blob: 17d4f44a310cc6e4f30ae6b15f76e7756dc4f9b1 [file] [log] [blame]
/*
* Copyright (c) 2016-2021 The Linux Foundation. All rights reserved.
*
* Permission to use, copy, modify, and/or distribute this software for
* any purpose with or without fee is hereby granted, provided that the
* above copyright notice and this permission notice appear in all
* copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL
* WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
* AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
* DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR
* PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
* TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.
*/
#include <qdf_types.h>
#include <qdf_lock.h>
#include <qdf_net_types.h>
#include <qdf_lro.h>
#include <qdf_module.h>
#include <hal_hw_headers.h>
#include <hal_api.h>
#include <hif.h>
#include <htt.h>
#include <wdi_event.h>
#include <queue.h>
#include "dp_types.h"
#include "dp_internal.h"
#include "dp_tx.h"
#include "dp_tx_desc.h"
#include "dp_rx.h"
#include "dp_rx_mon.h"
#ifdef DP_RATETABLE_SUPPORT
#include "dp_ratetable.h"
#endif
#include <cdp_txrx_handle.h>
#include <wlan_cfg.h>
#include "cdp_txrx_cmn_struct.h"
#include "cdp_txrx_stats_struct.h"
#include "cdp_txrx_cmn_reg.h"
#include <qdf_util.h>
#include "dp_peer.h"
#include "dp_rx_mon.h"
#include "htt_stats.h"
#include "htt_ppdu_stats.h"
#include "dp_htt.h"
#include "qdf_mem.h" /* qdf_mem_malloc,free */
#include "cfg_ucfg_api.h"
#ifdef QCA_LL_TX_FLOW_CONTROL_V2
#include "cdp_txrx_flow_ctrl_v2.h"
#else
static inline void
cdp_dump_flow_pool_info(struct cdp_soc_t *soc)
{
return;
}
#endif
#include "dp_ipa.h"
#include "dp_cal_client_api.h"
#ifdef FEATURE_WDS
#include "dp_txrx_wds.h"
#endif
#ifdef CONFIG_MCL
#ifndef REMOVE_PKT_LOG
#include <pktlog_ac_api.h>
#include <pktlog_ac.h>
#endif
#endif
#ifdef WLAN_FEATURE_STATS_EXT
#define INIT_RX_HW_STATS_LOCK(_soc) \
qdf_spinlock_create(&(_soc)->rx_hw_stats_lock)
#define DEINIT_RX_HW_STATS_LOCK(_soc) \
qdf_spinlock_destroy(&(_soc)->rx_hw_stats_lock)
#else
#define INIT_RX_HW_STATS_LOCK(_soc) /* no op */
#define DEINIT_RX_HW_STATS_LOCK(_soc) /* no op */
#endif
#ifdef DP_PEER_EXTENDED_API
#define SET_PEER_REF_CNT_ONE(_peer) \
qdf_atomic_set(&(_peer)->ref_cnt, 1)
#else
#define SET_PEER_REF_CNT_ONE(_peer)
#endif
#ifdef WLAN_FEATURE_DP_EVENT_HISTORY
/*
* If WLAN_CFG_INT_NUM_CONTEXTS is changed, HIF_NUM_INT_CONTEXTS
* also should be updated accordingly
*/
QDF_COMPILE_TIME_ASSERT(num_intr_grps,
HIF_NUM_INT_CONTEXTS == WLAN_CFG_INT_NUM_CONTEXTS);
/*
* HIF_EVENT_HIST_MAX should always be power of 2
*/
QDF_COMPILE_TIME_ASSERT(hif_event_history_size,
(HIF_EVENT_HIST_MAX & (HIF_EVENT_HIST_MAX - 1)) == 0);
#endif /* WLAN_FEATURE_DP_EVENT_HISTORY */
#ifdef WLAN_RX_PKT_CAPTURE_ENH
#include "dp_rx_mon_feature.h"
#else
/*
* dp_config_enh_rx_capture()- API to enable/disable enhanced rx capture
* @pdev_handle: DP_PDEV handle
* @val: user provided value
*
* Return: QDF_STATUS
*/
static QDF_STATUS
dp_config_enh_rx_capture(struct cdp_pdev *pdev_handle, uint8_t val)
{
return QDF_STATUS_E_INVAL;
}
#endif /* WLAN_RX_PKT_CAPTURE_ENH */
#ifdef WLAN_TX_PKT_CAPTURE_ENH
#include "dp_tx_capture.h"
#else
/*
* dp_config_enh_tx_capture()- API to enable/disable enhanced tx capture
* @pdev_handle: DP_PDEV handle
* @val: user provided value
*
* Return: QDF_STATUS
*/
static QDF_STATUS
dp_config_enh_tx_capture(struct cdp_pdev *pdev_handle, int val)
{
return QDF_STATUS_E_INVAL;
}
#endif
void *dp_soc_init(void *dpsoc, HTC_HANDLE htc_handle, void *hif_handle);
static void dp_pdev_detach(struct cdp_pdev *txrx_pdev, int force);
static struct dp_soc *
dp_soc_attach(void *ctrl_psoc, HTC_HANDLE htc_handle, qdf_device_t qdf_osdev,
struct ol_if_ops *ol_ops, uint16_t device_id);
static void dp_pktlogmod_exit(struct dp_pdev *handle);
static void *dp_peer_create_wifi3(struct cdp_vdev *vdev_handle,
uint8_t *peer_mac_addr,
struct cdp_ctrl_objmgr_peer *ctrl_peer);
static void dp_peer_delete_wifi3(void *peer_handle, uint32_t bitmap);
static void dp_ppdu_ring_reset(struct dp_pdev *pdev);
static void dp_ppdu_ring_cfg(struct dp_pdev *pdev);
static void dp_vdev_flush_peers(struct cdp_vdev *vdev_handle,
bool unmap_only);
#ifdef ENABLE_VERBOSE_DEBUG
bool is_dp_verbose_debug_enabled;
#endif
static uint8_t dp_soc_ring_if_nss_offloaded(struct dp_soc *soc,
enum hal_ring_type ring_type,
int ring_num);
#define DP_INTR_POLL_TIMER_MS 5
/* Generic AST entry aging timer value */
#define DP_AST_AGING_TIMER_DEFAULT_MS 1000
#define DP_MCS_LENGTH (6*MAX_MCS)
#define DP_CURR_FW_STATS_AVAIL 19
#define DP_HTT_DBG_EXT_STATS_MAX 256
#define DP_MAX_SLEEP_TIME 100
#ifndef QCA_WIFI_3_0_EMU
#define SUSPEND_DRAIN_WAIT 500
#else
#define SUSPEND_DRAIN_WAIT 3000
#endif
#ifdef IPA_OFFLOAD
/* Exclude IPA rings from the interrupt context */
