blob: 04a2da0c59f7ff73b3220d9fc448b41d882e9ba1 [file] [log] [blame]
// Copyright 2011 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <stddef.h>
#include <limits>
#include <sstream>
#include <string>
#include "base/debug/debugging_buildflags.h"
#include "base/debug/stack_trace.h"
#include "base/immediate_crash.h"
#include "base/logging.h"
#include "base/process/kill.h"
#include "base/process/process_handle.h"
#include "base/profiler/stack_buffer.h"
#include "base/profiler/stack_copier.h"
#include "base/test/test_timeouts.h"
#include "build/build_config.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "testing/multiprocess_func_list.h"
#include "base/allocator/buildflags.h"
#include "base/allocator/partition_allocator/src/partition_alloc/partition_alloc.h"
#if BUILDFLAG(USE_ALLOCATOR_SHIM)
#include "base/allocator/partition_allocator/src/partition_alloc/shim/allocator_shim.h"
#endif
#if BUILDFLAG(IS_POSIX) && !BUILDFLAG(IS_ANDROID) && !BUILDFLAG(IS_IOS)
#include "base/test/multiprocess_test.h"
#endif
namespace base {
namespace debug {
#if BUILDFLAG(IS_POSIX) && !BUILDFLAG(IS_ANDROID) && !BUILDFLAG(IS_IOS)
typedef MultiProcessTest StackTraceTest;
#else
typedef testing::Test StackTraceTest;
#endif
typedef testing::Test StackTraceDeathTest;
#if !defined(__UCLIBC__) && !defined(_AIX)
// StackTrace::OutputToStream() is not implemented under uclibc, nor AIX.
// See https://crbug.com/706728
TEST_F(StackTraceTest, OutputToStream) {
StackTrace trace;
// Dump the trace into a string.
std::ostringstream os;
trace.OutputToStream(&os);
std::string backtrace_message = os.str();
// ToString() should produce the same output.
EXPECT_EQ(backtrace_message, trace.ToString());
span<const void* const> addresses = trace.addresses();
#if defined(OFFICIAL_BUILD) && \
((BUILDFLAG(IS_POSIX) && !BUILDFLAG(IS_APPLE)) || BUILDFLAG(IS_FUCHSIA))
// Stack traces require an extra data table that bloats our binaries,
// so they're turned off for official builds. Stop the test here, so
// it at least verifies that StackTrace calls don't crash.
return;
#endif // defined(OFFICIAL_BUILD) &&
// ((BUILDFLAG(IS_POSIX) && !BUILDFLAG(IS_APPLE)) ||
// BUILDFLAG(IS_FUCHSIA))
ASSERT_GT(addresses.size(), 5u) << "Too few frames found.";
ASSERT_TRUE(addresses[0]);
if (!StackTrace::WillSymbolizeToStreamForTesting())
return;
// Check if the output has symbol initialization warning. If it does, fail.
ASSERT_EQ(backtrace_message.find("Dumping unresolved backtrace"),
std::string::npos)
<< "Unable to resolve symbols.";
// Expect a demangled symbol.
// Note that Windows Release builds omit the function parameters from the
// demangled stack output, otherwise this could be "testing::UnitTest::Run()".
EXPECT_TRUE(backtrace_message.find("testing::UnitTest::Run") !=
std::string::npos)
<< "Expected a demangled symbol in backtrace:\n"
<< backtrace_message;
// Expect to at least find main.
EXPECT_TRUE(backtrace_message.find("main") != std::string::npos)
<< "Expected to find main in backtrace:\n"
<< backtrace_message;
// Expect to find this function as well.
// Note: This will fail if not linked with -rdynamic (aka -export_dynamic)
EXPECT_TRUE(backtrace_message.find(__func__) != std::string::npos)
<< "Expected to find " << __func__ << " in backtrace:\n"
<< backtrace_message;
}
#if !defined(OFFICIAL_BUILD) && !defined(NO_UNWIND_TABLES)
// Disabled in Official builds, where Link-Time Optimization can result in two
// or fewer stack frames being available, causing the test to fail.
TEST_F(StackTraceTest, TruncatedTrace) {
StackTrace trace;
ASSERT_LT(2u, trace.addresses().size());
StackTrace truncated(2);
EXPECT_EQ(2u, truncated.addresses().size());
}
#endif // !defined(OFFICIAL_BUILD) && !defined(NO_UNWIND_TABLES)
// The test is used for manual testing, e.g., to see the raw output.
