blob: 4ecc604c4a315a5d78d33b7b594c66527f1b1808 [file] [log] [blame]
// Copyright 2015 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/task/sequence_manager/task_queue_impl.h"
#include <inttypes.h>
#include <memory>
#include <utility>
#include "base/check.h"
#include "base/compiler_specific.h"
#include "base/feature_list.h"
#include "base/logging.h"
#include "base/memory/scoped_refptr.h"
#include "base/metrics/histogram_macros.h"
#include "base/notreached.h"
#include "base/observer_list.h"
#include "base/ranges/algorithm.h"
#include "base/strings/stringprintf.h"
#include "base/task/common/scoped_defer_task_posting.h"
#include "base/task/default_delayed_task_handle_delegate.h"
#include "base/task/sequence_manager/associated_thread_id.h"
#include "base/task/sequence_manager/delayed_task_handle_delegate.h"
#include "base/task/sequence_manager/fence.h"
#include "base/task/sequence_manager/sequence_manager_impl.h"
#include "base/task/sequence_manager/task_order.h"
#include "base/task/sequence_manager/wake_up_queue.h"
#include "base/task/sequence_manager/work_queue.h"
#include "base/task/task_features.h"
#include "base/task/task_observer.h"
#include "base/threading/thread_restrictions.h"
#include "base/time/time.h"
#include "base/trace_event/base_tracing.h"
#include "base/types/pass_key.h"
#include "build/build_config.h"
#include "third_party/abseil-cpp/absl/container/inlined_vector.h"
#include "third_party/abseil-cpp/absl/types/optional.h"
namespace base {
namespace sequence_manager {
namespace internal {
namespace {
// An atomic is used here because the value is queried from other threads when
// tasks are posted cross-thread, which can race with its initialization.
std::atomic<base::TimeDelta> g_max_precise_delay{kDefaultMaxPreciseDelay};
#if BUILDFLAG(IS_WIN)
// An atomic is used here because the flag is queried from other threads when
// tasks are posted cross-thread, which can race with its initialization.
std::atomic_bool g_explicit_high_resolution_timer_win{true};
#endif // BUILDFLAG(IS_WIN)
} // namespace
TaskQueueImpl::GuardedTaskPoster::GuardedTaskPoster(TaskQueueImpl* outer)
: outer_(outer) {}
TaskQueueImpl::GuardedTaskPoster::~GuardedTaskPoster() {}
bool TaskQueueImpl::GuardedTaskPoster::PostTask(PostedTask task) {
// Do not process new PostTasks while we are handling a PostTask (tracing
// has to do this) as it can lead to a deadlock and defer it instead.
ScopedDeferTaskPosting disallow_task_posting;
auto token = operations_controller_.TryBeginOperation();
if (!token)
return false;
outer_->PostTask(std::move(task));
return true;
}
DelayedTaskHandle TaskQueueImpl::GuardedTaskPoster::PostCancelableTask(
PostedTask task) {
// Do not process new PostTasks while we are handling a PostTask (tracing
// has to do this) as it can lead to a deadlock and defer it instead.
ScopedDeferTaskPosting disallow_task_posting;
auto token = operations_controller_.TryBeginOperation();
if (!token)
return DelayedTaskHandle();
auto delayed_task_handle_delegate =
std::make_unique<DelayedTaskHandleDelegate>(outer_);
task.delayed_task_handle_delegate = delayed_task_handle_delegate->AsWeakPtr();
outer_->PostTask(std::move(task));
DCHECK(delayed_task_handle_delegate->IsValid());
return DelayedTaskHandle(std::move(delayed_task_handle_delegate));
}
TaskQueueImpl::TaskRunner::TaskRunner(
scoped_refptr<GuardedTaskPoster> task_poster,
scoped_refptr<const AssociatedThreadId> associated_thread,
TaskType task_type)
: task_poster_(std::move(task_poster)),
associated_thread_(std::move(associated_thread)),
task_type_(task_type) {}
TaskQueueImpl::TaskRunner::~TaskRunner() {}
bool TaskQueueImpl::TaskRunner::PostDelayedTask(const Location& location,
OnceClosure callback,
TimeDelta delay) {
return task_poster_->PostTask(PostedTask(this, std::move(callback), location,
delay, Nestable::kNestable,
task_type_));
}
bool TaskQueueImpl::TaskRunner::PostDelayedTaskAt(
subtle::PostDelayedTaskPassKey,
const Location& location,
OnceClosure callback,
TimeTicks delayed_run_time,
base::subtle::DelayPolicy delay_policy) {
return task_poster_->PostTask(PostedTask(this, std::move(callback), location,
delayed_run_time, delay_policy,
Nestable::kNestable, task_type_));
}
DelayedTaskHandle TaskQueueImpl::TaskRunner::PostCancelableDelayedTaskAt(
subtle::PostDelayedTaskPassKey pass_key,
const Location& location,
OnceClosure callback,
TimeTicks delayed_run_time,
base::subtle::DelayPolicy delay_policy) {
return task_poster_->PostCancelableTask(
PostedTask(this, std::move(callback), location, delayed_run_time,
delay_policy, Nestable::kNestable, task_type_));
}
DelayedTaskHandle TaskQueueImpl::TaskRunner::PostCancelableDelayedTask(
subtle::PostDelayedTaskPassKey pass_key,
const Location& location,
OnceClosure callback,
TimeDelta delay) {
return task_poster_->PostCancelableTask(
PostedTask(this, std::move(callback), location, delay,
Nestable::kNestable, task_type_));
}
bool TaskQueueImpl::TaskRunner::PostNonNestableDelayedTask(
const Location& location,
OnceClosure callback,
TimeDelta delay) {
return task_poster_->PostTask(PostedTask(this, std::move(callback), location,
delay, Nestable::kNonNestable,
task_type_));
}
bool TaskQueueImpl::TaskRunner::RunsTasksInCurrentSequence() const {
return associated_thread_->IsBoundToCurrentThread();
}
// static
void TaskQueueImpl::InitializeFeatures() {
g_max_precise_delay = kMaxPreciseDelay.Get();
#if BUILDFLAG(IS_WIN)
g_explicit_high_resolution_timer_win.store(
FeatureList::IsEnabled(kExplicitHighResolutionTimerWin),
std::memory_order_relaxed);
#endif // BUILDFLAG(IS_WIN)
}
TaskQueueImpl::TaskQueueImpl(SequenceManagerImpl* sequence_manager,
WakeUpQueue* wake_up_queue,
const TaskQueue::Spec& spec)
: name_(spec.name),
sequence_manager_(sequence_manager),
associated_thread_(sequence_manager
? sequence_manager->associated_thread()
: AssociatedThreadId::CreateBound()),
task_poster_(MakeRefCounted<GuardedTaskPoster>(this)),
main_thread_only_(this, wake_up_queue),
empty_queues_to_reload_handle_(
sequence_manager
? sequence_manager->GetFlagToRequestReloadForEmptyQueue(this)
: AtomicFlagSet::AtomicFlag()),
should_monitor_quiescence_(spec.should_monitor_quiescence),
should_notify_observers_(spec.should_notify_observers),
delayed_fence_allowed_(spec.delayed_fence_allowed),
default_task_runner_(CreateTaskRunner(kTaskTypeNone)) {
UpdateCrossThreadQueueStateLocked();
// SequenceManager can't be set later, so we need to prevent task runners
// from posting any tasks.
if (sequence_manager_)
task_poster_->StartAcceptingOperations();
}
TaskQueueImpl::~TaskQueueImpl() {
#if DCHECK_IS_ON()
base::internal::CheckedAutoLock lock(any_thread_lock_);
// NOTE this check shouldn't fire because |SequenceManagerImpl::queues_|
// contains a strong reference to this TaskQueueImpl and the
// SequenceManagerImpl destructor calls UnregisterTaskQueue on all task
// queues.