#define TX_RING_MASK_VAL 0xb
#define RX_RING_MASK_VAL 0x7
#else
#define TX_RING_MASK_VAL 0xF
#define RX_RING_MASK_VAL 0xF
#endif
#define STR_MAXLEN 64
#define RNG_ERR "SRNG setup failed for"
/* Threshold for peer's cached buf queue beyond which frames are dropped */
#define DP_RX_CACHED_BUFQ_THRESH 64
/* Budget to reap monitor status ring */
#define DP_MON_REAP_BUDGET 1024
/**
* default_dscp_tid_map - Default DSCP-TID mapping
*
* DSCP TID
* 000000 0
* 001000 1
* 010000 2
* 011000 3
* 100000 4
* 101000 5
* 110000 6
* 111000 7
*/
static uint8_t default_dscp_tid_map[DSCP_TID_MAP_MAX] = {
0, 0, 0, 0, 0, 0, 0, 0,
1, 1, 1, 1, 1, 1, 1, 1,
2, 2, 2, 2, 2, 2, 2, 2,
3, 3, 3, 3, 3, 3, 3, 3,
4, 4, 4, 4, 4, 4, 4, 4,
5, 5, 5, 5, 5, 5, 5, 5,
6, 6, 6, 6, 6, 6, 6, 6,
7, 7, 7, 7, 7, 7, 7, 7,
};
/**
* default_pcp_tid_map - Default PCP-TID mapping
*
* PCP TID
* 000 0
* 001 1
* 010 2
* 011 3
* 100 4
* 101 5
* 110 6
* 111 7
*/
static uint8_t default_pcp_tid_map[PCP_TID_MAP_MAX] = {
0, 1, 2, 3, 4, 5, 6, 7,
};
/**
* @brief Cpu to tx ring map
*/
#ifdef CONFIG_WIN
#ifdef WLAN_TX_PKT_CAPTURE_ENH
uint8_t
dp_cpu_ring_map[DP_NSS_CPU_RING_MAP_MAX][WLAN_CFG_INT_NUM_CONTEXTS] = {
{0x0, 0x1, 0x2, 0x0, 0x0, 0x1, 0x2, 0x0, 0x0, 0x1, 0x2},
{0x1, 0x2, 0x1, 0x2, 0x1, 0x2, 0x1, 0x2, 0x1, 0x2, 0x1},
{0x0, 0x2, 0x0, 0x2, 0x0, 0x2, 0x0, 0x2, 0x0, 0x2, 0x0},
{0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2},
{0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3},
{0x1, 0x1, 0x1, 0x1, 0x1, 0x1, 0x1, 0x1, 0x1, 0x1, 0x1}
};
#else
static uint8_t
dp_cpu_ring_map[DP_NSS_CPU_RING_MAP_MAX][WLAN_CFG_INT_NUM_CONTEXTS] = {
{0x0, 0x1, 0x2, 0x0, 0x0, 0x1, 0x2, 0x0, 0x0, 0x1, 0x2},
{0x1, 0x2, 0x1, 0x2, 0x1, 0x2, 0x1, 0x2, 0x1, 0x2, 0x1},
{0x0, 0x2, 0x0, 0x2, 0x0, 0x2, 0x0, 0x2, 0x0, 0x2, 0x0},
{0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2},
{0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3}
};
#endif
#else
static uint8_t
dp_cpu_ring_map[DP_NSS_CPU_RING_MAP_MAX][WLAN_CFG_INT_NUM_CONTEXTS] = {
{0x0, 0x1, 0x2, 0x0, 0x0, 0x1, 0x2},
{0x1, 0x2, 0x1, 0x2, 0x1, 0x2, 0x1},
{0x0, 0x2, 0x0, 0x2, 0x0, 0x2, 0x0},
{0x2, 0x2, 0x2, 0x2, 0x2, 0x2, 0x2},
{0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3}
};
#endif
/**
* @brief Select the type of statistics
*/
enum dp_stats_type {
STATS_FW = 0,
STATS_HOST = 1,
STATS_TYPE_MAX = 2,
};
/**
* @brief General Firmware statistics options
*
*/
enum dp_fw_stats {
TXRX_FW_STATS_INVALID = -1,
};
/**
* dp_stats_mapping_table - Firmware and Host statistics
* currently supported
*/
const int dp_stats_mapping_table[][STATS_TYPE_MAX] = {
{HTT_DBG_EXT_STATS_RESET, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_PDEV_TX, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_PDEV_RX, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_PDEV_TX_HWQ, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_PDEV_TX_SCHED, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_PDEV_ERROR, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_PDEV_TQM, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_TQM_CMDQ, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_TX_DE_INFO, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_PDEV_TX_RATE, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_PDEV_RX_RATE, TXRX_HOST_STATS_INVALID},
{TXRX_FW_STATS_INVALID, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_TX_SELFGEN_INFO, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_TX_MU_HWQ, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_RING_IF_INFO, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_SRNG_INFO, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_SFM_INFO, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_PDEV_TX_MU, TXRX_HOST_STATS_INVALID},
{HTT_DBG_EXT_STATS_ACTIVE_PEERS_LIST, TXRX_HOST_STATS_INVALID},
/* Last ENUM for HTT FW STATS */
{DP_HTT_DBG_EXT_STATS_MAX, TXRX_HOST_STATS_INVALID},
{TXRX_FW_STATS_INVALID, TXRX_CLEAR_STATS},
{TXRX_FW_STATS_INVALID, TXRX_RX_RATE_STATS},
{TXRX_FW_STATS_INVALID, TXRX_TX_RATE_STATS},
{TXRX_FW_STATS_INVALID, TXRX_TX_HOST_STATS},
{TXRX_FW_STATS_INVALID, TXRX_RX_HOST_STATS},
{TXRX_FW_STATS_INVALID, TXRX_AST_STATS},
{TXRX_FW_STATS_INVALID, TXRX_SRNG_PTR_STATS},
{TXRX_FW_STATS_INVALID, TXRX_RX_MON_STATS},
{TXRX_FW_STATS_INVALID, TXRX_REO_QUEUE_STATS},
{TXRX_FW_STATS_INVALID, TXRX_SOC_CFG_PARAMS},
{TXRX_FW_STATS_INVALID, TXRX_PDEV_CFG_PARAMS},
{TXRX_FW_STATS_INVALID, TXRX_SOC_INTERRUPT_STATS},
{TXRX_FW_STATS_INVALID, TXRX_HAL_REG_WRITE_STATS},
};
/* MCL specific functions */
#ifdef CONFIG_MCL
/**
* dp_soc_get_mon_mask_for_interrupt_mode() - get mon mode mask for intr mode
* @soc: pointer to dp_soc handle
* @intr_ctx_num: interrupt context number for which mon mask is needed
*
* For MCL, monitor mode rings are being processed in timer contexts (polled).