TEST_F(StackTraceTest, DebugOutputToStream) {
StackTrace trace;
std::ostringstream os;
trace.OutputToStream(&os);
VLOG(1) << os.str();
}
// The test is used for manual testing, e.g., to see the raw output.
TEST_F(StackTraceTest, DebugPrintBacktrace) {
StackTrace().Print();
}
// The test is used for manual testing, e.g., to see the raw output.
TEST_F(StackTraceTest, DebugPrintWithPrefixBacktrace) {
StackTrace().PrintWithPrefix("[test]");
}
// Make sure nullptr prefix doesn't crash. Output not examined, much
// like the DebugPrintBacktrace test above.
TEST_F(StackTraceTest, DebugPrintWithNullPrefixBacktrace) {
StackTrace().PrintWithPrefix(nullptr);
}
// Test OutputToStreamWithPrefix, mainly to make sure it doesn't
// crash. Any "real" stack trace testing happens above.
TEST_F(StackTraceTest, DebugOutputToStreamWithPrefix) {
StackTrace trace;
const char* prefix_string = "[test]";
std::ostringstream os;
trace.OutputToStreamWithPrefix(&os, prefix_string);
std::string backtrace_message = os.str();
// ToStringWithPrefix() should produce the same output.
EXPECT_EQ(backtrace_message, trace.ToStringWithPrefix(prefix_string));
}
// Make sure nullptr prefix doesn't crash. Output not examined, much
// like the DebugPrintBacktrace test above.
TEST_F(StackTraceTest, DebugOutputToStreamWithNullPrefix) {
StackTrace trace;
std::ostringstream os;
trace.OutputToStreamWithPrefix(&os, nullptr);
trace.ToStringWithPrefix(nullptr);
}
#endif // !defined(__UCLIBC__) && !defined(_AIX)
#if BUILDFLAG(IS_POSIX) && !BUILDFLAG(IS_ANDROID)
// Since Mac's base::debug::StackTrace().Print() is not malloc-free, skip
// StackDumpSignalHandlerIsMallocFree if BUILDFLAG(IS_MAC).
#if BUILDFLAG(USE_ALLOCATOR_SHIM) && !BUILDFLAG(IS_MAC)
namespace {
// ImmediateCrash if a signal handler incorrectly uses malloc().
// In an actual implementation, this could cause infinite recursion into the
// signal handler or other problems. Because malloc() is not guaranteed to be
// async signal safe.
void* BadMalloc(const allocator_shim::AllocatorDispatch*, size_t, void*) {
base::ImmediateCrash();
}
void* BadCalloc(const allocator_shim::AllocatorDispatch*,
size_t,
size_t,
void* context) {
base::ImmediateCrash();
}
void* BadAlignedAlloc(const allocator_shim::AllocatorDispatch*,
size_t,
size_t,
void*) {
base::ImmediateCrash();
}
void* BadAlignedRealloc(const allocator_shim::AllocatorDispatch*,
void*,
size_t,
size_t,
void*) {
base::ImmediateCrash();
}
void* BadRealloc(const allocator_shim::AllocatorDispatch*,
void*,
size_t,
void*) {
base::ImmediateCrash();
}
void BadFree(const allocator_shim::AllocatorDispatch*, void*, void*) {
base::ImmediateCrash();
}
allocator_shim::AllocatorDispatch g_bad_malloc_dispatch = {
&BadMalloc, /* alloc_function */
&BadMalloc, /* alloc_unchecked_function */
&BadCalloc, /* alloc_zero_initialized_function */
&BadAlignedAlloc, /* alloc_aligned_function */
&BadRealloc, /* realloc_function */
&BadFree, /* free_function */
nullptr, /* get_size_estimate_function */
nullptr, /* good_size_function */
nullptr, /* claimed_address_function */
nullptr, /* batch_malloc_function */
nullptr, /* batch_free_function */
nullptr, /* free_definite_size_function */
nullptr, /* try_free_default_function */
&BadAlignedAlloc, /* aligned_malloc_function */
&BadAlignedRealloc, /* aligned_realloc_function */
&BadFree, /* aligned_free_function */
nullptr, /* next */
};
} // namespace
// Regression test for StackDumpSignalHandler async-signal unsafety.
