blob: 28de66b21fbf2d9904f0abe07f25243e188224e0 [file] [log] [blame]
// Copyright 2017 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_CONTAINERS_SPAN_H_
#define BASE_CONTAINERS_SPAN_H_
#include <stddef.h>
#include <stdint.h>
#include <array>
#include <concepts>
#include <iterator>
#include <limits>
#include <memory>
#include <type_traits>
#include <utility>
#include "base/check.h"
#include "base/compiler_specific.h"
#include "base/containers/checked_iterators.h"
#include "base/numerics/safe_conversions.h"
#include "base/template_util.h"
namespace base {
// [views.constants]
constexpr size_t dynamic_extent = std::numeric_limits<size_t>::max();
template <typename T,
size_t Extent = dynamic_extent,
typename InternalPtrType = T*>
class span;
namespace internal {
template <typename From, typename To>
concept LegalDataConversion =
std::convertible_to<std::remove_reference_t<From> (*)[],
std::remove_reference_t<To> (*)[]>;
template <typename T, typename It>
concept CompatibleIter = std::contiguous_iterator<It> &&
LegalDataConversion<std::iter_reference_t<It>, T>;
template <typename T, typename R>
concept CompatibleRange =
std::ranges::contiguous_range<R> && std::ranges::sized_range<R> &&
LegalDataConversion<std::ranges::range_reference_t<R>, T> &&
(std::ranges::borrowed_range<R> || std::is_const_v<T>);
// NOTE: Ideally we'd just use `CompatibleRange`, however this currently breaks
// code that was written prior to C++20 being standardized and assumes providing
// .data() and .size() is sufficient.
// TODO: https://crbug.com/1504998 - Remove in favor of CompatibleRange and fix
// callsites.
template <typename T, typename R>
concept LegacyCompatibleRange = requires(R& r) {
{ *std::ranges::data(r) } -> LegalDataConversion<T>;
std::ranges::size(r);
};
template <size_t I>
using size_constant = std::integral_constant<size_t, I>;
template <typename T>
struct ExtentImpl : size_constant<dynamic_extent> {};
template <typename T, size_t N>
struct ExtentImpl<T[N]> : size_constant<N> {};
template <typename T, size_t N>
struct ExtentImpl<std::array<T, N>> : size_constant<N> {};
template <typename T, size_t N>
struct ExtentImpl<base::span<T, N>> : size_constant<N> {};
template <typename T>
using Extent = ExtentImpl<std::remove_cvref_t<T>>;
template <typename T>
inline constexpr size_t ExtentV = Extent<T>::value;
// must_not_be_dynamic_extent prevents |dynamic_extent| from being returned in a
// constexpr context.
template <size_t kExtent>
constexpr size_t must_not_be_dynamic_extent() {
static_assert(
kExtent != dynamic_extent,
"EXTENT should only be used for containers with a static extent.");
return kExtent;
}
} // namespace internal
// A span is a value type that represents an array of elements of type T. Since
// it only consists of a pointer to memory with an associated size, it is very
// light-weight. It is cheap to construct, copy, move and use spans, so that
// users are encouraged to use it as a pass-by-value parameter. A span does not
// own the underlying memory, so care must be taken to ensure that a span does
// not outlive the backing store.
//
// span is somewhat analogous to std::string_view, but with arbitrary element
// types, allowing mutation if T is non-const.
//
// span is implicitly convertible from C++ arrays, as well as most [1]
// container-like types that provide a data() and size() method (such as
// std::vector<T>). A mutable span<T> can also be implicitly converted to an
// immutable span<const T>.
//
// Consider using a span for functions that take a data pointer and size
// parameter: it allows the function to still act on an array-like type, while
// allowing the caller code to be a bit more concise.
//
// For read-only data access pass a span<const T>: the caller can supply either
// a span<const T> or a span<T>, while the callee will have a read-only view.
// For read-write access a mutable span<T> is required.