* This function is returning 0, since in interrupt mode(softirq based RX),
* we donot want to process monitor mode rings in a softirq.
*
* So, in case packet log is enabled for SAP/STA/P2P modes,
* regular interrupt processing will not process monitor mode rings. It would be
* done in a separate timer context.
*
* Return: 0
*/
static inline
uint32_t dp_soc_get_mon_mask_for_interrupt_mode(struct dp_soc *soc, int intr_ctx_num)
{
return 0;
}
/*
* dp_service_mon_rings()- service monitor rings
* @soc: soc dp handle
* @quota: number of ring entry that can be serviced
*
* Return: None
*
*/
static void dp_service_mon_rings(struct dp_soc *soc, uint32_t quota)
{
int ring = 0, work_done, mac_id;
struct dp_pdev *pdev = NULL;
for (ring = 0 ; ring < MAX_PDEV_CNT; ring++) {
pdev = soc->pdev_list[ring];
if (!pdev)
continue;
for (mac_id = 0; mac_id < NUM_RXDMA_RINGS_PER_PDEV; mac_id++) {
int mac_for_pdev = dp_get_mac_id_for_pdev(mac_id,
pdev->pdev_id);
work_done = dp_mon_process(soc, mac_for_pdev,
QCA_NAPI_BUDGET);
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
FL("Reaped %d descs from Monitor rings"),
work_done);
}
}
}
/*
* dp_mon_reap_timer_handler()- timer to reap monitor rings
* reqd as we are not getting ppdu end interrupts
* @arg: SoC Handle
*
* Return:
*
*/
static void dp_mon_reap_timer_handler(void *arg)
{
struct dp_soc *soc = (struct dp_soc *)arg;
dp_service_mon_rings(soc, QCA_NAPI_BUDGET);
qdf_timer_mod(&soc->mon_reap_timer, DP_INTR_POLL_TIMER_MS);
}
#ifndef REMOVE_PKT_LOG
/**
* dp_pkt_log_init() - API to initialize packet log
* @ppdev: physical device handle
* @scn: HIF context
*
* Return: none
*/
void dp_pkt_log_init(struct cdp_pdev *ppdev, void *scn)
{
struct dp_pdev *handle = (struct dp_pdev *)ppdev;
if (handle->pkt_log_init) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"%s: Packet log not initialized", __func__);
return;
}
pktlog_sethandle(&handle->pl_dev, scn);
pktlog_set_callback_regtype(PKTLOG_DEFAULT_CALLBACK_REGISTRATION);
if (pktlogmod_init(scn)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"%s: pktlogmod_init failed", __func__);
handle->pkt_log_init = false;
} else {
handle->pkt_log_init = true;
}
}
/**
* dp_pkt_log_con_service() - connect packet log service
* @ppdev: physical device handle
* @scn: device context
*
* Return: none
*/
static void dp_pkt_log_con_service(struct cdp_pdev *ppdev, void *scn)
{
struct dp_pdev *pdev = (struct dp_pdev *)ppdev;
dp_pkt_log_init((struct cdp_pdev *)pdev, scn);
pktlog_htc_attach();
}
/**
* dp_get_num_rx_contexts() - get number of RX contexts
* @soc_hdl: cdp opaque soc handle
*
* Return: number of RX contexts
*/
static int dp_get_num_rx_contexts(struct cdp_soc_t *soc_hdl)
{
int i;
int num_rx_contexts = 0;
struct dp_soc *soc = (struct dp_soc *)soc_hdl;
for (i = 0; i < wlan_cfg_get_num_contexts(soc->wlan_cfg_ctx); i++)
if (wlan_cfg_get_rx_ring_mask(soc->wlan_cfg_ctx, i))
num_rx_contexts++;
return num_rx_contexts;
}
/**
* dp_pktlogmod_exit() - API to cleanup pktlog info
* @pdev: Pdev handle
*
* Return: none
*/
static void dp_pktlogmod_exit(struct dp_pdev *pdev)
{
struct dp_soc *soc = pdev->soc;
struct hif_opaque_softc *scn = soc->hif_handle;
if (!scn) {
dp_err("Invalid hif(scn) handle");
return;
}
/* stop mon_reap_timer if it has been started */
if (pdev->rx_pktlog_mode != DP_RX_PKTLOG_DISABLED &&
soc->reap_timer_init)
qdf_timer_sync_cancel(&soc->mon_reap_timer);
pktlogmod_exit(scn);
pdev->pkt_log_init = false;
}
#endif
#else
static void dp_pktlogmod_exit(struct dp_pdev *handle) { }
/**
* dp_soc_get_mon_mask_for_interrupt_mode() - get mon mode mask for intr mode
* @soc: pointer to dp_soc handle
* @intr_ctx_num: interrupt context number for which mon mask is needed
*
* Return: mon mask value
*/
static inline
uint32_t dp_soc_get_mon_mask_for_interrupt_mode(struct dp_soc *soc, int intr_ctx_num)
{
return wlan_cfg_get_rx_mon_ring_mask(soc->wlan_cfg_ctx, intr_ctx_num);
}
#endif
/**
* dp_get_dp_vdev_from_cdp_vdev() - get dp_vdev from cdp_vdev by type-casting
* @cdp_opaque_vdev: pointer to cdp_vdev
*
* Return: pointer to dp_vdev
*/
static
struct dp_vdev *dp_get_dp_vdev_from_cdp_vdev(struct cdp_vdev *cdp_opaque_vdev)
{
return (struct dp_vdev *)cdp_opaque_vdev;
}
static int dp_peer_add_ast_wifi3(struct cdp_soc_t *soc_hdl,
struct cdp_peer *peer_hdl,
uint8_t *mac_addr,
enum cdp_txrx_ast_entry_type type,
uint32_t flags)
{
return dp_peer_add_ast((struct dp_soc *)soc_hdl,
(struct dp_peer *)peer_hdl,
mac_addr,
type,
flags);
}
static int dp_peer_update_ast_wifi3(struct cdp_soc_t *soc_hdl,