// Since malloc() is not guaranteed to be async signal safe, it is not allowed
// to use malloc() inside StackDumpSignalHandler().
TEST_F(StackTraceDeathTest, StackDumpSignalHandlerIsMallocFree) {
EXPECT_DEATH_IF_SUPPORTED(
[] {
// On Android, base::debug::EnableInProcessStackDumping() does not
// change any actions taken by signals to be StackDumpSignalHandler. So
// the StackDumpSignalHandlerIsMallocFree test doesn't work on Android.
EnableInProcessStackDumping();
allocator_shim::InsertAllocatorDispatch(&g_bad_malloc_dispatch);
// Raise SIGSEGV to invoke StackDumpSignalHandler().
kill(getpid(), SIGSEGV);
}(),
"\\[end of stack trace\\]\n");
}
#endif // BUILDFLAG(USE_ALLOCATOR_SHIM)
namespace {
std::string itoa_r_wrapper(intptr_t i, size_t sz, int base, size_t padding) {
char buffer[1024];
CHECK_LE(sz, sizeof(buffer));
char* result = internal::itoa_r(i, buffer, sz, base, padding);
EXPECT_TRUE(result);
return std::string(buffer);
}
} // namespace
TEST_F(StackTraceTest, itoa_r) {
EXPECT_EQ("0", itoa_r_wrapper(0, 128, 10, 0));
EXPECT_EQ("-1", itoa_r_wrapper(-1, 128, 10, 0));
// Test edge cases.
if (sizeof(intptr_t) == 4) {
EXPECT_EQ("ffffffff", itoa_r_wrapper(-1, 128, 16, 0));
EXPECT_EQ("-2147483648",
itoa_r_wrapper(std::numeric_limits<intptr_t>::min(), 128, 10, 0));
EXPECT_EQ("2147483647",
itoa_r_wrapper(std::numeric_limits<intptr_t>::max(), 128, 10, 0));
EXPECT_EQ("80000000",
itoa_r_wrapper(std::numeric_limits<intptr_t>::min(), 128, 16, 0));
EXPECT_EQ("7fffffff",
itoa_r_wrapper(std::numeric_limits<intptr_t>::max(), 128, 16, 0));
} else if (sizeof(intptr_t) == 8) {
EXPECT_EQ("ffffffffffffffff", itoa_r_wrapper(-1, 128, 16, 0));
EXPECT_EQ("-9223372036854775808",
itoa_r_wrapper(std::numeric_limits<intptr_t>::min(), 128, 10, 0));
EXPECT_EQ("9223372036854775807",
itoa_r_wrapper(std::numeric_limits<intptr_t>::max(), 128, 10, 0));
EXPECT_EQ("8000000000000000",
itoa_r_wrapper(std::numeric_limits<intptr_t>::min(), 128, 16, 0));
EXPECT_EQ("7fffffffffffffff",
itoa_r_wrapper(std::numeric_limits<intptr_t>::max(), 128, 16, 0));
} else {
ADD_FAILURE() << "Missing test case for your size of intptr_t ("
<< sizeof(intptr_t) << ")";
}
// Test hex output.
EXPECT_EQ("688", itoa_r_wrapper(0x688, 128, 16, 0));
EXPECT_EQ("deadbeef", itoa_r_wrapper(0xdeadbeef, 128, 16, 0));
// Check that itoa_r respects passed buffer size limit.
char buffer[1024];
EXPECT_TRUE(internal::itoa_r(0xdeadbeef, buffer, 10, 16, 0));
EXPECT_TRUE(internal::itoa_r(0xdeadbeef, buffer, 9, 16, 0));
EXPECT_FALSE(internal::itoa_r(0xdeadbeef, buffer, 8, 16, 0));
EXPECT_FALSE(internal::itoa_r(0xdeadbeef, buffer, 7, 16, 0));
EXPECT_TRUE(internal::itoa_r(0xbeef, buffer, 5, 16, 4));
EXPECT_FALSE(internal::itoa_r(0xbeef, buffer, 5, 16, 5));
EXPECT_FALSE(internal::itoa_r(0xbeef, buffer, 5, 16, 6));
// Test padding.