//
// Without span:
// Read-Only:
// // std::string HexEncode(const uint8_t* data, size_t size);
// std::vector<uint8_t> data_buffer = GenerateData();
// std::string r = HexEncode(data_buffer.data(), data_buffer.size());
//
// Mutable:
// // ssize_t SafeSNPrintf(char* buf, size_t N, const char* fmt, Args...);
// char str_buffer[100];
// SafeSNPrintf(str_buffer, sizeof(str_buffer), "Pi ~= %lf", 3.14);
//
// With span:
// Read-Only:
// // std::string HexEncode(base::span<const uint8_t> data);
// std::vector<uint8_t> data_buffer = GenerateData();
// std::string r = HexEncode(data_buffer);
//
// Mutable:
// // ssize_t SafeSNPrintf(base::span<char>, const char* fmt, Args...);
// char str_buffer[100];
// SafeSNPrintf(str_buffer, "Pi ~= %lf", 3.14);
//
// Spans with "const" and pointers
// -------------------------------
//
// Const and pointers can get confusing. Here are vectors of pointers and their
// corresponding spans:
//
// const std::vector<int*> => base::span<int* const>
// std::vector<const int*> => base::span<const int*>
// const std::vector<const int*> => base::span<const int* const>
//
// Differences from the C++ standard
// ---------------------------------
//
// http://eel.is/c++draft/views.span contains the latest C++ draft of std::span.
// Chromium tries to follow the draft as close as possible. Differences between
// the draft and the implementation are documented in subsections below.
//
// Differences from [span.overview]:
// - Dynamic spans are implemented as a partial specialization of the regular
// class template. This leads to significantly simpler checks involving the
// extent, at the expense of some duplicated code. The same strategy is used
// by libc++.
//
// Differences from [span.objectrep]:
// - as_bytes() and as_writable_bytes() return spans of uint8_t instead of
// std::byte.
//
// Differences from [span.cons]:
// - The constructors from a contiguous range apart from a C array are folded
// into a single one, using a construct similarly to the one proposed
// (but not standardized) in https://wg21.link/P1419.
// The C array constructor is kept so that a span can be constructed from
// an init list like {{1, 2, 3}}.
// TODO: https://crbug.com/828324 - Consider adding C++26's constructor from
// a std::initializer_list instead.
// - The conversion constructors from a contiguous range into a dynamic span
// don't check for the range concept, but rather whether std::ranges::data
// and std::ranges::size are well formed. This is due to legacy reasons and
// should be fixed.
//
// Differences from [span.deduct]:
// - The deduction guides from a contiguous range are folded into a single one,
// and treat borrowed ranges correctly.
//
// Additions beyond the C++ standard draft
// - as_byte_span() function.
//
// Furthermore, all constructors and methods are marked noexcept due to the lack
// of exceptions in Chromium.
//
// Due to the lack of class template argument deduction guides in C++14
// appropriate make_span() utility functions are provided for historic reasons.
// [span], class template span
template <typename T, size_t N, typename InternalPtrType>
class GSL_POINTER span {
public:
using element_type = T;
using value_type = std::remove_cv_t<T>;
using size_type = size_t;
using difference_type = ptrdiff_t;
using pointer = T*;
using const_pointer = const T*;
using reference = T&;
using const_reference = const T&;
using iterator = CheckedContiguousIterator<T>;
using reverse_iterator = std::reverse_iterator<iterator>;
static constexpr size_t extent = N;
// [span.cons], span constructors, copy, assignment, and destructor
constexpr span() noexcept
requires(N == 0)
= default;
template <typename It>
requires(internal::CompatibleIter<T, It>)
explicit constexpr span(It first, StrictNumeric<size_t> count) noexcept
: // The use of to_address() here is to handle the case where the
// iterator `first` is pointing to the container's `end()`. In that
// case we can not use the address returned from the iterator, or
// dereference it through the iterator's `operator*`, but we can store
// it. We must assume in this case that `count` is 0, since the
// iterator does not point to valid data. Future hardening of iterators
// may disallow pulling the address from `end()`, as demonstrated by
// asserts() in libstdc++:
// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=93960.
//
// The span API dictates that the `data()` is accessible when size is
// 0, since the pointer may be valid, so we cannot prevent storing and
// giving out an invalid pointer here without breaking API
// compatibility and our unit tests. Thus protecting against this can
// likely only be successful from inside iterators themselves, where
// the context about the pointer is known.