struct cdp_peer *peer_hdl,
uint8_t *wds_macaddr,
uint32_t flags)
{
int status = -1;
struct dp_soc *soc = (struct dp_soc *)soc_hdl;
struct dp_ast_entry *ast_entry = NULL;
struct dp_peer *peer = (struct dp_peer *)peer_hdl;
qdf_spin_lock_bh(&soc->ast_lock);
ast_entry = dp_peer_ast_hash_find_by_pdevid(soc, wds_macaddr,
peer->vdev->pdev->pdev_id);
if (ast_entry) {
status = dp_peer_update_ast(soc,
peer,
ast_entry, flags);
}
qdf_spin_unlock_bh(&soc->ast_lock);
return status;
}
/*
* dp_wds_reset_ast_wifi3() - Reset the is_active param for ast entry
* @soc_handle: Datapath SOC handle
* @wds_macaddr: WDS entry MAC Address
* Return: None
*/
static void dp_wds_reset_ast_wifi3(struct cdp_soc_t *soc_hdl,
uint8_t *wds_macaddr,
uint8_t *peer_mac_addr,
void *vdev_handle)
{
struct dp_soc *soc = (struct dp_soc *)soc_hdl;
struct dp_ast_entry *ast_entry = NULL;
struct dp_ast_entry *tmp_ast_entry;
struct dp_peer *peer;
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
struct dp_pdev *pdev;
if (!vdev)
return;
pdev = vdev->pdev;
if (peer_mac_addr) {
peer = dp_peer_find_hash_find(soc, peer_mac_addr,
0, vdev->vdev_id);
if (!peer)
return;
qdf_spin_lock_bh(&soc->ast_lock);
DP_PEER_ITERATE_ASE_LIST(peer, ast_entry, tmp_ast_entry) {
if ((ast_entry->type == CDP_TXRX_AST_TYPE_WDS_HM) ||
(ast_entry->type == CDP_TXRX_AST_TYPE_WDS_HM_SEC))
dp_peer_del_ast(soc, ast_entry);
}
qdf_spin_unlock_bh(&soc->ast_lock);
dp_peer_unref_delete(peer);
} else if (wds_macaddr) {
qdf_spin_lock_bh(&soc->ast_lock);
ast_entry = dp_peer_ast_hash_find_by_pdevid(soc, wds_macaddr,
pdev->pdev_id);
if (ast_entry) {
if ((ast_entry->type == CDP_TXRX_AST_TYPE_WDS_HM) ||
(ast_entry->type == CDP_TXRX_AST_TYPE_WDS_HM_SEC))
dp_peer_del_ast(soc, ast_entry);
}
qdf_spin_unlock_bh(&soc->ast_lock);
}
}
/*
* dp_wds_reset_ast_table_wifi3() - Reset the is_active param for all ast entry
* @soc: Datapath SOC handle
*
* Return: None
*/
static void dp_wds_reset_ast_table_wifi3(struct cdp_soc_t *soc_hdl,
void *vdev_hdl)
{
struct dp_soc *soc = (struct dp_soc *) soc_hdl;
struct dp_pdev *pdev;
struct dp_vdev *vdev;
struct dp_peer *peer;
struct dp_ast_entry *ase, *temp_ase;
int i;
qdf_spin_lock_bh(&soc->ast_lock);
for (i = 0; i < MAX_PDEV_CNT && soc->pdev_list[i]; i++) {
pdev = soc->pdev_list[i];
qdf_spin_lock_bh(&pdev->vdev_list_lock);
DP_PDEV_ITERATE_VDEV_LIST(pdev, vdev) {
DP_VDEV_ITERATE_PEER_LIST(vdev, peer) {
DP_PEER_ITERATE_ASE_LIST(peer, ase, temp_ase) {
if ((ase->type ==
CDP_TXRX_AST_TYPE_WDS_HM) ||
(ase->type ==
CDP_TXRX_AST_TYPE_WDS_HM_SEC))
dp_peer_del_ast(soc, ase);
}
}
}
qdf_spin_unlock_bh(&pdev->vdev_list_lock);
}
qdf_spin_unlock_bh(&soc->ast_lock);
}
/*
* dp_wds_flush_ast_table_wifi3() - Delete all wds and hmwds ast entry
* @soc: Datapath SOC handle
*
* Return: None
*/
static void dp_wds_flush_ast_table_wifi3(struct cdp_soc_t *soc_hdl)
{
struct dp_soc *soc = (struct dp_soc *) soc_hdl;
struct dp_pdev *pdev;
struct dp_vdev *vdev;
struct dp_peer *peer;
struct dp_ast_entry *ase, *temp_ase;
int i;
qdf_spin_lock_bh(&soc->ast_lock);
for (i = 0; i < MAX_PDEV_CNT && soc->pdev_list[i]; i++) {
pdev = soc->pdev_list[i];
qdf_spin_lock_bh(&pdev->vdev_list_lock);
DP_PDEV_ITERATE_VDEV_LIST(pdev, vdev) {
DP_VDEV_ITERATE_PEER_LIST(vdev, peer) {
DP_PEER_ITERATE_ASE_LIST(peer, ase, temp_ase) {
if ((ase->type ==
CDP_TXRX_AST_TYPE_STATIC) ||
(ase->type ==
CDP_TXRX_AST_TYPE_SELF) ||
(ase->type ==
CDP_TXRX_AST_TYPE_STA_BSS))
continue;
dp_peer_del_ast(soc, ase);
}
}
}
qdf_spin_unlock_bh(&pdev->vdev_list_lock);
}
qdf_spin_unlock_bh(&soc->ast_lock);
}
/**
* dp_peer_get_ast_info_by_soc_wifi3() - search the soc AST hash table
* and return ast entry information
* of first ast entry found in the
* table with given mac address
*
* @soc : data path soc handle
* @ast_mac_addr : AST entry mac address
* @ast_entry_info : ast entry information
*
* return : true if ast entry found with ast_mac_addr
* false if ast entry not found
*/
static bool dp_peer_get_ast_info_by_soc_wifi3
(struct cdp_soc_t *soc_hdl,
uint8_t *ast_mac_addr,
struct cdp_ast_entry_info *ast_entry_info)
{
struct dp_ast_entry *ast_entry = NULL;
struct dp_soc *soc = (struct dp_soc *)soc_hdl;
qdf_spin_lock_bh(&soc->ast_lock);
ast_entry = dp_peer_ast_hash_find_soc(soc, ast_mac_addr);
if (!ast_entry || !ast_entry->peer) {
qdf_spin_unlock_bh(&soc->ast_lock);
return false;
}
if (ast_entry->delete_in_progress && !ast_entry->callback) {
qdf_spin_unlock_bh(&soc->ast_lock);
return false;
}
ast_entry_info->type = ast_entry->type;
ast_entry_info->pdev_id = ast_entry->pdev_id;