DCHECK(any_thread_.unregistered)
<< "UnregisterTaskQueue must be called first!";
#endif
}
TaskQueueImpl::AnyThread::AnyThread() = default;
TaskQueueImpl::AnyThread::~AnyThread() = default;
TaskQueueImpl::AnyThread::TracingOnly::TracingOnly() = default;
TaskQueueImpl::AnyThread::TracingOnly::~TracingOnly() = default;
TaskQueueImpl::MainThreadOnly::MainThreadOnly(TaskQueueImpl* task_queue,
WakeUpQueue* wake_up_queue)
: wake_up_queue(wake_up_queue),
delayed_work_queue(
new WorkQueue(task_queue, "delayed", WorkQueue::QueueType::kDelayed)),
immediate_work_queue(new WorkQueue(task_queue,
"immediate",
WorkQueue::QueueType::kImmediate)) {}
TaskQueueImpl::MainThreadOnly::~MainThreadOnly() = default;
scoped_refptr<SingleThreadTaskRunner> TaskQueueImpl::CreateTaskRunner(
TaskType task_type) const {
DCHECK_CALLED_ON_VALID_THREAD(associated_thread_->thread_checker);
return MakeRefCounted<TaskRunner>(task_poster_, associated_thread_,
task_type);
}
const scoped_refptr<SingleThreadTaskRunner>& TaskQueueImpl::task_runner()
const {
return default_task_runner_;
}
void TaskQueueImpl::UnregisterTaskQueue() {
TRACE_EVENT0("base", "TaskQueueImpl::UnregisterTaskQueue");
// Invalidate weak pointers now so no voters reference this in a partially
// torn down state.
voter_weak_ptr_factory_.InvalidateWeakPtrs();
// Detach task runners.
{
ScopedAllowBaseSyncPrimitivesOutsideBlockingScope allow_wait;
task_poster_->ShutdownAndWaitForZeroOperations();
}
TaskDeque immediate_incoming_queue;
base::flat_map<raw_ptr<OnTaskPostedCallbackHandleImpl>, OnTaskPostedHandler>
on_task_posted_handlers;
{
base::internal::CheckedAutoLock lock(any_thread_lock_);
any_thread_.unregistered = true;
immediate_incoming_queue.swap(any_thread_.immediate_incoming_queue);
for (auto& handler : any_thread_.on_task_posted_handlers)
handler.first->UnregisterTaskQueue();
any_thread_.on_task_posted_handlers.swap(on_task_posted_handlers);
}
if (main_thread_only().wake_up_queue) {
main_thread_only().wake_up_queue->UnregisterQueue(this);
}
main_thread_only().on_task_started_handler = OnTaskStartedHandler();
main_thread_only().on_task_completed_handler = OnTaskCompletedHandler();
main_thread_only().wake_up_queue = nullptr;
main_thread_only().throttler = nullptr;
empty_queues_to_reload_handle_.ReleaseAtomicFlag();
// It is possible for a task to hold a scoped_refptr to this, which
// will lead to TaskQueueImpl destructor being called when deleting a task.
// To avoid use-after-free, we need to clear all fields of a task queue
// before starting to delete the tasks.
// All work queues and priority queues containing tasks should be moved to
// local variables on stack (std::move for unique_ptrs and swap for queues)
// before clearing them and deleting tasks.
// Flush the queues outside of the lock because TSAN complains about a lock
// order inversion for tasks that are posted from within a lock, with a
// destructor that acquires the same lock.
DelayedIncomingQueue delayed_incoming_queue;
delayed_incoming_queue.swap(&main_thread_only().delayed_incoming_queue);
std::unique_ptr<WorkQueue> immediate_work_queue =
std::move(main_thread_only().immediate_work_queue);
std::unique_ptr<WorkQueue> delayed_work_queue =
std::move(main_thread_only().delayed_work_queue);
}
const char* TaskQueueImpl::GetName() const {
return perfetto::protos::pbzero::SequenceManagerTask::QueueName_Name(name_);
}
QueueName TaskQueueImpl::GetProtoName() const {
return name_;
}
void TaskQueueImpl::PostTask(PostedTask task) {
CurrentThread current_thread =
associated_thread_->IsBoundToCurrentThread()
? TaskQueueImpl::CurrentThread::kMainThread
: TaskQueueImpl::CurrentThread::kNotMainThread;
#if DCHECK_IS_ON()
TimeDelta delay = GetTaskDelayAdjustment(current_thread);
if (absl::holds_alternative<base::TimeTicks>(
task.delay_or_delayed_run_time)) {
absl::get<base::TimeTicks>(task.delay_or_delayed_run_time) += delay;
} else {
absl::get<base::TimeDelta>(task.delay_or_delayed_run_time) += delay;
}
#endif // DCHECK_IS_ON()
if (!task.is_delayed()) {
PostImmediateTaskImpl(std::move(task), current_thread);
} else {
PostDelayedTaskImpl(std::move(task), current_thread);
}
}
void TaskQueueImpl::RemoveCancelableTask(HeapHandle heap_handle) {
// Can only cancel from the current thread.
DCHECK(associated_thread_->IsBoundToCurrentThread());
DCHECK(heap_handle.IsValid());
main_thread_only().delayed_incoming_queue.remove(heap_handle);
// Only update the delayed wake up if the top task is removed.
if (heap_handle.index() == 0u) {
LazyNow lazy_now(sequence_manager_->main_thread_clock());
UpdateWakeUp(&lazy_now);
}
}
TimeDelta TaskQueueImpl::GetTaskDelayAdjustment(CurrentThread current_thread) {
#if DCHECK_IS_ON()
if (current_thread == TaskQueueImpl::CurrentThread::kNotMainThread) {
base::internal::CheckedAutoLock lock(any_thread_lock_);
// Add a per-priority delay to cross thread tasks. This can help diagnose
// scheduler induced flakiness by making things flake most of the time.
return sequence_manager_->settings()
.priority_settings
.per_priority_cross_thread_task_delay()[any_thread_.queue_set_index];
} else {
return sequence_manager_->settings()
.priority_settings.per_priority_same_thread_task_delay()
[main_thread_only().immediate_work_queue->work_queue_set_index()];
}
#else
// No delay adjustment.
return TimeDelta();
#endif // DCHECK_IS_ON()
}
void TaskQueueImpl::PostImmediateTaskImpl(PostedTask task,
CurrentThread current_thread) {
// Use CHECK instead of DCHECK to crash earlier. See http://crbug.com/711167
// for details.
CHECK(task.callback);
bool should_schedule_work = false;
{
// TODO(alexclarke): Maybe add a main thread only immediate_incoming_queue
// See https://crbug.com/901800
base::internal::CheckedAutoLock lock(any_thread_lock_);
bool add_queue_time_to_tasks = sequence_manager_->GetAddQueueTimeToTasks();
TimeTicks queue_time;
if (add_queue_time_to_tasks || delayed_fence_allowed_)
queue_time = sequence_manager_->any_thread_clock()->NowTicks();
// The sequence number must be incremented atomically with pushing onto the
// incoming queue. Otherwise if there are several threads posting task we
// risk breaking the assumption that sequence numbers increase monotonically
// within a queue.
EnqueueOrder sequence_number = sequence_manager_->GetNextSequenceNumber();
bool was_immediate_incoming_queue_empty =
any_thread_.immediate_incoming_queue.empty();
any_thread_.immediate_incoming_queue.push_back(
Task(std::move(task), sequence_number, sequence_number, queue_time));
#if DCHECK_IS_ON()
any_thread_.immediate_incoming_queue.back().cross_thread_ =
(current_thread == TaskQueueImpl::CurrentThread::kNotMainThread);
#endif
sequence_manager_->WillQueueTask(
&any_thread_.immediate_incoming_queue.back());
MaybeReportIpcTaskQueuedFromAnyThreadLocked(
any_thread_.immediate_incoming_queue.back());
for (auto& handler : any_thread_.on_task_posted_handlers) {
DCHECK(!handler.second.is_null());
handler.second.Run(any_thread_.immediate_incoming_queue.back());
}
// If this queue was completely empty, then the SequenceManager needs to be
// informed so it can reload the work queue and add us to the
// TaskQueueSelector which can only be done from the main thread. In
// addition it may need to schedule a DoWork if this queue isn't blocked.
if (was_immediate_incoming_queue_empty &&
any_thread_.immediate_work_queue_empty) {
empty_queues_to_reload_handle_.SetActive(true);
should_schedule_work =
any_thread_.post_immediate_task_should_schedule_work;
}
}
// On windows it's important to call this outside of a lock because calling a
// pump while holding a lock can result in priority inversions. See
// http://shortn/_ntnKNqjDQT for a discussion.