//
// We can not protect here generally against an invalid iterator/count
// being passed in, since we have no context to determine if the
// iterator or count are valid.
data_(std::to_address(first)) {
CHECK(N == count);
}
template <typename It, typename End>
requires(internal::CompatibleIter<T, It> &&
std::sized_sentinel_for<End, It> &&
!std::convertible_to<End, size_t>)
explicit constexpr span(It begin, End end) noexcept
: span(begin, static_cast<size_t>(end - begin)) {}
// NOLINTNEXTLINE(google-explicit-constructor)
constexpr span(T (&arr)[N]) noexcept
: span(std::ranges::data(arr), std::ranges::size(arr)) {}
template <typename R, size_t X = internal::ExtentV<R>>
requires(internal::CompatibleRange<T, R> && (X == N || X == dynamic_extent))
// NOLINTNEXTLINE(google-explicit-constructor)
explicit(X == dynamic_extent) constexpr span(R&& range) noexcept
: span(std::ranges::data(range), std::ranges::size(range)) {}
// [span.sub], span subviews
template <size_t Count>
constexpr span<T, Count> first() const noexcept
requires(Count <= N)
{
return span<T, Count>(data(), Count);
}
template <size_t Count>
constexpr span<T, Count> last() const noexcept
requires(Count <= N)
{
return span<T, Count>(data() + (size() - Count), Count);
}
template <size_t Offset, size_t Count = dynamic_extent>
constexpr auto subspan() const noexcept
requires(Offset <= N && (Count == dynamic_extent || Count <= N - Offset))
{
constexpr size_t kExtent = Count != dynamic_extent ? Count : N - Offset;
return span<T, kExtent>(data() + Offset, kExtent);
}
constexpr span<T, dynamic_extent> first(size_t count) const noexcept {
CHECK_LE(count, size());
return {data(), count};
}
constexpr span<T, dynamic_extent> last(size_t count) const noexcept {
CHECK_LE(count, size());
return {data() + (size() - count), count};
}
constexpr span<T, dynamic_extent> subspan(
size_t offset,
size_t count = dynamic_extent) const noexcept {
CHECK_LE(offset, size());
CHECK(count == dynamic_extent || count <= size() - offset);
return {data() + offset, count != dynamic_extent ? count : size() - offset};
}
// [span.obs], span observers
constexpr size_t size() const noexcept { return N; }
constexpr size_t size_bytes() const noexcept { return size() * sizeof(T); }
[[nodiscard]] constexpr bool empty() const noexcept { return size() == 0; }
// [span.elem], span element access
constexpr T& operator[](size_t idx) const noexcept {
CHECK_LT(idx, size());
return data()[idx];
}
constexpr T& front() const noexcept
requires(N > 0)
{
return data()[0];
}
constexpr T& back() const noexcept
requires(N > 0)
{
return data()[size() - 1];
}
constexpr T* data() const noexcept { return data_; }
// [span.iter], span iterator support
constexpr iterator begin() const noexcept {
return iterator(data(), data() + size());
}
constexpr iterator end() const noexcept {
return iterator(data(), data() + size(), data() + size());
}
constexpr reverse_iterator rbegin() const noexcept {
return reverse_iterator(end());
}
constexpr reverse_iterator rend() const noexcept {
return reverse_iterator(begin());
}
private:
// This field is not a raw_ptr<> because it was filtered by the rewriter
// for: #constexpr-ctor-field-initializer, #global-scope, #union
InternalPtrType data_ = nullptr;
};
// [span], class template span
template <typename T, typename InternalPtrType>
class GSL_POINTER span<T, dynamic_extent, InternalPtrType> {
public:
using element_type = T;
using value_type = std::remove_cv_t<T>;
using size_type = size_t;
using difference_type = ptrdiff_t;
using pointer = T*;
using const_pointer = const T*;
using reference = T&;
using const_reference = const T&;
using iterator = CheckedContiguousIterator<T>;
using reverse_iterator = std::reverse_iterator<iterator>;
static constexpr size_t extent = dynamic_extent;
constexpr span() noexcept = default;
template <typename It>
requires(internal::CompatibleIter<T, It>)
constexpr span(It first, StrictNumeric<size_t> count) noexcept
// The use of to_address() here is to handle the case where the iterator
// `first` is pointing to the container's `end()`. In that case we can
// not use the address returned from the iterator, or dereference it
// through the iterator's `operator*`, but we can store it. We must
// assume in this case that `count` is 0, since the iterator does not
// point to valid data. Future hardening of iterators may disallow
// pulling the address from `end()`, as demonstrated by asserts() in
// libstdc++: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=93960.
