
/// class GoatTestSuite : public testing::Test {}
/// RUST_GTEST_TEST_SUITE_FACTORY(GoatTestSuite);
/// ```
///
/// And in Rust we have a `ffi::GoatTestSuite` type generated to wrap the C++
/// type. The the type can be marked as a valid TestSuite with the
/// `#[extern_test_suite]` macro: ```rs
/// #[extern_test_suite("GoatTestSuite")]
/// unsafe impl rust_gtest_interop::TestSuite for ffi::GoatTestSuite {}
/// ```
///
/// # Internals
/// The #[cpp_prefix("STRING_")] attribute can follow `#[extern_test_suite()]`
/// to control the path to the C++ Gtest factory function. This is used for
/// connecting to different C++ macros than the usual
/// RUST_GTEST_TEST_SUITE_FACTORY().
#[proc_macro_attribute]
pub fn extern_test_suite(
args: proc_macro::TokenStream,
input: proc_macro::TokenStream,
) -> proc_macro::TokenStream {
// TODO(b/229791967): With CXX it is not possible to get the C++ typename and
// path from the Rust wrapper type, so we require specifying it by hand in
// the macro. It would be nice to remove this opportunity for mistakes.
let ExternTestSuiteArgs { cpp_type } = parse_macro_input!(args as ExternTestSuiteArgs);
// Filter out other gtest attributes on the trait impl and save them for later
// processing.
let (trait_impl, cpp_prefix_attr) = {
let mut trait_impl = parse_macro_input!(input as ItemImpl);
if !trait_impl.items.is_empty() {
return quote_spanned! {trait_impl.items[0].span() => compile_error!(
"expected empty trait impl"
)}
.into();
}
let mut cpp_prefix_attr = None;
trait_impl.attrs = trait_impl
.attrs
.into_iter()
.filter_map(|attr| {
if attr.path().is_ident("cpp_prefix") {
cpp_prefix_attr = Some(attr);
None
} else {
Some(attr)
}
})
.collect::<Vec<_>>();
(trait_impl, cpp_prefix_attr)
};
let cpp_prefix = if let Some(attr) = cpp_prefix_attr {
// If present, the cpp_prefix attribute is expected to have the form
// `#[cpp_prefix("PREFIX_STRING_")]`.
match attr.parse_args::<CppPrefixArgs>() {
Ok(cpp_prefix_args) => cpp_prefix_args.cpp_prefix,
Err(x) => return x.to_compile_error().into(),
}
} else {
RUST_GTEST_FACTORY_PREFIX.to_string()
};
let trait_name = match &trait_impl.trait_ {
Some((_, path, _)) => path,
None => {
return quote! {compile_error!(
"expected impl rust_gtest_interop::TestSuite trait"
)}
.into();
}
};
let rust_type = match &*trait_impl.self_ty {
Type::Path(type_path) => type_path,
_ => {
return quote_spanned! {trait_impl.self_ty.span() => compile_error!(
"expected type that wraps C++ subclass of `testing::Test`"
)}
.into();
}
};
// TODO(danakj): We should generate a C++ mangled name here, then we don't
// require the function to be `extern "C"` (or have the author write the
// mangled name themselves).
let cpp_fn_name = format_ident!("{}{}", cpp_prefix, cpp_type.to_string());
let output = quote! {
unsafe impl #trait_name for #rust_type {
fn gtest_factory_fn_ptr() -> rust_gtest_interop::GtestFactoryFunction {
extern "C" {
fn #cpp_fn_name(
f: extern "C" fn(
test_body: ::std::pin::Pin<&mut ::rust_gtest_interop::OpaqueTestingTest>
)
) -> ::std::pin::Pin<&'static mut ::rust_gtest_interop::OpaqueTestingTest>;
}
#cpp_fn_name
}
}
};
output.into()
}