ast_entry_info->vdev_id = ast_entry->vdev_id;
ast_entry_info->peer_id = ast_entry->peer->peer_ids[0];
qdf_mem_copy(&ast_entry_info->peer_mac_addr[0],
&ast_entry->peer->mac_addr.raw[0],
QDF_MAC_ADDR_SIZE);
qdf_spin_unlock_bh(&soc->ast_lock);
return true;
}
/**
* dp_peer_get_ast_info_by_pdevid_wifi3() - search the soc AST hash table
* and return ast entry information
* if mac address and pdev_id matches
*
* @soc : data path soc handle
* @ast_mac_addr : AST entry mac address
* @pdev_id : pdev_id
* @ast_entry_info : ast entry information
*
* return : true if ast entry found with ast_mac_addr
* false if ast entry not found
*/
static bool dp_peer_get_ast_info_by_pdevid_wifi3
(struct cdp_soc_t *soc_hdl,
uint8_t *ast_mac_addr,
uint8_t pdev_id,
struct cdp_ast_entry_info *ast_entry_info)
{
struct dp_ast_entry *ast_entry;
struct dp_soc *soc = (struct dp_soc *)soc_hdl;
qdf_spin_lock_bh(&soc->ast_lock);
ast_entry = dp_peer_ast_hash_find_by_pdevid(soc, ast_mac_addr, pdev_id);
if (!ast_entry || !ast_entry->peer) {
qdf_spin_unlock_bh(&soc->ast_lock);
return false;
}
if (ast_entry->delete_in_progress && !ast_entry->callback) {
qdf_spin_unlock_bh(&soc->ast_lock);
return false;
}
ast_entry_info->type = ast_entry->type;
ast_entry_info->pdev_id = ast_entry->pdev_id;
ast_entry_info->vdev_id = ast_entry->vdev_id;
ast_entry_info->peer_id = ast_entry->peer->peer_ids[0];
qdf_mem_copy(&ast_entry_info->peer_mac_addr[0],
&ast_entry->peer->mac_addr.raw[0],
QDF_MAC_ADDR_SIZE);
qdf_spin_unlock_bh(&soc->ast_lock);
return true;
}
/**
* dp_peer_ast_entry_del_by_soc() - delete the ast entry from soc AST hash table
* with given mac address
*
* @soc : data path soc handle
* @ast_mac_addr : AST entry mac address
* @callback : callback function to called on ast delete response from FW
* @cookie : argument to be passed to callback
*
* return : QDF_STATUS_SUCCESS if ast entry found with ast_mac_addr and delete
* is sent
* QDF_STATUS_E_INVAL false if ast entry not found
*/
static QDF_STATUS dp_peer_ast_entry_del_by_soc(struct cdp_soc_t *soc_handle,
uint8_t *mac_addr,
txrx_ast_free_cb callback,
void *cookie)
{
struct dp_soc *soc = (struct dp_soc *)soc_handle;
struct dp_ast_entry *ast_entry = NULL;
txrx_ast_free_cb cb = NULL;
void *arg = NULL;
qdf_spin_lock_bh(&soc->ast_lock);
ast_entry = dp_peer_ast_hash_find_soc(soc, mac_addr);
if (!ast_entry) {
qdf_spin_unlock_bh(&soc->ast_lock);
return -QDF_STATUS_E_INVAL;
}
if (ast_entry->callback) {
cb = ast_entry->callback;
arg = ast_entry->cookie;
}
ast_entry->callback = callback;
ast_entry->cookie = cookie;
/*
* if delete_in_progress is set AST delete is sent to target
* and host is waiting for response should not send delete
* again
*/
if (!ast_entry->delete_in_progress)
dp_peer_del_ast(soc, ast_entry);
qdf_spin_unlock_bh(&soc->ast_lock);
if (cb) {
cb(soc->ctrl_psoc,
soc,
arg,
CDP_TXRX_AST_DELETE_IN_PROGRESS);
}
return QDF_STATUS_SUCCESS;
}
/**
* dp_peer_ast_entry_del_by_pdev() - delete the ast entry from soc AST hash
* table if mac address and pdev_id matches
*
* @soc : data path soc handle
* @ast_mac_addr : AST entry mac address
* @pdev_id : pdev id
* @callback : callback function to called on ast delete response from FW
* @cookie : argument to be passed to callback
*
* return : QDF_STATUS_SUCCESS if ast entry found with ast_mac_addr and delete
* is sent
* QDF_STATUS_E_INVAL false if ast entry not found
*/
static QDF_STATUS dp_peer_ast_entry_del_by_pdev(struct cdp_soc_t *soc_handle,
uint8_t *mac_addr,
uint8_t pdev_id,
txrx_ast_free_cb callback,
void *cookie)
{
struct dp_soc *soc = (struct dp_soc *)soc_handle;
struct dp_ast_entry *ast_entry;
txrx_ast_free_cb cb = NULL;
void *arg = NULL;
qdf_spin_lock_bh(&soc->ast_lock);
ast_entry = dp_peer_ast_hash_find_by_pdevid(soc, mac_addr, pdev_id);
if (!ast_entry) {
qdf_spin_unlock_bh(&soc->ast_lock);
return -QDF_STATUS_E_INVAL;
}
if (ast_entry->callback) {
cb = ast_entry->callback;
arg = ast_entry->cookie;
}
ast_entry->callback = callback;
ast_entry->cookie = cookie;
/*
* if delete_in_progress is set AST delete is sent to target
* and host is waiting for response should not sent delete
* again
*/
if (!ast_entry->delete_in_progress)
dp_peer_del_ast(soc, ast_entry);
qdf_spin_unlock_bh(&soc->ast_lock);
if (cb) {
cb(soc->ctrl_psoc,
soc,
arg,
CDP_TXRX_AST_DELETE_IN_PROGRESS);
}
return QDF_STATUS_SUCCESS;
}
/**
* dp_srng_find_ring_in_mask() - find which ext_group a ring belongs
* @ring_num: ring num of the ring being queried
* @grp_mask: the grp_mask array for the ring type in question.