//
// Calling ScheduleWork outside the lock should be safe, only the main thread
// can mutate |any_thread_.post_immediate_task_should_schedule_work|. If it
// transitions to false we call ScheduleWork redundantly that's harmless. If
// it transitions to true, the side effect of
// |empty_queues_to_reload_handle_SetActive(true)| is guaranteed to be picked
// up by the ThreadController's call to SequenceManagerImpl::DelayTillNextTask
// when it computes what continuation (if any) is needed.
if (should_schedule_work)
sequence_manager_->ScheduleWork();
TraceQueueSize();
}
void TaskQueueImpl::PostDelayedTaskImpl(PostedTask posted_task,
CurrentThread current_thread) {
// Use CHECK instead of DCHECK to crash earlier. See http://crbug.com/711167
// for details.
CHECK(posted_task.callback);
if (current_thread == CurrentThread::kMainThread) {
LazyNow lazy_now(sequence_manager_->main_thread_clock());
Task pending_task = MakeDelayedTask(std::move(posted_task), &lazy_now);
sequence_manager_->MaybeAddLeewayToTask(pending_task);
PushOntoDelayedIncomingQueueFromMainThread(
std::move(pending_task), &lazy_now,
/* notify_task_annotator */ true);
} else {
LazyNow lazy_now(sequence_manager_->any_thread_clock());
PushOntoDelayedIncomingQueue(
MakeDelayedTask(std::move(posted_task), &lazy_now));
}
}
void TaskQueueImpl::PushOntoDelayedIncomingQueueFromMainThread(
Task pending_task,
LazyNow* lazy_now,
bool notify_task_annotator) {
#if DCHECK_IS_ON()
pending_task.cross_thread_ = false;
#endif
if (notify_task_annotator) {
sequence_manager_->WillQueueTask(&pending_task);
MaybeReportIpcTaskQueuedFromMainThread(pending_task);
}
main_thread_only().delayed_incoming_queue.push(std::move(pending_task));
UpdateWakeUp(lazy_now);
TraceQueueSize();
}
void TaskQueueImpl::PushOntoDelayedIncomingQueue(Task pending_task) {
sequence_manager_->WillQueueTask(&pending_task);
MaybeReportIpcTaskQueuedFromAnyThreadUnlocked(pending_task);
#if DCHECK_IS_ON()
pending_task.cross_thread_ = true;
#endif
// TODO(altimin): Add a copy method to Task to capture metadata here.
auto task_runner = pending_task.task_runner;
const auto task_type = pending_task.task_type;
PostImmediateTaskImpl(
PostedTask(std::move(task_runner),
BindOnce(&TaskQueueImpl::ScheduleDelayedWorkTask,
Unretained(this), std::move(pending_task)),
FROM_HERE, TimeDelta(), Nestable::kNonNestable, task_type),
CurrentThread::kNotMainThread);
}
void TaskQueueImpl::ScheduleDelayedWorkTask(Task pending_task) {
DCHECK_CALLED_ON_VALID_THREAD(associated_thread_->thread_checker);
sequence_manager_->MaybeAddLeewayToTask(pending_task);
TimeTicks now = sequence_manager_->main_thread_clock()->NowTicks();
LazyNow lazy_now(now);
// A delayed task is ready to run as soon as earliest_delayed_run_time() is
// reached.
if (pending_task.earliest_delayed_run_time() <= now) {
// If |delayed_run_time| is in the past then push it onto the work queue
// immediately. To ensure the right task ordering we need to temporarily
// push it onto the |delayed_incoming_queue|.
pending_task.delayed_run_time = now;
main_thread_only().delayed_incoming_queue.push(std::move(pending_task));
MoveReadyDelayedTasksToWorkQueue(
&lazy_now, sequence_manager_->GetNextSequenceNumber());
} else {
// If |delayed_run_time| is in the future we can queue it as normal.
PushOntoDelayedIncomingQueueFromMainThread(std::move(pending_task),
&lazy_now, false);
}
TraceQueueSize();
}
void TaskQueueImpl::ReloadEmptyImmediateWorkQueue() {
DCHECK(main_thread_only().immediate_work_queue->Empty());
main_thread_only().immediate_work_queue->TakeImmediateIncomingQueueTasks();
if (main_thread_only().throttler && IsQueueEnabled()) {
main_thread_only().throttler->OnHasImmediateTask();
}
}
void TaskQueueImpl::TakeImmediateIncomingQueueTasks(TaskDeque* queue) {
DCHECK(queue->empty());
// Now is a good time to consider reducing the empty queue's capacity if we're
// wasting memory, before we make it the `immediate_incoming_queue`.
queue->MaybeShrinkQueue();
base::internal::CheckedAutoLock lock(any_thread_lock_);
queue->swap(any_thread_.immediate_incoming_queue);
// Activate delayed fence if necessary. This is ideologically similar to
// ActivateDelayedFenceIfNeeded, but due to immediate tasks being posted
// from any thread we can't generate an enqueue order for the fence there,
// so we have to check all immediate tasks and use their enqueue order for
// a fence.
if (main_thread_only().delayed_fence) {
for (const Task& task : *queue) {
DCHECK(!task.queue_time.is_null());
DCHECK(task.delayed_run_time.is_null());
if (task.queue_time >= main_thread_only().delayed_fence.value()) {
main_thread_only().delayed_fence = absl::nullopt;
DCHECK(!main_thread_only().current_fence);
main_thread_only().current_fence = Fence(task.task_order());
// Do not trigger WorkQueueSets notification when taking incoming
// immediate queue.
main_thread_only().immediate_work_queue->InsertFenceSilently(
*main_thread_only().current_fence);
main_thread_only().delayed_work_queue->InsertFenceSilently(
*main_thread_only().current_fence);
break;
}
}
}
UpdateCrossThreadQueueStateLocked();
}
bool TaskQueueImpl::IsEmpty() const {
if (!main_thread_only().delayed_work_queue->Empty() ||
!main_thread_only().delayed_incoming_queue.empty() ||
!main_thread_only().immediate_work_queue->Empty()) {
return false;
}
base::internal::CheckedAutoLock lock(any_thread_lock_);
return any_thread_.immediate_incoming_queue.empty();
}
size_t TaskQueueImpl::GetNumberOfPendingTasks() const {
size_t task_count = 0;
task_count += main_thread_only().delayed_work_queue->Size();
task_count += main_thread_only().delayed_incoming_queue.size();
task_count += main_thread_only().immediate_work_queue->Size();
base::internal::CheckedAutoLock lock(any_thread_lock_);
task_count += any_thread_.immediate_incoming_queue.size();
return task_count;
}
bool TaskQueueImpl::HasTaskToRunImmediatelyOrReadyDelayedTask() const {
// Any work queue tasks count as immediate work.
if (!main_thread_only().delayed_work_queue->Empty() ||
!main_thread_only().immediate_work_queue->Empty()) {
return true;
}
// Tasks on |delayed_incoming_queue| that could run now, count as
// immediate work.
if (!main_thread_only().delayed_incoming_queue.empty() &&
main_thread_only().delayed_incoming_queue.top().delayed_run_time <=
sequence_manager_->main_thread_clock()->NowTicks()) {
return true;
}
// Finally tasks on |immediate_incoming_queue| count as immediate work.
base::internal::CheckedAutoLock lock(any_thread_lock_);
return !any_thread_.immediate_incoming_queue.empty();
}
absl::optional<WakeUp> TaskQueueImpl::GetNextDesiredWakeUp() {
// Note we don't scheduled a wake-up for disabled queues.
if (main_thread_only().delayed_incoming_queue.empty() || !IsQueueEnabled())
return absl::nullopt;
const auto& top_task = main_thread_only().delayed_incoming_queue.top();
// High resolution is needed if the queue contains high resolution tasks and
// has a priority index <= kNormalPriority (precise execution time is
// unnecessary for a low priority queue).
