blob: 77a95d098bcc951d441423d532a69cafb758fe95 [file] [log] [blame]
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "partition_alloc/partition_alloc_base/time/time.h"
#import <Foundation/Foundation.h>
#include <mach/mach.h>
#include <mach/mach_time.h>
#include <stddef.h>
#include <stdint.h>
#include <sys/sysctl.h>
#include <sys/time.h>
#include <sys/types.h>
#include <time.h>
#if BUILDFLAG(IS_IOS)
#include <errno.h>
#endif
#include "build/build_config.h"
#include "partition_alloc/partition_alloc_base/check.h"
#include "partition_alloc/partition_alloc_base/logging.h"
#include "partition_alloc/partition_alloc_base/numerics/safe_conversions.h"
#include "partition_alloc/partition_alloc_base/time/time_override.h"
namespace partition_alloc::internal::base {
namespace {
// Returns a pointer to the initialized Mach timebase info struct.
mach_timebase_info_data_t* MachTimebaseInfo() {
static mach_timebase_info_data_t timebase_info = []() {
mach_timebase_info_data_t info;
kern_return_t kr = mach_timebase_info(&info);
PA_BASE_DCHECK(kr == KERN_SUCCESS) << "mach_timebase_info";
PA_BASE_DCHECK(info.numer);
PA_BASE_DCHECK(info.denom);
return info;
}();
return &timebase_info;
}
int64_t MachTimeToMicroseconds(uint64_t mach_time) {
// timebase_info gives us the conversion factor between absolute time tick
// units and nanoseconds.
mach_timebase_info_data_t* timebase_info = MachTimebaseInfo();
// Take the fast path when the conversion is 1:1. The result will for sure fit
// into an int_64 because we're going from nanoseconds to microseconds.
if (timebase_info->numer == timebase_info->denom) {
return static_cast<int64_t>(mach_time / Time::kNanosecondsPerMicrosecond);
}
uint64_t microseconds = 0;
const uint64_t divisor =
timebase_info->denom * Time::kNanosecondsPerMicrosecond;
// Microseconds is mach_time * timebase.numer /
// (timebase.denom * kNanosecondsPerMicrosecond). Divide first to reduce
// the chance of overflow. Also stash the remainder right now, a likely
// byproduct of the division.
microseconds = mach_time / divisor;
const uint64_t mach_time_remainder = mach_time % divisor;
// Now multiply, keeping an eye out for overflow.
PA_BASE_CHECK(!__builtin_umulll_overflow(microseconds, timebase_info->numer,
&microseconds));
// By dividing first we lose precision. Regain it by adding back the
// microseconds from the remainder, with an eye out for overflow.
uint64_t least_significant_microseconds =
(mach_time_remainder * timebase_info->numer) / divisor;
PA_BASE_CHECK(!__builtin_uaddll_overflow(
microseconds, least_significant_microseconds, &microseconds));
// Don't bother with the rollover handling that the Windows version does.
// The returned time in microseconds is enough for 292,277 years (starting
// from 2^63 because the returned int64_t is signed,
// 9223372036854775807 / (1e6 * 60 * 60 * 24 * 365.2425) = 292,277).
return checked_cast<int64_t>(microseconds);
}
// Returns monotonically growing number of ticks in microseconds since some
// unspecified starting point.
int64_t ComputeCurrentTicks() {
// mach_absolute_time is it when it comes to ticks on the Mac. Other calls
// with less precision (such as TickCount) just call through to
// mach_absolute_time.
return MachTimeToMicroseconds(mach_absolute_time());
}
int64_t ComputeThreadTicks() {
// The pthreads library keeps a cached reference to the thread port, which
// does not have to be released like mach_thread_self() does.