EXPECT_EQ("1", itoa_r_wrapper(1, 128, 10, 0));
EXPECT_EQ("1", itoa_r_wrapper(1, 128, 10, 1));
EXPECT_EQ("01", itoa_r_wrapper(1, 128, 10, 2));
EXPECT_EQ("001", itoa_r_wrapper(1, 128, 10, 3));
EXPECT_EQ("0001", itoa_r_wrapper(1, 128, 10, 4));
EXPECT_EQ("00001", itoa_r_wrapper(1, 128, 10, 5));
EXPECT_EQ("688", itoa_r_wrapper(0x688, 128, 16, 0));
EXPECT_EQ("688", itoa_r_wrapper(0x688, 128, 16, 1));
EXPECT_EQ("688", itoa_r_wrapper(0x688, 128, 16, 2));
EXPECT_EQ("688", itoa_r_wrapper(0x688, 128, 16, 3));
EXPECT_EQ("0688", itoa_r_wrapper(0x688, 128, 16, 4));
EXPECT_EQ("00688", itoa_r_wrapper(0x688, 128, 16, 5));
}
#endif // BUILDFLAG(IS_POSIX) && !BUILDFLAG(IS_ANDROID)
#if BUILDFLAG(CAN_UNWIND_WITH_FRAME_POINTERS)
class CopyFunction : public StackCopier {
public:
using StackCopier::CopyStackContentsAndRewritePointers;
};
// Copies the current stack segment, starting from the frame pointer of the
// caller frame. Also fills in |stack_end| for the copied stack.
NOINLINE static std::unique_ptr<StackBuffer> CopyCurrentStackAndRewritePointers(
uintptr_t* out_fp,
uintptr_t* stack_end) {
const uint8_t* fp =
reinterpret_cast<const uint8_t*>(__builtin_frame_address(0));
uintptr_t original_stack_end = GetStackEnd();
size_t stack_size = original_stack_end - reinterpret_cast<uintptr_t>(fp);
auto buffer = std::make_unique<StackBuffer>(stack_size);
*out_fp = reinterpret_cast<uintptr_t>(
CopyFunction::CopyStackContentsAndRewritePointers(
fp, reinterpret_cast<const uintptr_t*>(original_stack_end),
StackBuffer::kPlatformStackAlignment, buffer->buffer()));
*stack_end = *out_fp + stack_size;
return buffer;
}
template <size_t Depth>
NOINLINE NOOPT void ExpectStackFramePointers(const void** frames,
size_t max_depth,
bool copy_stack) {
code_start:
// Calling __builtin_frame_address() forces compiler to emit
// frame pointers, even if they are not enabled.
EXPECT_NE(nullptr, __builtin_frame_address(0));
ExpectStackFramePointers<Depth - 1>(frames, max_depth, copy_stack);
constexpr size_t frame_index = Depth - 1;
const void* frame = frames[frame_index];
EXPECT_GE(frame, &&code_start) << "For frame at index " << frame_index;
EXPECT_LE(frame, &&code_end) << "For frame at index " << frame_index;
code_end:
return;
}
template <>
NOINLINE NOOPT void ExpectStackFramePointers<1>(const void** frames,
size_t max_depth,
bool copy_stack) {
code_start:
// Calling __builtin_frame_address() forces compiler to emit
// frame pointers, even if they are not enabled.
EXPECT_NE(nullptr, __builtin_frame_address(0));
size_t count = 0;
if (copy_stack) {
uintptr_t stack_end = 0, fp = 0;
std::unique_ptr<StackBuffer> copy =
CopyCurrentStackAndRewritePointers(&fp, &stack_end);
count =
TraceStackFramePointersFromBuffer(fp, stack_end, frames, max_depth, 0);
} else {
count = TraceStackFramePointers(frames, max_depth, 0);
}
ASSERT_EQ(max_depth, count);
const void* frame = frames[0];
EXPECT_GE(frame, &&code_start) << "For the top frame";
EXPECT_LE(frame, &&code_end) << "For the top frame";
code_end:
return;
}
#if defined(MEMORY_SANITIZER)
// The test triggers use-of-uninitialized-value errors on MSan bots.
// This is expected because we're walking and reading the stack, and
// sometimes we read fp / pc from the place that previously held
// uninitialized value.
#define MAYBE_TraceStackFramePointers DISABLED_TraceStackFramePointers
#else
#define MAYBE_TraceStackFramePointers TraceStackFramePointers
#endif
TEST_F(StackTraceTest, MAYBE_TraceStackFramePointers) {
constexpr size_t kDepth = 5;
const void* frames[kDepth];
ExpectStackFramePointers<kDepth>(frames, kDepth, /*copy_stack=*/false);
}
// The test triggers use-of-uninitialized-value errors on MSan bots.