WakeUpResolution resolution = has_pending_high_resolution_tasks() &&
GetQueuePriority() <= DefaultPriority()
? WakeUpResolution::kHigh
: WakeUpResolution::kLow;
subtle::DelayPolicy delay_policy = top_task.delay_policy;
if (GetQueuePriority() > DefaultPriority() &&
delay_policy == subtle::DelayPolicy::kPrecise) {
delay_policy = subtle::DelayPolicy::kFlexibleNoSooner;
}
return WakeUp{top_task.delayed_run_time, top_task.leeway, resolution,
delay_policy};
}
void TaskQueueImpl::OnWakeUp(LazyNow* lazy_now, EnqueueOrder enqueue_order) {
MoveReadyDelayedTasksToWorkQueue(lazy_now, enqueue_order);
if (main_thread_only().throttler) {
main_thread_only().throttler->OnWakeUp(lazy_now);
}
}
bool TaskQueueImpl::RemoveAllCanceledDelayedTasksFromFront(LazyNow* lazy_now) {
// Because task destructors could have a side-effect of posting new tasks, we
// move all the cancelled tasks into a temporary container before deleting
// them. This is to avoid the queue from changing while iterating over it.
absl::InlinedVector<Task, 8> tasks_to_delete;
while (!main_thread_only().delayed_incoming_queue.empty()) {
const Task& task = main_thread_only().delayed_incoming_queue.top();
CHECK(task.task);
if (!task.task.IsCancelled())
break;
tasks_to_delete.push_back(
main_thread_only().delayed_incoming_queue.take_top());
}
if (!tasks_to_delete.empty()) {
UpdateWakeUp(lazy_now);
return true;
}
return false;
}
void TaskQueueImpl::MoveReadyDelayedTasksToWorkQueue(
LazyNow* lazy_now,
EnqueueOrder enqueue_order) {
// Enqueue all delayed tasks that should be running now, skipping any that
// have been canceled.
WorkQueue::TaskPusher delayed_work_queue_task_pusher(
main_thread_only().delayed_work_queue->CreateTaskPusher());
// Because task destructors could have a side-effect of posting new tasks, we
// move all the cancelled tasks into a temporary container before deleting
// them. This is to avoid the queue from changing while iterating over it.
absl::InlinedVector<Task, 8> tasks_to_delete;
while (!main_thread_only().delayed_incoming_queue.empty()) {
const Task& task = main_thread_only().delayed_incoming_queue.top();
CHECK(task.task);
// Leave the top task alone if it hasn't been canceled and it is not ready.
const bool is_cancelled = task.task.IsCancelled();
if (!is_cancelled && task.earliest_delayed_run_time() > lazy_now->Now())
break;
Task ready_task = main_thread_only().delayed_incoming_queue.take_top();
if (is_cancelled) {
tasks_to_delete.push_back(std::move(ready_task));
continue;
}
// The top task is ready to run. Move it to the delayed work queue.
#if DCHECK_IS_ON()
if (sequence_manager_->settings().log_task_delay_expiry)
VLOG(0) << GetName() << " Delay expired for "
<< ready_task.posted_from.ToString();
#endif // DCHECK_IS_ON()
DCHECK(!ready_task.delayed_run_time.is_null());
DCHECK(!ready_task.enqueue_order_set());
ready_task.set_enqueue_order(enqueue_order);
ActivateDelayedFenceIfNeeded(ready_task);
delayed_work_queue_task_pusher.Push(std::move(ready_task));
}
// Explicitly delete tasks last.
tasks_to_delete.clear();
UpdateWakeUp(lazy_now);
}
void TaskQueueImpl::TraceQueueSize() const {
bool is_tracing;
TRACE_EVENT_CATEGORY_GROUP_ENABLED(
TRACE_DISABLED_BY_DEFAULT("sequence_manager"), &is_tracing);
if (!is_tracing)
return;
// It's only safe to access the work queues from the main thread.
// TODO(alexclarke): We should find another way of tracing this
if (!associated_thread_->IsBoundToCurrentThread())
return;
size_t total_task_count;
{
base::internal::CheckedAutoLock lock(any_thread_lock_);
total_task_count = any_thread_.immediate_incoming_queue.size() +
main_thread_only().immediate_work_queue->Size() +
main_thread_only().delayed_work_queue->Size() +
main_thread_only().delayed_incoming_queue.size();
}
TRACE_COUNTER1(TRACE_DISABLED_BY_DEFAULT("sequence_manager"), GetName(),
total_task_count);
}
void TaskQueueImpl::SetQueuePriority(TaskQueue::QueuePriority priority) {
const TaskQueue::QueuePriority previous_priority = GetQueuePriority();
if (priority == previous_priority)
return;
sequence_manager_->main_thread_only().selector.SetQueuePriority(this,
priority);
#if BUILDFLAG(IS_WIN)
// Updating queue priority can change whether high resolution timer is needed.
LazyNow lazy_now(sequence_manager_->main_thread_clock());
UpdateWakeUp(&lazy_now);
#endif
if (priority > DefaultPriority()) {
// |priority| is now lower than the default, so update accordingly.
main_thread_only()
.enqueue_order_at_which_we_became_unblocked_with_normal_priority =
EnqueueOrder::max();
} else if (previous_priority > DefaultPriority()) {
// |priority| is no longer lower than the default, so record current
// sequence number.
DCHECK_EQ(
main_thread_only()
.enqueue_order_at_which_we_became_unblocked_with_normal_priority,
EnqueueOrder::max());
main_thread_only()
.enqueue_order_at_which_we_became_unblocked_with_normal_priority =
sequence_manager_->GetNextSequenceNumber();
}
}
TaskQueue::QueuePriority TaskQueueImpl::GetQueuePriority() const {
size_t set_index = immediate_work_queue()->work_queue_set_index();
DCHECK_EQ(set_index, delayed_work_queue()->work_queue_set_index());
return static_cast<TaskQueue::QueuePriority>(set_index);
}
Value::Dict TaskQueueImpl::AsValue(TimeTicks now, bool force_verbose) const {
base::internal::CheckedAutoLock lock(any_thread_lock_);
Value::Dict state;
state.Set("name", GetName());
if (any_thread_.unregistered) {
state.Set("unregistered", true);
return state;
}
DCHECK(main_thread_only().delayed_work_queue);
DCHECK(main_thread_only().immediate_work_queue);
state.Set("task_queue_id",
StringPrintf("0x%" PRIx64, static_cast<uint64_t>(
reinterpret_cast<uintptr_t>(this))));
state.Set("enabled", IsQueueEnabled());
// TODO(crbug.com/1334256): Make base::Value able to store an int64_t and
// remove the various static_casts below.
