blob: 75b64d39f7222d90c72a5a06203de3cf39ab4e5c [file] [log] [blame]
// Copyright (c) 2001, Daniel C. Nuffer
// Copyright (c) 2001-2008, Hartmut Kaiser
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#if !defined(BOOST_SPIRIT_ITERATOR_SPLIT_DEQUE_POLICY_APR_06_2008_0138PM)
#define BOOST_SPIRIT_ITERATOR_SPLIT_DEQUE_POLICY_APR_06_2008_0138PM
#include <boost/spirit/home/support/iterators/multi_pass_fwd.hpp>
#include <boost/spirit/home/support/iterators/detail/multi_pass.hpp>
#include <boost/assert.hpp>
#include <vector>
namespace boost { namespace spirit { namespace multi_pass_policies
{
///////////////////////////////////////////////////////////////////////////
// class split_std_deque
//
// Implementation of the StoragePolicy used by multi_pass
// This stores all data in a std::vector (despite its name), and keeps an
// offset to the current position. It stores all the data unless there is
// only one iterator using the queue.
//
///////////////////////////////////////////////////////////////////////////
struct split_std_deque
{
enum { threshold = 16 };
///////////////////////////////////////////////////////////////////////
template <typename Value>
class unique //: public detail::default_storage_policy
{
private:
typedef std::vector<Value> queue_type;
protected:
unique()
: queued_position(0)
{}
unique(unique const& x)
: queued_position(x.queued_position)
{}
void swap(unique& x)
{
spirit::detail::swap(queued_position, x.queued_position);
}
// This is called when the iterator is dereferenced. It's a
// template method so we can recover the type of the multi_pass
// iterator and call advance_input and input_is_valid.
template <typename MultiPass>
static typename MultiPass::reference
dereference(MultiPass const& mp)
{
queue_type& queue = mp.shared->queued_elements;
if (0 == mp.queued_position)
{
if (queue.empty())
{
queue.push_back(Value());
return MultiPass::advance_input(mp, queue[mp.queued_position++]);
}
return queue[mp.queued_position++];
}
else if (!MultiPass::input_is_valid(mp, queue[mp.queued_position-1]))
{
MultiPass::advance_input(mp, queue[mp.queued_position-1]);
}
return queue[mp.queued_position-1];
}
// This is called when the iterator is incremented. It's a template
// method so we can recover the type of the multi_pass iterator
// and call is_unique and advance_input.
template <typename MultiPass>
static void increment(MultiPass& mp)
{
queue_type& queue = mp.shared->queued_elements;
typename queue_type::size_type size = queue.size();
BOOST_ASSERT(0 != size && mp.queued_position <= size);
if (mp.queued_position == size)
{
// check if this is the only iterator
if (size >= threshold && MultiPass::is_unique(mp))
{
// free up the memory used by the queue. we avoid
// clearing the queue on every increment, though,
// because this would be too time consuming
// erase all but first item in queue
queue.erase(queue.begin()+1, queue.end());
mp.queued_position = 0;
// reuse first entry in the queue and initialize
// it from the input
MultiPass::advance_input(mp, queue[mp.queued_position++]);
}
else
{
// create a new entry in the queue and initialize
// it from the input
queue.push_back(Value());
MultiPass::advance_input(mp, queue[mp.queued_position++]);
}
}
else
{
++mp.queued_position;
}
}
// called to forcibly clear the queue
template <typename MultiPass>
static void clear_queue(MultiPass& mp)
{
mp.shared->queued_elements.clear();
mp.queued_position = 0;
}
// called to determine whether the iterator is an eof iterator
template <typename MultiPass>
static bool is_eof(MultiPass const& mp)
{
queue_type& queue = mp.shared->queued_elements;
return 0 != mp.queued_position &&
mp.queued_position == queue.size() &&
MultiPass::input_at_eof(mp, queue[mp.queued_position-1]);
}
// called by operator==
template <typename MultiPass>
static bool equal_to(MultiPass const& mp, MultiPass const& x)
{
return mp.queued_position == x.queued_position;
}
// called by operator<
template <typename MultiPass>
static bool less_than(MultiPass const& mp, MultiPass const& x)
{
return mp.queued_position < x.queued_position;
}
template <typename MultiPass>
static void destroy(MultiPass&)
{}
protected:
mutable typename queue_type::size_type queued_position;
};
///////////////////////////////////////////////////////////////////////
template <typename Value>
struct shared
{
shared() { queued_elements.reserve(threshold); }
typedef std::vector<Value> queue_type;
queue_type queued_elements;
};
}; // split_std_deque
}}}
#endif