*
* The grp_mask array is indexed by group number and the bit fields correspond
* to ring numbers. We are finding which interrupt group a ring belongs to.
*
* Return: the index in the grp_mask array with the ring number.
* -QDF_STATUS_E_NOENT if no entry is found
*/
static int dp_srng_find_ring_in_mask(int ring_num, int *grp_mask)
{
int ext_group_num;
int mask = 1 << ring_num;
for (ext_group_num = 0; ext_group_num < WLAN_CFG_INT_NUM_CONTEXTS;
ext_group_num++) {
if (mask & grp_mask[ext_group_num])
return ext_group_num;
}
return -QDF_STATUS_E_NOENT;
}
static int dp_srng_calculate_msi_group(struct dp_soc *soc,
enum hal_ring_type ring_type,
int ring_num)
{
int *grp_mask;
switch (ring_type) {
case WBM2SW_RELEASE:
/* dp_tx_comp_handler - soc->tx_comp_ring */
if (ring_num < 3)
grp_mask = &soc->wlan_cfg_ctx->int_tx_ring_mask[0];
/* dp_rx_wbm_err_process - soc->rx_rel_ring */
else if (ring_num == 3) {
/* sw treats this as a separate ring type */
grp_mask = &soc->wlan_cfg_ctx->
int_rx_wbm_rel_ring_mask[0];
ring_num = 0;
} else {
qdf_assert(0);
return -QDF_STATUS_E_NOENT;
}
break;
case REO_EXCEPTION:
/* dp_rx_err_process - &soc->reo_exception_ring */
grp_mask = &soc->wlan_cfg_ctx->int_rx_err_ring_mask[0];
break;
case REO_DST:
/* dp_rx_process - soc->reo_dest_ring */
grp_mask = &soc->wlan_cfg_ctx->int_rx_ring_mask[0];
break;
case REO_STATUS:
/* dp_reo_status_ring_handler - soc->reo_status_ring */
grp_mask = &soc->wlan_cfg_ctx->int_reo_status_ring_mask[0];
break;
/* dp_rx_mon_status_srng_process - pdev->rxdma_mon_status_ring*/
case RXDMA_MONITOR_STATUS:
/* dp_rx_mon_dest_process - pdev->rxdma_mon_dst_ring */
case RXDMA_MONITOR_DST:
/* dp_mon_process */
grp_mask = &soc->wlan_cfg_ctx->int_rx_mon_ring_mask[0];
break;
case RXDMA_DST:
/* dp_rxdma_err_process */
grp_mask = &soc->wlan_cfg_ctx->int_rxdma2host_ring_mask[0];
break;
case RXDMA_BUF:
grp_mask = &soc->wlan_cfg_ctx->int_host2rxdma_ring_mask[0];
break;
case RXDMA_MONITOR_BUF:
/* TODO: support low_thresh interrupt */
return -QDF_STATUS_E_NOENT;
break;
case TCL_DATA:
case TCL_CMD:
case REO_CMD:
case SW2WBM_RELEASE:
case WBM_IDLE_LINK:
/* normally empty SW_TO_HW rings */
return -QDF_STATUS_E_NOENT;
break;
case TCL_STATUS:
case REO_REINJECT:
/* misc unused rings */
return -QDF_STATUS_E_NOENT;
break;
case CE_SRC:
case CE_DST:
case CE_DST_STATUS:
/* CE_rings - currently handled by hif */
default:
return -QDF_STATUS_E_NOENT;
break;
}
return dp_srng_find_ring_in_mask(ring_num, grp_mask);
}
static void dp_srng_msi_setup(struct dp_soc *soc, struct hal_srng_params
*ring_params, int ring_type, int ring_num)
{
int msi_group_number;
int msi_data_count;
int ret;
uint32_t msi_data_start, msi_irq_start, addr_low, addr_high;
ret = pld_get_user_msi_assignment(soc->osdev->dev, "DP",
&msi_data_count, &msi_data_start,
&msi_irq_start);
if (ret)
return;
msi_group_number = dp_srng_calculate_msi_group(soc, ring_type,
ring_num);
if (msi_group_number < 0) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_LOW,
FL("ring not part of an ext_group; ring_type: %d,ring_num %d"),
ring_type, ring_num);
ring_params->msi_addr = 0;
ring_params->msi_data = 0;
return;
}
if (msi_group_number > msi_data_count) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_WARN,
FL("2 msi_groups will share an msi; msi_group_num %d"),
msi_group_number);
QDF_ASSERT(0);
}
pld_get_msi_address(soc->osdev->dev, &addr_low, &addr_high);
ring_params->msi_addr = addr_low;
ring_params->msi_addr |= (qdf_dma_addr_t)(((uint64_t)addr_high) << 32);
ring_params->msi_data = (msi_group_number % msi_data_count)
+ msi_data_start;
ring_params->flags |= HAL_SRNG_MSI_INTR;
}
/**
* dp_print_ast_stats() - Dump AST table contents
* @soc: Datapath soc handle
*
* return void
*/
#ifdef FEATURE_AST
void dp_print_ast_stats(struct dp_soc *soc)
{
uint8_t i;
uint8_t num_entries = 0;
struct dp_vdev *vdev;
struct dp_pdev *pdev;
struct dp_peer *peer;
struct dp_ast_entry *ase, *tmp_ase;
char type[CDP_TXRX_AST_TYPE_MAX][10] = {
"NONE", "STATIC", "SELF", "WDS", "MEC", "HMWDS", "BSS",
"DA", "HMWDS_SEC"};
DP_PRINT_STATS("AST Stats:");
DP_PRINT_STATS(" Entries Added = %d", soc->stats.ast.added);
DP_PRINT_STATS(" Entries Deleted = %d", soc->stats.ast.deleted);