mach_port_t thread_port = pthread_mach_thread_np(pthread_self());
if (thread_port == MACH_PORT_NULL) {
PA_DLOG(ERROR) << "Failed to get pthread_mach_thread_np()";
return 0;
}
mach_msg_type_number_t thread_info_count = THREAD_BASIC_INFO_COUNT;
thread_basic_info_data_t thread_info_data;
kern_return_t kr = thread_info(
thread_port, THREAD_BASIC_INFO,
reinterpret_cast<thread_info_t>(&thread_info_data), &thread_info_count);
PA_BASE_DCHECK(kr == KERN_SUCCESS) << "thread_info";
CheckedNumeric<int64_t> absolute_micros(thread_info_data.user_time.seconds +
thread_info_data.system_time.seconds);
absolute_micros *= Time::kMicrosecondsPerSecond;
absolute_micros += (thread_info_data.user_time.microseconds +
thread_info_data.system_time.microseconds);
return absolute_micros.ValueOrDie();
}
} // namespace
// The Time routines in this file use Mach and CoreFoundation APIs, since the
// POSIX definition of time_t in Mac OS X wraps around after 2038--and
// there are already cookie expiration dates, etc., past that time out in
// the field. Using CFDate prevents that problem, and using mach_absolute_time
// for TimeTicks gives us nice high-resolution interval timing.
// Time -----------------------------------------------------------------------
namespace subtle {
Time TimeNowIgnoringOverride() {
return Time::FromCFAbsoluteTime(CFAbsoluteTimeGetCurrent());
}
Time TimeNowFromSystemTimeIgnoringOverride() {
// Just use TimeNowIgnoringOverride() because it returns the system time.
return TimeNowIgnoringOverride();
}
} // namespace subtle
// static
Time Time::FromCFAbsoluteTime(CFAbsoluteTime t) {
static_assert(std::numeric_limits<CFAbsoluteTime>::has_infinity,
"CFAbsoluteTime must have an infinity value");
if (t == 0) {
return Time(); // Consider 0 as a null Time.
}
return (t == std::numeric_limits<CFAbsoluteTime>::infinity())
? Max()
: (UnixEpoch() +
Seconds(double{t + kCFAbsoluteTimeIntervalSince1970}));
}
CFAbsoluteTime Time::ToCFAbsoluteTime() const {
static_assert(std::numeric_limits<CFAbsoluteTime>::has_infinity,
"CFAbsoluteTime must have an infinity value");
if (is_null()) {
return 0; // Consider 0 as a null Time.
}
return is_max() ? std::numeric_limits<CFAbsoluteTime>::infinity()
: (CFAbsoluteTime{(*this - UnixEpoch()).InSecondsF()} -
kCFAbsoluteTimeIntervalSince1970);
}
// static
Time Time::FromNSDate(NSDate* date) {
PA_BASE_DCHECK(date);
return FromCFAbsoluteTime(date.timeIntervalSinceReferenceDate);
}
NSDate* Time::ToNSDate() const {
return [NSDate dateWithTimeIntervalSinceReferenceDate:ToCFAbsoluteTime()];
}
// TimeDelta ------------------------------------------------------------------
// static
TimeDelta TimeDelta::FromMachTime(uint64_t mach_time) {
return Microseconds(MachTimeToMicroseconds(mach_time));
}
// TimeTicks ------------------------------------------------------------------
namespace subtle {
TimeTicks TimeTicksNowIgnoringOverride() {
return TimeTicks() + Microseconds(ComputeCurrentTicks());
}
} // namespace subtle
// static
bool TimeTicks::IsHighResolution() {
return true;
}
// static
bool TimeTicks::IsConsistentAcrossProcesses() {
return true;
}
// static
TimeTicks TimeTicks::FromMachAbsoluteTime(uint64_t mach_absolute_time) {
return TimeTicks(MachTimeToMicroseconds(mach_absolute_time));
}
// static
mach_timebase_info_data_t TimeTicks::SetMachTimebaseInfoForTesting(
mach_timebase_info_data_t timebase) {
mach_timebase_info_data_t orig_timebase = *MachTimebaseInfo();
*MachTimebaseInfo() = timebase;
return orig_timebase;
}
// static
TimeTicks::Clock TimeTicks::GetClock() {
return Clock::MAC_MACH_ABSOLUTE_TIME;
}
// ThreadTicks ----------------------------------------------------------------
namespace subtle {
ThreadTicks ThreadTicksNowIgnoringOverride() {
return ThreadTicks() + Microseconds(ComputeThreadTicks());
}
} // namespace subtle
} // namespace partition_alloc::internal::base