//
// The span API dictates that the `data()` is accessible when size is 0,
// since the pointer may be valid, so we cannot prevent storing and
// giving out an invalid pointer here without breaking API compatibility
// and our unit tests. Thus protecting against this can likely only be
// successful from inside iterators themselves, where the context about
// the pointer is known.
//
// We can not protect here generally against an invalid iterator/count
// being passed in, since we have no context to determine if the
// iterator or count are valid.
: data_(std::to_address(first)), size_(count) {}
template <typename It, typename End>
requires(internal::CompatibleIter<T, It> &&
std::sized_sentinel_for<End, It> &&
!std::convertible_to<End, size_t>)
constexpr span(It begin, End end) noexcept
// Subtracting two iterators gives a ptrdiff_t, but the result should be
// non-negative: see CHECK below.
: span(begin, static_cast<size_t>(end - begin)) {
CHECK(begin <= end);
}
template <size_t N>
// NOLINTNEXTLINE(google-explicit-constructor)
constexpr span(T (&arr)[N]) noexcept
: span(std::ranges::data(arr), std::ranges::size(arr)) {}
template <typename R>
requires(internal::LegacyCompatibleRange<T, R>)
// NOLINTNEXTLINE(google-explicit-constructor)
constexpr span(R&& range) noexcept
: span(std::ranges::data(range), std::ranges::size(range)) {}
// [span.sub], span subviews
template <size_t Count>
constexpr span<T, Count> first() const noexcept {
CHECK_LE(Count, size());
return span<T, Count>(data(), Count);
}
template <size_t Count>
constexpr span<T, Count> last() const noexcept {
CHECK_LE(Count, size());
return span<T, Count>(data() + (size() - Count), Count);
}
template <size_t Offset, size_t Count = dynamic_extent>
constexpr span<T, Count> subspan() const noexcept {
CHECK_LE(Offset, size());
CHECK(Count == dynamic_extent || Count <= size() - Offset);
return span<T, Count>(data() + Offset,
Count != dynamic_extent ? Count : size() - Offset);
}
constexpr span<T, dynamic_extent> first(size_t count) const noexcept {
CHECK_LE(count, size());
return {data(), count};
}
constexpr span<T, dynamic_extent> last(size_t count) const noexcept {
CHECK_LE(count, size());
return {data() + (size() - count), count};
}
constexpr span<T, dynamic_extent> subspan(
size_t offset,
size_t count = dynamic_extent) const noexcept {
CHECK_LE(offset, size());
CHECK(count == dynamic_extent || count <= size() - offset);
return {data() + offset, count != dynamic_extent ? count : size() - offset};
}
// [span.obs], span observers
constexpr size_t size() const noexcept { return size_; }
constexpr size_t size_bytes() const noexcept { return size() * sizeof(T); }
[[nodiscard]] constexpr bool empty() const noexcept { return size() == 0; }
// [span.elem], span element access
constexpr T& operator[](size_t idx) const noexcept {
CHECK_LT(idx, size());
return data()[idx];
}
constexpr T& front() const noexcept {
CHECK(!empty());
return data()[0];
}
constexpr T& back() const noexcept {
CHECK(!empty());
return data()[size() - 1];
}
constexpr T* data() const noexcept { return data_; }
// [span.iter], span iterator support
constexpr iterator begin() const noexcept {
return iterator(data(), data() + size());
}
constexpr iterator end() const noexcept {
return iterator(data(), data() + size(), data() + size());
}
constexpr reverse_iterator rbegin() const noexcept {
return reverse_iterator(end());
}
constexpr reverse_iterator rend() const noexcept {
return reverse_iterator(begin());
}
private:
// This field is not a raw_ptr<> because it was filtered by the rewriter
// for: #constexpr-ctor-field-initializer, #global-scope, #union
InternalPtrType data_ = nullptr;
size_t size_ = 0;
};
// [span.deduct], deduction guides.