DP_PRINT_STATS(" Entries Agedout = %d", soc->stats.ast.aged_out);
DP_PRINT_STATS("AST Table:");
qdf_spin_lock_bh(&soc->ast_lock);
for (i = 0; i < MAX_PDEV_CNT && soc->pdev_list[i]; i++) {
pdev = soc->pdev_list[i];
qdf_spin_lock_bh(&pdev->vdev_list_lock);
DP_PDEV_ITERATE_VDEV_LIST(pdev, vdev) {
DP_VDEV_ITERATE_PEER_LIST(vdev, peer) {
DP_PEER_ITERATE_ASE_LIST(peer, ase, tmp_ase) {
DP_PRINT_STATS("%6d mac_addr = %pM"
" peer_mac_addr = %pM"
" peer_id = %u"
" type = %s"
" next_hop = %d"
" is_active = %d"
" ast_idx = %d"
" ast_hash = %d"
" delete_in_progress = %d"
" pdev_id = %d"
" vdev_id = %d",
++num_entries,
ase->mac_addr.raw,
ase->peer->mac_addr.raw,
ase->peer->peer_ids[0],
type[ase->type],
ase->next_hop,
ase->is_active,
ase->ast_idx,
ase->ast_hash_value,
ase->delete_in_progress,
ase->pdev_id,
vdev->vdev_id);
}
}
}
qdf_spin_unlock_bh(&pdev->vdev_list_lock);
}
qdf_spin_unlock_bh(&soc->ast_lock);
}
#else
void dp_print_ast_stats(struct dp_soc *soc)
{
DP_PRINT_STATS("AST Stats not available.Enable FEATURE_AST");
return;
}
#endif
/**
* dp_print_peer_table() - Dump all Peer stats
* @vdev: Datapath Vdev handle
*
* return void
*/
static void dp_print_peer_table(struct dp_vdev *vdev)
{
struct dp_peer *peer = NULL;
DP_PRINT_STATS("Dumping Peer Table Stats:");
TAILQ_FOREACH(peer, &vdev->peer_list, peer_list_elem) {
if (!peer) {
DP_PRINT_STATS("Invalid Peer");
return;
}
DP_PRINT_STATS(" peer_mac_addr = %pM"
" nawds_enabled = %d"
" bss_peer = %d"
" wapi = %d"
" wds_enabled = %d"
" delete in progress = %d"
" peer id = %d",
peer->mac_addr.raw,
peer->nawds_enabled,
peer->bss_peer,
peer->wapi,
peer->wds_enabled,
peer->delete_in_progress,
peer->peer_ids[0]);
}
}
/*
* dp_srng_mem_alloc() - Allocate memory for SRNG
* @soc : Data path soc handle
* @srng : SRNG pointer
* @align : Align size
*
* return: QDF_STATUS_SUCCESS on successful allocation
* QDF_STATUS_E_NOMEM on failure
*/
static QDF_STATUS
dp_srng_mem_alloc(struct dp_soc *soc, struct dp_srng *srng, uint32_t align,
bool cached)
{
uint32_t align_alloc_size;
if (!cached) {
srng->base_vaddr_unaligned =
qdf_mem_alloc_consistent(soc->osdev,
soc->osdev->dev,
srng->alloc_size,
&srng->base_paddr_unaligned);
} else {
srng->base_vaddr_unaligned = qdf_mem_malloc(srng->alloc_size);
srng->base_paddr_unaligned =
qdf_mem_virt_to_phys(srng->base_vaddr_unaligned);
}
if (!srng->base_vaddr_unaligned) {
return QDF_STATUS_E_NOMEM;
}
/* Re-allocate additional bytes to align base address only if
* above allocation returns unaligned address. Reason for
* trying exact size allocation above is, OS tries to allocate
* blocks of size power-of-2 pages and then free extra pages.
* e.g., of a ring size of 1MB, the allocation below will
* request 1MB plus 7 bytes for alignment, which will cause a
* 2MB block allocation,and that is failing sometimes due to
* memory fragmentation.
* dp_srng_mem_alloc should be replaced with
* qdf_aligned_mem_alloc_consistent after fixing some known
* shortcomings with this QDF function
*/
if ((unsigned long)(srng->base_paddr_unaligned) &
(align - 1)) {
align_alloc_size = srng->alloc_size + align - 1;
if (!cached) {
qdf_mem_free_consistent(soc->osdev, soc->osdev->dev,
srng->alloc_size,
srng->base_vaddr_unaligned,
srng->base_paddr_unaligned, 0);
srng->base_vaddr_unaligned =
qdf_mem_alloc_consistent(soc->osdev,
soc->osdev->dev,
align_alloc_size,
&srng->base_paddr_unaligned);
} else {
qdf_mem_free(srng->base_vaddr_unaligned);
srng->base_vaddr_unaligned =
qdf_mem_malloc(align_alloc_size);
srng->base_paddr_unaligned =
qdf_mem_virt_to_phys(srng->base_vaddr_unaligned);
}
srng->alloc_size = align_alloc_size;
if (!srng->base_vaddr_unaligned) {
return QDF_STATUS_E_NOMEM;
}
}
return QDF_STATUS_SUCCESS;
}
#ifdef WLAN_DP_PER_RING_TYPE_CONFIG
/**
* dp_srng_configure_interrupt_thresholds() - Retrieve interrupt
* threshold values from the wlan_srng_cfg table for each ring type
* @soc: device handle
* @ring_params: per ring specific parameters
* @ring_type: Ring type
* @ring_num: Ring number for a given ring type
*
* Fill the ring params with the interrupt threshold
* configuration parameters available in the per ring type wlan_srng_cfg
* table.