// This is expected because we're walking and reading the stack, and
// sometimes we read fp / pc from the place that previously held
// uninitialized value.
// TODO(crbug.com/1132511): Enable this test on Fuchsia.
#if defined(MEMORY_SANITIZER) || BUILDFLAG(IS_FUCHSIA)
#define MAYBE_TraceStackFramePointersFromBuffer \
DISABLED_TraceStackFramePointersFromBuffer
#else
#define MAYBE_TraceStackFramePointersFromBuffer \
TraceStackFramePointersFromBuffer
#endif
TEST_F(StackTraceTest, MAYBE_TraceStackFramePointersFromBuffer) {
constexpr size_t kDepth = 5;
const void* frames[kDepth];
ExpectStackFramePointers<kDepth>(frames, kDepth, /*copy_stack=*/true);
}
#if BUILDFLAG(IS_ANDROID) || BUILDFLAG(IS_APPLE)
#define MAYBE_StackEnd StackEnd
#else
#define MAYBE_StackEnd DISABLED_StackEnd
#endif
TEST_F(StackTraceTest, MAYBE_StackEnd) {
EXPECT_NE(0u, GetStackEnd());
}
#endif // BUILDFLAG(CAN_UNWIND_WITH_FRAME_POINTERS)
#if BUILDFLAG(IS_LINUX) || BUILDFLAG(IS_ANDROID)
#if !defined(ADDRESS_SANITIZER) && !defined(UNDEFINED_SANITIZER)
#if !defined(ARCH_CPU_ARM_FAMILY)
// On Arm architecture invalid math operations such as division by zero are not
// trapped and do not trigger a SIGFPE.
// Hence disable the test for Arm platforms.
TEST(CheckExitCodeAfterSignalHandlerDeathTest, CheckSIGFPE) {
// Values are volatile to prevent reordering of instructions, i.e. for
// optimization. Reordering may lead to tests erroneously failing due to
// SIGFPE being raised outside of EXPECT_EXIT.
volatile int const nominator = 23;
volatile int const denominator = 0;
[[maybe_unused]] volatile int result;
EXPECT_EXIT(result = nominator / denominator,
::testing::KilledBySignal(SIGFPE), "");
}
#endif // !defined(ARCH_CPU_ARM_FAMILY)
TEST(CheckExitCodeAfterSignalHandlerDeathTest, CheckSIGSEGV) {
// Pointee and pointer are volatile to prevent reordering of instructions,
// i.e. for optimization. Reordering may lead to tests erroneously failing due
// to SIGSEGV being raised outside of EXPECT_EXIT.
volatile int* const volatile p_int = nullptr;
EXPECT_EXIT(*p_int = 1234, ::testing::KilledBySignal(SIGSEGV), "");
}
#if defined(ARCH_CPU_X86_64)
TEST(CheckExitCodeAfterSignalHandlerDeathTest,
CheckSIGSEGVNonCanonicalAddress) {
// Pointee and pointer are volatile to prevent reordering of instructions,
// i.e. for optimization. Reordering may lead to tests erroneously failing due
// to SIGSEGV being raised outside of EXPECT_EXIT.
//
// On Linux, the upper half of the address space is reserved by the kernel, so
// all upper bits must be 0 for canonical addresses.
volatile int* const volatile p_int =
reinterpret_cast<int*>(0xabcdabcdabcdabcdULL);
EXPECT_EXIT(*p_int = 1234, ::testing::KilledBySignal(SIGSEGV), "SI_KERNEL");
}
#endif
#endif // #if !defined(ADDRESS_SANITIZER) && !defined(UNDEFINED_SANITIZER)
TEST(CheckExitCodeAfterSignalHandlerDeathTest, CheckSIGILL) {
auto const raise_sigill = []() {
#if defined(ARCH_CPU_X86_FAMILY)
asm("ud2");
#elif defined(ARCH_CPU_ARM_FAMILY)
asm("udf 0");
#else
#error Unsupported platform!
#endif
};
EXPECT_EXIT(raise_sigill(), ::testing::KilledBySignal(SIGILL), "");
}
#endif // BUILDFLAG(IS_LINUX) || BUILDFLAG(IS_ANDROID)
} // namespace debug
} // namespace base