template <typename It, typename EndOrSize>
requires(std::contiguous_iterator<It>)
span(It, EndOrSize) -> span<std::remove_reference_t<std::iter_reference_t<It>>>;
template <
typename R,
typename T = std::remove_reference_t<std::ranges::range_reference_t<R>>>
requires(std::ranges::contiguous_range<R>)
span(R&&)
-> span<std::conditional_t<std::ranges::borrowed_range<R>, T, const T>,
internal::ExtentV<R>>;
// [span.objectrep], views of object representation
template <typename T, size_t X>
auto as_bytes(span<T, X> s) noexcept {
constexpr size_t N = X == dynamic_extent ? dynamic_extent : sizeof(T) * X;
return span<const uint8_t, N>(reinterpret_cast<const uint8_t*>(s.data()),
s.size_bytes());
}
template <typename T, size_t X>
requires(!std::is_const_v<T>)
auto as_writable_bytes(span<T, X> s) noexcept {
constexpr size_t N = X == dynamic_extent ? dynamic_extent : sizeof(T) * X;
return span<uint8_t, N>(reinterpret_cast<uint8_t*>(s.data()), s.size_bytes());
}
// Type-deducing helpers for constructing a span.
template <int&... ExplicitArgumentBarrier, typename It>
constexpr auto make_span(It it, StrictNumeric<size_t> size) noexcept {
using T = std::remove_reference_t<iter_reference_t<It>>;
return span<T>(it, size);
}
template <int&... ExplicitArgumentBarrier,
typename It,
typename End,
typename = std::enable_if_t<!std::is_convertible_v<End, size_t>>>
constexpr auto make_span(It it, End end) noexcept {
using T = std::remove_reference_t<iter_reference_t<It>>;
return span<T>(it, end);
}
// make_span utility function that deduces both the span's value_type and extent
// from the passed in argument.
//
// Usage: auto span = base::make_span(...);
template <int&... ExplicitArgumentBarrier, typename Container>
constexpr auto make_span(Container&& container) noexcept {
using T =
std::remove_pointer_t<decltype(std::data(std::declval<Container>()))>;
using Extent = internal::Extent<Container>;
return span<T, Extent::value>(std::forward<Container>(container));
}
// make_span utility functions that allow callers to explicit specify the span's
// extent, the value_type is deduced automatically. This is useful when passing
// a dynamically sized container to a method expecting static spans, when the
// container is known to have the correct size.
//
// Note: This will CHECK that N indeed matches size(container).
//
// Usage: auto static_span = base::make_span<N>(...);
template <size_t N, int&... ExplicitArgumentBarrier, typename It>
constexpr auto make_span(It it, StrictNumeric<size_t> size) noexcept {
using T = std::remove_reference_t<iter_reference_t<It>>;
return span<T, N>(it, size);
}
template <size_t N,
int&... ExplicitArgumentBarrier,
typename It,
typename End,
typename = std::enable_if_t<!std::is_convertible_v<End, size_t>>>
constexpr auto make_span(It it, End end) noexcept {
using T = std::remove_reference_t<iter_reference_t<It>>;
return span<T, N>(it, end);
}
template <size_t N, int&... ExplicitArgumentBarrier, typename Container>
constexpr auto make_span(Container&& container) noexcept {
using T =
std::remove_pointer_t<decltype(std::data(std::declval<Container>()))>;
return span<T, N>(std::data(container), std::size(container));
}
// Convenience function for converting an object which is itself convertible
// to span into a span of bytes (i.e. span of const uint8_t). Typically used
// to convert std::string or string-objects holding chars, or std::vector
// or vector-like objects holding other scalar types, prior to passing them
// into an API that requires byte spans.
template <typename T>
span<const uint8_t> as_byte_span(const T& arg) {
return as_bytes(make_span(arg));
}
} // namespace base
template <typename T, size_t N, typename Ptr>
inline constexpr bool
std::ranges::enable_borrowed_range<base::span<T, N, Ptr>> = true;
template <typename T, size_t N, typename Ptr>
inline constexpr bool std::ranges::enable_view<base::span<T, N, Ptr>> = true;
// EXTENT returns the size of any type that can be converted to a |base::span|
// with definite extent, i.e. everything that is a contiguous storage of some
// sort with static size. Specifically, this works for std::array in a constexpr
// context. Note:
// * |std::size| should be preferred for plain arrays.
// * In run-time contexts, functions such as |std::array::size| should be
// preferred.
#define EXTENT(x) \
::base::internal::must_not_be_dynamic_extent<decltype( \
::base::make_span(x))::extent>()
#endif // BASE_CONTAINERS_SPAN_H_