state.Set("any_thread_.immediate_incoming_queuesize",
static_cast<int>(any_thread_.immediate_incoming_queue.size()));
state.Set("delayed_incoming_queue_size",
static_cast<int>(main_thread_only().delayed_incoming_queue.size()));
state.Set("immediate_work_queue_size",
static_cast<int>(main_thread_only().immediate_work_queue->Size()));
state.Set("delayed_work_queue_size",
static_cast<int>(main_thread_only().delayed_work_queue->Size()));
state.Set("any_thread_.immediate_incoming_queuecapacity",
static_cast<int>(any_thread_.immediate_incoming_queue.capacity()));
state.Set("immediate_work_queue_capacity",
static_cast<int>(immediate_work_queue()->Capacity()));
state.Set("delayed_work_queue_capacity",
static_cast<int>(delayed_work_queue()->Capacity()));
if (!main_thread_only().delayed_incoming_queue.empty()) {
TimeDelta delay_to_next_task =
(main_thread_only().delayed_incoming_queue.top().delayed_run_time -
sequence_manager_->main_thread_clock()->NowTicks());
state.Set("delay_to_next_task_ms", delay_to_next_task.InMillisecondsF());
}
if (main_thread_only().current_fence) {
Value::Dict fence_state;
fence_state.Set(
"enqueue_order",
static_cast<int>(
main_thread_only().current_fence->task_order().enqueue_order()));
fence_state.Set("activated_in_wake_up", !main_thread_only()
.current_fence->task_order()
.delayed_run_time()
.is_null());
state.Set("current_fence", std::move(fence_state));
}
if (main_thread_only().delayed_fence) {
state.Set("delayed_fence_seconds_from_now",
(main_thread_only().delayed_fence.value() - now).InSecondsF());
}
bool verbose = false;
TRACE_EVENT_CATEGORY_GROUP_ENABLED(
TRACE_DISABLED_BY_DEFAULT("sequence_manager.verbose_snapshots"),
&verbose);
if (verbose || force_verbose) {
state.Set("immediate_incoming_queue",
QueueAsValue(any_thread_.immediate_incoming_queue, now));
state.Set("delayed_work_queue",
main_thread_only().delayed_work_queue->AsValue(now));
state.Set("immediate_work_queue",
main_thread_only().immediate_work_queue->AsValue(now));
state.Set("delayed_incoming_queue",
main_thread_only().delayed_incoming_queue.AsValue(now));
}
state.Set("priority", GetQueuePriority());
return state;
}
void TaskQueueImpl::AddTaskObserver(TaskObserver* task_observer) {
main_thread_only().task_observers.AddObserver(task_observer);
}
void TaskQueueImpl::RemoveTaskObserver(TaskObserver* task_observer) {
main_thread_only().task_observers.RemoveObserver(task_observer);
}
void TaskQueueImpl::NotifyWillProcessTask(const Task& task,
bool was_blocked_or_low_priority) {
DCHECK(should_notify_observers_);
for (auto& observer : main_thread_only().task_observers)
observer.WillProcessTask(task, was_blocked_or_low_priority);
}
void TaskQueueImpl::NotifyDidProcessTask(const Task& task) {
DCHECK(should_notify_observers_);
for (auto& observer : main_thread_only().task_observers)
observer.DidProcessTask(task);
}
void TaskQueueImpl::InsertFence(TaskQueue::InsertFencePosition position) {
Fence new_fence = position == TaskQueue::InsertFencePosition::kNow
? Fence::CreateWithEnqueueOrder(
sequence_manager_->GetNextSequenceNumber())
: Fence::BlockingFence();
InsertFence(new_fence);
}
void TaskQueueImpl::InsertFence(Fence current_fence) {
// Only one fence may be present at a time.
main_thread_only().delayed_fence = absl::nullopt;
absl::optional<Fence> previous_fence = main_thread_only().current_fence;
// Tasks posted after this point will have a strictly higher enqueue order
// and will be blocked from running.
main_thread_only().current_fence = current_fence;
bool front_task_unblocked =
main_thread_only().immediate_work_queue->InsertFence(current_fence);
front_task_unblocked |=
main_thread_only().delayed_work_queue->InsertFence(current_fence);
{
base::internal::CheckedAutoLock lock(any_thread_lock_);
if (!front_task_unblocked && previous_fence &&
previous_fence->task_order() < current_fence.task_order()) {
if (!any_thread_.immediate_incoming_queue.empty() &&
any_thread_.immediate_incoming_queue.front().task_order() >
previous_fence->task_order() &&
any_thread_.immediate_incoming_queue.front().task_order() <
current_fence.task_order()) {
front_task_unblocked = true;
}
}
UpdateCrossThreadQueueStateLocked();
}
if (IsQueueEnabled() && front_task_unblocked) {
OnQueueUnblocked();
sequence_manager_->ScheduleWork();
}
}
void TaskQueueImpl::InsertFenceAt(TimeTicks time) {
DCHECK(delayed_fence_allowed_)
<< "Delayed fences are not supported for this queue. Enable them "
"explicitly in TaskQueue::Spec when creating the queue";
// Task queue can have only one fence, delayed or not.
RemoveFence();
main_thread_only().delayed_fence = time;
}
void TaskQueueImpl::RemoveFence() {
absl::optional<Fence> previous_fence = main_thread_only().current_fence;
main_thread_only().current_fence = absl::nullopt;
main_thread_only().delayed_fence = absl::nullopt;
bool front_task_unblocked =
main_thread_only().immediate_work_queue->RemoveFence();
front_task_unblocked |= main_thread_only().delayed_work_queue->RemoveFence();
{
base::internal::CheckedAutoLock lock(any_thread_lock_);
if (!front_task_unblocked && previous_fence) {
if (!any_thread_.immediate_incoming_queue.empty() &&
any_thread_.immediate_incoming_queue.front().task_order() >
previous_fence->task_order()) {
front_task_unblocked = true;
}
}
UpdateCrossThreadQueueStateLocked();
}
if (IsQueueEnabled() && front_task_unblocked) {
OnQueueUnblocked();
sequence_manager_->ScheduleWork();
}
}
bool TaskQueueImpl::BlockedByFence() const {
if (!main_thread_only().current_fence)
return false;
if (!main_thread_only().immediate_work_queue->BlockedByFence() ||
!main_thread_only().delayed_work_queue->BlockedByFence()) {
return false;
}
base::internal::CheckedAutoLock lock(any_thread_lock_);
if (any_thread_.immediate_incoming_queue.empty())
return true;
return any_thread_.immediate_incoming_queue.front().task_order() >
main_thread_only().current_fence->task_order();
}
bool TaskQueueImpl::HasActiveFence() {
if (main_thread_only().delayed_fence &&
sequence_manager_->main_thread_clock()->NowTicks() >
main_thread_only().delayed_fence.value()) {
return true;
}
return !!main_thread_only().current_fence;
}
bool TaskQueueImpl::CouldTaskRun(EnqueueOrder enqueue_order) const {
if (!IsQueueEnabled())
return false;
if (!main_thread_only().current_fence)
return true;
// TODO(crbug.com/1249857): This should use TaskOrder. This is currently only
// used for tests and is fine as-is, but we should be using `TaskOrder` for
// task comparisons. Also this test should be renamed with a testing suffix as
// it is not used in production.
return enqueue_order <
main_thread_only().current_fence->task_order().enqueue_order();
}
bool TaskQueueImpl::WasBlockedOrLowPriority(EnqueueOrder enqueue_order) const {
return enqueue_order <
main_thread_only()
.enqueue_order_at_which_we_became_unblocked_with_normal_priority;
}
// static
Value::List TaskQueueImpl::QueueAsValue(const TaskDeque& queue, TimeTicks now) {
Value::List state;
for (const Task& task : queue)
state.Append(TaskAsValue(task, now));
return state;
}
// static
Value::Dict TaskQueueImpl::TaskAsValue(const Task& task, TimeTicks now) {
Value::Dict state;
state.Set("posted_from", task.posted_from.ToString());
if (task.enqueue_order_set())
state.Set("enqueue_order", static_cast<int>(task.enqueue_order()));
state.Set("sequence_num", task.sequence_num);
state.Set("nestable", task.nestable == Nestable::kNestable);
state.Set("is_high_res", task.is_high_res);
state.Set("is_cancelled", task.task.IsCancelled());
state.Set("delayed_run_time",
(task.delayed_run_time - TimeTicks()).InMillisecondsF());
const TimeDelta delayed_run_time_milliseconds_from_now =
task.delayed_run_time.is_null() ? TimeDelta()
: (task.delayed_run_time - now);
state.Set("delayed_run_time_milliseconds_from_now",
delayed_run_time_milliseconds_from_now.InMillisecondsF());
return state;
}
Task TaskQueueImpl::MakeDelayedTask(PostedTask delayed_task,
LazyNow* lazy_now) const {
EnqueueOrder sequence_number = sequence_manager_->GetNextSequenceNumber();
base::TimeDelta delay;
WakeUpResolution resolution = WakeUpResolution::kLow;
#if BUILDFLAG(IS_WIN)
const bool explicit_high_resolution_timer_win =
g_explicit_high_resolution_timer_win.load(std::memory_order_relaxed);
#endif // BUILDFLAG(IS_WIN)
if (absl::holds_alternative<base::TimeDelta>(
delayed_task.delay_or_delayed_run_time)) {
delay = absl::get<base::TimeDelta>(delayed_task.delay_or_delayed_run_time);
delayed_task.delay_or_delayed_run_time = lazy_now->Now() + delay;
} else {
delay = absl::get<base::TimeTicks>(delayed_task.delay_or_delayed_run_time) -
lazy_now->Now();
}
#if BUILDFLAG(IS_WIN)
if (!explicit_high_resolution_timer_win &&
delay < (2 * base::Milliseconds(Time::kMinLowResolutionThresholdMs))) {
// Outside the kExplicitHighResolutionTimerWin experiment, We consider the
// task needs a high resolution timer if the delay is more than 0 and less
// than 32ms. This caps the relative error to less than 50% : a 33ms wait
// can wake at 48ms since the default resolution on Windows is between 10
// and 15ms.
resolution = WakeUpResolution::kHigh;
}
#endif // BUILDFLAG(IS_WIN)
delayed_task.delay_policy = subtle::MaybeOverrideDelayPolicy(
delayed_task.delay_policy, delay,
g_max_precise_delay.load(std::memory_order_relaxed));
// leeway isn't specified yet since this may be called from any thread.
return Task(std::move(delayed_task), sequence_number, EnqueueOrder(),
lazy_now->Now(), resolution);
}
bool TaskQueueImpl::IsQueueEnabled() const {
return main_thread_only().is_enabled;
}
void TaskQueueImpl::SetQueueEnabled(bool enabled) {
if (main_thread_only().is_enabled == enabled)
return;
// Update the |main_thread_only_| struct.
main_thread_only().is_enabled = enabled;
main_thread_only().disabled_time = absl::nullopt;
// |sequence_manager_| can be null in tests.
if (!sequence_manager_)
return;
LazyNow lazy_now(sequence_manager_->main_thread_clock());
if (!enabled) {
bool tracing_enabled = false;
TRACE_EVENT_CATEGORY_GROUP_ENABLED(TRACE_DISABLED_BY_DEFAULT("lifecycles"),
&tracing_enabled);
main_thread_only().disabled_time = lazy_now.Now();
} else {
// Override reporting if the queue is becoming enabled again.
main_thread_only().should_report_posted_tasks_when_disabled = false;
}
// If there is a throttler, it will be notified of pending delayed and
// immediate tasks inside UpdateWakeUp().
UpdateWakeUp(&lazy_now);
{
base::internal::CheckedAutoLock lock(any_thread_lock_);
UpdateCrossThreadQueueStateLocked();
// Copy over the task-reporting related state.
any_thread_.tracing_only.is_enabled = enabled;
any_thread_.tracing_only.disabled_time = main_thread_only().disabled_time;
any_thread_.tracing_only.should_report_posted_tasks_when_disabled =
main_thread_only().should_report_posted_tasks_when_disabled;
}
// Finally, enable or disable the queue with the selector.
if (enabled) {
// Note the selector calls SequenceManager::OnTaskQueueEnabled which posts
// a DoWork if needed.
sequence_manager_->main_thread_only().selector.EnableQueue(this);
if (!BlockedByFence())
OnQueueUnblocked();
} else {
sequence_manager_->main_thread_only().selector.DisableQueue(this);
}
}
void TaskQueueImpl::SetShouldReportPostedTasksWhenDisabled(bool should_report) {
if (main_thread_only().should_report_posted_tasks_when_disabled ==
should_report)
return;
// Only observe transitions turning the reporting on if tracing is enabled.
if (should_report) {
bool tracing_enabled = false;
TRACE_EVENT_CATEGORY_GROUP_ENABLED(TRACE_DISABLED_BY_DEFAULT("lifecycles"),
&tracing_enabled);
if (!tracing_enabled)
return;
}
main_thread_only().should_report_posted_tasks_when_disabled = should_report;
// Mirror the state to the AnyThread struct as well.
{
base::internal::CheckedAutoLock lock(any_thread_lock_);
any_thread_.tracing_only.should_report_posted_tasks_when_disabled =
should_report;
}
}
void TaskQueueImpl::UpdateCrossThreadQueueStateLocked() {
any_thread_.immediate_work_queue_empty =
main_thread_only().immediate_work_queue->Empty();
if (main_thread_only().throttler) {
// If there's a Throttler, always ScheduleWork() when immediate work is
// posted and the queue is enabled, to ensure that
// Throttler::OnHasImmediateTask() is invoked.
any_thread_.post_immediate_task_should_schedule_work = IsQueueEnabled();
} else {
// Otherwise, ScheduleWork() only if the queue is enabled and there isn't a
// fence to prevent the task from being executed.
any_thread_.post_immediate_task_should_schedule_work =
IsQueueEnabled() && !main_thread_only().current_fence;
}
#if DCHECK_IS_ON()
any_thread_.queue_set_index =
main_thread_only().immediate_work_queue->work_queue_set_index();
#endif
}
void TaskQueueImpl::ReclaimMemory(TimeTicks now) {
if (main_thread_only().delayed_incoming_queue.empty())
return;
main_thread_only().delayed_incoming_queue.SweepCancelledTasks(
sequence_manager_);
// If deleting one of the cancelled tasks shut down this queue, bail out.
// Note that in this scenario |this| is still valid, but some fields of the
// queue have been cleared out by |UnregisterTaskQueue|.
if (!main_thread_only().delayed_work_queue) {
return;
}
LazyNow lazy_now(now);
UpdateWakeUp(&lazy_now);
// Also consider shrinking the work queue if it's wasting memory.
main_thread_only().delayed_work_queue->MaybeShrinkQueue();
main_thread_only().immediate_work_queue->MaybeShrinkQueue();
{
base::internal::CheckedAutoLock lock(any_thread_lock_);
any_thread_.immediate_incoming_queue.MaybeShrinkQueue();
}
}
void TaskQueueImpl::PushImmediateIncomingTaskForTest(Task task) {
base::internal::CheckedAutoLock lock(any_thread_lock_);
any_thread_.immediate_incoming_queue.push_back(std::move(task));
}
void TaskQueueImpl::RequeueDeferredNonNestableTask(
DeferredNonNestableTask task) {
DCHECK(task.task.nestable == Nestable::kNonNestable);
// It's possible that the queue was unregistered since the task was posted.
// Skip the task in that case.
if (!main_thread_only().delayed_work_queue)
return;
// The re-queued tasks have to be pushed onto the front because we'd otherwise
// violate the strict monotonically increasing enqueue order within the
// WorkQueue. We can't assign them a new enqueue order here because that will
// not behave correctly with fences and things will break (e.g Idle TQ).
if (task.work_queue_type == WorkQueueType::kDelayed) {
main_thread_only().delayed_work_queue->PushNonNestableTaskToFront(
std::move(task.task));
} else {
// We're about to push |task| onto an empty |immediate_work_queue|
// (bypassing |immediate_incoming_queue_|). As such, we no longer need to
// reload if we were planning to. The flag must be cleared while holding
// the lock to avoid a cross-thread post task setting it again before
// we actually make |immediate_work_queue| non-empty.
if (main_thread_only().immediate_work_queue->Empty()) {
base::internal::CheckedAutoLock lock(any_thread_lock_);
empty_queues_to_reload_handle_.SetActive(false);
any_thread_.immediate_work_queue_empty = false;
main_thread_only().immediate_work_queue->PushNonNestableTaskToFront(
std::move(task.task));
} else {
main_thread_only().immediate_work_queue->PushNonNestableTaskToFront(
std::move(task.task));
}
}
}
void TaskQueueImpl::SetThrottler(TaskQueue::Throttler* throttler) {
DCHECK(throttler);
DCHECK(!main_thread_only().throttler)
<< "Can't assign two different throttlers to "
"base::sequence_manager:TaskQueue";
// `throttler` is guaranteed to outlive this object.
main_thread_only().throttler = throttler;
}
void TaskQueueImpl::ResetThrottler() {
main_thread_only().throttler = nullptr;
LazyNow lazy_now(sequence_manager_->main_thread_clock());
// The current delayed wake up may have been determined by the Throttler.
// Update it now that there is no Throttler.
UpdateWakeUp(&lazy_now);
}
void TaskQueueImpl::UpdateWakeUp(LazyNow* lazy_now) {
absl::optional<WakeUp> wake_up = GetNextDesiredWakeUp();
if (main_thread_only().throttler && IsQueueEnabled()) {
// GetNextAllowedWakeUp() may return a non-null wake_up even if |wake_up| is
// nullopt, e.g. to throttle immediate tasks.
wake_up = main_thread_only().throttler->GetNextAllowedWakeUp(
lazy_now, wake_up, HasTaskToRunImmediatelyOrReadyDelayedTask());
}
SetNextWakeUp(lazy_now, wake_up);
}
void TaskQueueImpl::SetNextWakeUp(LazyNow* lazy_now,
absl::optional<WakeUp> wake_up) {
if (main_thread_only().scheduled_wake_up == wake_up)
return;
main_thread_only().scheduled_wake_up = wake_up;
main_thread_only().wake_up_queue->SetNextWakeUpForQueue(this, lazy_now,
wake_up);
}
bool TaskQueueImpl::HasTaskToRunImmediately() const {
// Any work queue tasks count as immediate work.
if (!main_thread_only().delayed_work_queue->Empty() ||
!main_thread_only().immediate_work_queue->Empty()) {
return true;
}
// Finally tasks on |immediate_incoming_queue| count as immediate work.
base::internal::CheckedAutoLock lock(any_thread_lock_);
return !any_thread_.immediate_incoming_queue.empty();
}
bool TaskQueueImpl::HasTaskToRunImmediatelyLocked() const {
return !main_thread_only().delayed_work_queue->Empty() ||
!main_thread_only().immediate_work_queue->Empty() ||
!any_thread_.immediate_incoming_queue.empty();
}
void TaskQueueImpl::SetOnTaskStartedHandler(
TaskQueueImpl::OnTaskStartedHandler handler) {
DCHECK(should_notify_observers_ || handler.is_null());
main_thread_only().on_task_started_handler = std::move(handler);
}
void TaskQueueImpl::OnTaskStarted(const Task& task,
const TaskQueue::TaskTiming& task_timing) {
if (!main_thread_only().on_task_started_handler.is_null())
main_thread_only().on_task_started_handler.Run(task, task_timing);
}
void TaskQueueImpl::SetOnTaskCompletedHandler(
TaskQueueImpl::OnTaskCompletedHandler handler) {
DCHECK(should_notify_observers_ || handler.is_null());
main_thread_only().on_task_completed_handler = std::move(handler);
}
void TaskQueueImpl::OnTaskCompleted(const Task& task,
TaskQueue::TaskTiming* task_timing,
LazyNow* lazy_now) {
if (!main_thread_only().on_task_completed_handler.is_null()) {
main_thread_only().on_task_completed_handler.Run(task, task_timing,
lazy_now);
}
}
bool TaskQueueImpl::RequiresTaskTiming() const {
return !main_thread_only().on_task_started_handler.is_null() ||
!main_thread_only().on_task_completed_handler.is_null();
}
std::unique_ptr<TaskQueue::OnTaskPostedCallbackHandle>
TaskQueueImpl::AddOnTaskPostedHandler(OnTaskPostedHandler handler) {
DCHECK(should_notify_observers_ && !handler.is_null());
std::unique_ptr<OnTaskPostedCallbackHandleImpl> handle =
std::make_unique<OnTaskPostedCallbackHandleImpl>(this,
associated_thread_);
base::internal::CheckedAutoLock lock(any_thread_lock_);
any_thread_.on_task_posted_handlers.insert(
{handle.get(), std::move(handler)});
return handle;
}
void TaskQueueImpl::RemoveOnTaskPostedHandler(
TaskQueueImpl::OnTaskPostedCallbackHandleImpl*
on_task_posted_callback_handle) {
base::internal::CheckedAutoLock lock(any_thread_lock_);
any_thread_.on_task_posted_handlers.erase(on_task_posted_callback_handle);
}
void TaskQueueImpl::SetTaskExecutionTraceLogger(
TaskExecutionTraceLogger logger) {
DCHECK(should_notify_observers_ || logger.is_null());
main_thread_only().task_execution_trace_logger = std::move(logger);
}
bool TaskQueueImpl::IsUnregistered() const {
base::internal::CheckedAutoLock lock(any_thread_lock_);
return any_thread_.unregistered;
}
WeakPtr<SequenceManagerImpl> TaskQueueImpl::GetSequenceManagerWeakPtr() {
return sequence_manager_->GetWeakPtr();
}
void TaskQueueImpl::ActivateDelayedFenceIfNeeded(const Task& task) {
if (!main_thread_only().delayed_fence)
return;
if (main_thread_only().delayed_fence.value() > task.delayed_run_time)
return;
InsertFence(Fence(task.task_order()));
main_thread_only().delayed_fence = absl::nullopt;
}
void TaskQueueImpl::MaybeReportIpcTaskQueuedFromMainThread(
const Task& pending_task) {
if (!pending_task.ipc_hash)
return;
// It's possible that tracing was just enabled and no disabled time has been
// stored. In that case, skip emitting the event.
if (!main_thread_only().disabled_time)
return;
bool tracing_enabled = false;
TRACE_EVENT_CATEGORY_GROUP_ENABLED(TRACE_DISABLED_BY_DEFAULT("lifecycles"),
&tracing_enabled);
if (!tracing_enabled)
return;
if (main_thread_only().is_enabled ||
!main_thread_only().should_report_posted_tasks_when_disabled) {
return;
}
base::TimeDelta time_since_disabled =
sequence_manager_->main_thread_clock()->NowTicks() -
main_thread_only().disabled_time.value();
ReportIpcTaskQueued(pending_task, time_since_disabled);
}
bool TaskQueueImpl::ShouldReportIpcTaskQueuedFromAnyThreadLocked(
base::TimeDelta* time_since_disabled) {
// It's possible that tracing was just enabled and no disabled time has been
// stored. In that case, skip emitting the event.
if (!any_thread_.tracing_only.disabled_time)
return false;
if (any_thread_.tracing_only.is_enabled ||
any_thread_.tracing_only.should_report_posted_tasks_when_disabled) {
return false;
}
*time_since_disabled = sequence_manager_->any_thread_clock()->NowTicks() -
any_thread_.tracing_only.disabled_time.value();
return true;
}
void TaskQueueImpl::MaybeReportIpcTaskQueuedFromAnyThreadLocked(
const Task& pending_task) {
if (!pending_task.ipc_hash)
return;
bool tracing_enabled = false;
TRACE_EVENT_CATEGORY_GROUP_ENABLED(TRACE_DISABLED_BY_DEFAULT("lifecycles"),
&tracing_enabled);
if (!tracing_enabled)
return;
base::TimeDelta time_since_disabled;
if (ShouldReportIpcTaskQueuedFromAnyThreadLocked(&time_since_disabled))
ReportIpcTaskQueued(pending_task, time_since_disabled);
}
void TaskQueueImpl::MaybeReportIpcTaskQueuedFromAnyThreadUnlocked(
const Task& pending_task) {
if (!pending_task.ipc_hash)
return;
bool tracing_enabled = false;
TRACE_EVENT_CATEGORY_GROUP_ENABLED(TRACE_DISABLED_BY_DEFAULT("lifecycles"),
&tracing_enabled);
if (!tracing_enabled)
return;
base::TimeDelta time_since_disabled;
bool should_report = false;
{
base::internal::CheckedAutoLock lock(any_thread_lock_);
should_report =
ShouldReportIpcTaskQueuedFromAnyThreadLocked(&time_since_disabled);
}
if (should_report)
ReportIpcTaskQueued(pending_task, time_since_disabled);
}
void TaskQueueImpl::ReportIpcTaskQueued(
const Task& pending_task,
const base::TimeDelta& time_since_disabled) {
TRACE_EVENT_INSTANT(
TRACE_DISABLED_BY_DEFAULT("lifecycles"), "task_posted_to_disabled_queue",
[&](perfetto::EventContext ctx) {
auto* proto = ctx.event<perfetto::protos::pbzero::ChromeTrackEvent>()
->set_chrome_task_posted_to_disabled_queue();
proto->set_time_since_disabled_ms(
checked_cast<uint64_t>(time_since_disabled.InMilliseconds()));
proto->set_ipc_hash(pending_task.ipc_hash);
proto->set_source_location_iid(
base::trace_event::InternedSourceLocation::Get(
&ctx, pending_task.posted_from));
});
}
void TaskQueueImpl::OnQueueUnblocked() {
DCHECK(IsQueueEnabled());
DCHECK(!BlockedByFence());
main_thread_only().enqueue_order_at_which_we_became_unblocked =
sequence_manager_->GetNextSequenceNumber();
if (GetQueuePriority() <= DefaultPriority()) {
// We are default priority or more important so update
// |enqueue_order_at_which_we_became_unblocked_with_normal_priority|.
main_thread_only()
.enqueue_order_at_which_we_became_unblocked_with_normal_priority =
main_thread_only().enqueue_order_at_which_we_became_unblocked;
}
}
std::unique_ptr<TaskQueue::QueueEnabledVoter>
TaskQueueImpl::CreateQueueEnabledVoter() {
DCHECK_CALLED_ON_VALID_THREAD(associated_thread_->thread_checker);
return WrapUnique(
new TaskQueue::QueueEnabledVoter(voter_weak_ptr_factory_.GetWeakPtr()));
}
void TaskQueueImpl::AddQueueEnabledVoter(bool voter_is_enabled,
TaskQueue::QueueEnabledVoter& voter) {
++main_thread_only().voter_count;
if (voter_is_enabled) {
++main_thread_only().enabled_voter_count;
}
}
void TaskQueueImpl::RemoveQueueEnabledVoter(
bool voter_is_enabled,
TaskQueue::QueueEnabledVoter& voter) {
bool was_enabled = AreAllQueueEnabledVotersEnabled();
if (voter_is_enabled) {
--main_thread_only().enabled_voter_count;
DCHECK_GE(main_thread_only().enabled_voter_count, 0);
}
--main_thread_only().voter_count;
DCHECK_GE(main_thread_only().voter_count, 0);
bool is_enabled = AreAllQueueEnabledVotersEnabled();
if (was_enabled != is_enabled) {
SetQueueEnabled(is_enabled);
}
}
void TaskQueueImpl::OnQueueEnabledVoteChanged(bool enabled) {
bool was_enabled = AreAllQueueEnabledVotersEnabled();
if (enabled) {
++main_thread_only().enabled_voter_count;
DCHECK_LE(main_thread_only().enabled_voter_count,
main_thread_only().voter_count);
} else {
--main_thread_only().enabled_voter_count;
DCHECK_GE(main_thread_only().enabled_voter_count, 0);
}
bool is_enabled = AreAllQueueEnabledVotersEnabled();
if (was_enabled != is_enabled) {
SetQueueEnabled(is_enabled);
}
}
void TaskQueueImpl::CompleteInitializationOnBoundThread() {
voter_weak_ptr_factory_.BindToCurrentSequence(PassKey<TaskQueueImpl>());
}
TaskQueue::QueuePriority TaskQueueImpl::DefaultPriority() const {
return sequence_manager()->settings().priority_settings.default_priority();
}
TaskQueueImpl::DelayedIncomingQueue::DelayedIncomingQueue() = default;
TaskQueueImpl::DelayedIncomingQueue::~DelayedIncomingQueue() = default;
void TaskQueueImpl::DelayedIncomingQueue::push(Task task) {
// TODO(crbug.com/1247285): Remove this once the cause of corrupted tasks in
// the queue is understood.
CHECK(task.task);
if (task.is_high_res)
pending_high_res_tasks_++;
queue_.insert(std::move(task));
}
void TaskQueueImpl::DelayedIncomingQueue::remove(HeapHandle heap_handle) {
DCHECK(!empty());
DCHECK_LT(heap_handle.index(), queue_.size());
Task task = queue_.take(heap_handle);
if (task.is_high_res) {
pending_high_res_tasks_--;
DCHECK_GE(pending_high_res_tasks_, 0);
}
}
Task TaskQueueImpl::DelayedIncomingQueue::take_top() {
DCHECK(!empty());
if (queue_.top().is_high_res) {
pending_high_res_tasks_--;
DCHECK_GE(pending_high_res_tasks_, 0);
}
return queue_.take_top();
}
void TaskQueueImpl::DelayedIncomingQueue::swap(DelayedIncomingQueue* rhs) {
std::swap(pending_high_res_tasks_, rhs->pending_high_res_tasks_);
std::swap(queue_, rhs->queue_);
}
void TaskQueueImpl::DelayedIncomingQueue::SweepCancelledTasks(
SequenceManagerImpl* sequence_manager) {
// Note: IntrusiveHeap::EraseIf() is safe against re-entrancy caused by
// deleted tasks posting new tasks.
queue_.EraseIf([this](const Task& task) {
if (task.task.IsCancelled()) {
if (task.is_high_res) {
--pending_high_res_tasks_;
DCHECK_GE(pending_high_res_tasks_, 0);
}
return true;
}
return false;
});
}
Value::List TaskQueueImpl::DelayedIncomingQueue::AsValue(TimeTicks now) const {
Value::List state;
for (const Task& task : queue_)
state.Append(TaskAsValue(task, now));
return state;
}
bool TaskQueueImpl::DelayedIncomingQueue::Compare::operator()(
const Task& lhs,
const Task& rhs) const {
// Delayed tasks are ordered by latest_delayed_run_time(). The top task may
// not be the first task eligible to run, but tasks will always become ripe
// before their latest_delayed_run_time().
const TimeTicks lhs_latest_delayed_run_time = lhs.latest_delayed_run_time();
const TimeTicks rhs_latest_delayed_run_time = rhs.latest_delayed_run_time();
if (lhs_latest_delayed_run_time == rhs_latest_delayed_run_time)
return lhs.sequence_num > rhs.sequence_num;
return lhs_latest_delayed_run_time > rhs_latest_delayed_run_time;
}
TaskQueueImpl::OnTaskPostedCallbackHandleImpl::OnTaskPostedCallbackHandleImpl(
TaskQueueImpl* task_queue_impl,
scoped_refptr<const AssociatedThreadId> associated_thread)
: task_queue_impl_(task_queue_impl),
associated_thread_(std::move(associated_thread)) {
DCHECK_CALLED_ON_VALID_THREAD(associated_thread_->thread_checker);
}
TaskQueueImpl::OnTaskPostedCallbackHandleImpl::
~OnTaskPostedCallbackHandleImpl() {
DCHECK_CALLED_ON_VALID_THREAD(associated_thread_->thread_checker);
if (task_queue_impl_)
task_queue_impl_->RemoveOnTaskPostedHandler(this);
}
} // namespace internal
} // namespace sequence_manager
} // namespace base