*
* Return: None
*/
static void
dp_srng_configure_interrupt_thresholds(struct dp_soc *soc,
struct hal_srng_params *ring_params,
int ring_type, int ring_num,
int num_entries)
{
if (ring_type == WBM2SW_RELEASE && (ring_num == 3)) {
ring_params->intr_timer_thres_us =
wlan_cfg_get_int_timer_threshold_other(soc->wlan_cfg_ctx);
ring_params->intr_batch_cntr_thres_entries =
wlan_cfg_get_int_batch_threshold_other(soc->wlan_cfg_ctx);
} else {
ring_params->intr_timer_thres_us =
soc->wlan_srng_cfg[ring_type].timer_threshold;
ring_params->intr_batch_cntr_thres_entries =
soc->wlan_srng_cfg[ring_type].batch_count_threshold;
}
ring_params->low_threshold =
soc->wlan_srng_cfg[ring_type].low_threshold;
if (ring_params->low_threshold)
ring_params->flags |= HAL_SRNG_LOW_THRES_INTR_ENABLE;
}
#else
static void
dp_srng_configure_interrupt_thresholds(struct dp_soc *soc,
struct hal_srng_params *ring_params,
int ring_type, int ring_num,
int num_entries)
{
if (ring_type == REO_DST) {
ring_params->intr_timer_thres_us =
wlan_cfg_get_int_timer_threshold_rx(soc->wlan_cfg_ctx);
ring_params->intr_batch_cntr_thres_entries =
wlan_cfg_get_int_batch_threshold_rx(soc->wlan_cfg_ctx);
} else if (ring_type == WBM2SW_RELEASE && (ring_num < 3)) {
ring_params->intr_timer_thres_us =
wlan_cfg_get_int_timer_threshold_tx(soc->wlan_cfg_ctx);
ring_params->intr_batch_cntr_thres_entries =
wlan_cfg_get_int_batch_threshold_tx(soc->wlan_cfg_ctx);
} else {
ring_params->intr_timer_thres_us =
wlan_cfg_get_int_timer_threshold_other(soc->wlan_cfg_ctx);
ring_params->intr_batch_cntr_thres_entries =
wlan_cfg_get_int_batch_threshold_other(soc->wlan_cfg_ctx);
}
/* Enable low threshold interrupts for rx buffer rings (regular and
* monitor buffer rings.
* TODO: See if this is required for any other ring
*/
if ((ring_type == RXDMA_BUF) || (ring_type == RXDMA_MONITOR_BUF) ||
(ring_type == RXDMA_MONITOR_STATUS)) {
/* TODO: Setting low threshold to 1/8th of ring size
* see if this needs to be configurable
*/
ring_params->low_threshold = num_entries >> 3;
ring_params->intr_timer_thres_us =
wlan_cfg_get_int_timer_threshold_rx(soc->wlan_cfg_ctx);
ring_params->flags |= HAL_SRNG_LOW_THRES_INTR_ENABLE;
ring_params->intr_batch_cntr_thres_entries = 0;
}
}
#endif
/**
* dp_srng_setup() - Internal function to setup SRNG rings used by data path
* @soc: datapath soc handle
* @srng: srng handle
* @ring_type: ring that needs to be configured
* @mac_id: mac number
* @num_entries: Total number of entries for a given ring
*
* Return: non-zero - failure/zero - success
*/
static int dp_srng_setup(struct dp_soc *soc, struct dp_srng *srng,
int ring_type, int ring_num, int mac_id,
uint32_t num_entries, bool cached)
{
void *hal_soc = soc->hal_soc;
uint32_t entry_size = hal_srng_get_entrysize(hal_soc, ring_type);
/* TODO: See if we should get align size from hal */
uint32_t ring_base_align = 8;
struct hal_srng_params ring_params;
uint32_t max_entries = hal_srng_max_entries(hal_soc, ring_type);
/* TODO: Currently hal layer takes care of endianness related settings.
* See if these settings need to passed from DP layer
*/
ring_params.flags = 0;
num_entries = (num_entries > max_entries) ? max_entries : num_entries;
srng->hal_srng = NULL;
srng->alloc_size = num_entries * entry_size;
srng->num_entries = num_entries;
if (!dp_is_soc_reinit(soc)) {
if (dp_srng_mem_alloc(soc, srng, ring_base_align, cached) !=
QDF_STATUS_SUCCESS) {
dp_err("alloc failed - ring_type: %d, ring_num %d",
ring_type, ring_num);
return QDF_STATUS_E_NOMEM;
}
}
ring_params.ring_base_paddr =
(qdf_dma_addr_t)qdf_align(
(unsigned long)(srng->base_paddr_unaligned),
ring_base_align);
ring_params.ring_base_vaddr =
(void *)((unsigned long)(srng->base_vaddr_unaligned) +
((unsigned long)(ring_params.ring_base_paddr) -
(unsigned long)(srng->base_paddr_unaligned)));
ring_params.num_entries = num_entries;
dp_verbose_debug("Ring type: %d, num:%d vaddr %pK paddr %pK entries %u",
ring_type, ring_num,
(void *)ring_params.ring_base_vaddr,
(void *)ring_params.ring_base_paddr,
ring_params.num_entries);
if (soc->intr_mode == DP_INTR_MSI) {
dp_srng_msi_setup(soc, &ring_params, ring_type, ring_num);
dp_verbose_debug("Using MSI for ring_type: %d, ring_num %d",
ring_type, ring_num);
} else {
ring_params.msi_data = 0;
ring_params.msi_addr = 0;
dp_verbose_debug("Skipping MSI for ring_type: %d, ring_num %d",
ring_type, ring_num);
}
dp_srng_configure_interrupt_thresholds(soc, &ring_params,
ring_type, ring_num,
num_entries);
if (cached) {
ring_params.flags |= HAL_SRNG_CACHED_DESC;
srng->cached = 1;
}
srng->hal_srng = hal_srng_setup(hal_soc, ring_type, ring_num,
mac_id, &ring_params);
if (!srng->hal_srng) {
if (cached) {
qdf_mem_free(srng->base_vaddr_unaligned);
} else {
qdf_mem_free_consistent(soc->osdev, soc->osdev->dev,
srng->alloc_size,
srng->base_vaddr_unaligned,
srng->base_paddr_unaligned, 0);
}
}
return 0;
}
/*
* dp_srng_deinit() - Internal function to deinit SRNG rings used by data path
* @soc: DP SOC handle
* @srng: source ring structure
* @ring_type: type of ring
* @ring_num: ring number
*
* Return: None
*/
static void dp_srng_deinit(struct dp_soc *soc, struct dp_srng *srng,
int ring_type, int ring_num)
{
if (!srng->hal_srng) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("Ring type: %d, num:%d not setup"),
ring_type, ring_num);
return;
}
hal_srng_cleanup(soc->hal_soc, srng->hal_srng);
srng->hal_srng = NULL;
}
/**
* dp_srng_cleanup - Internal function to cleanup SRNG rings used by data path
* Any buffers allocated and attached to ring entries are expected to be freed
* before calling this function.
*/
static void dp_srng_cleanup(struct dp_soc *soc, struct dp_srng *srng,
int ring_type, int ring_num)
{
if (!dp_is_soc_reinit(soc)) {
if (!srng->hal_srng && (srng->alloc_size == 0)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("Ring type: %d, num:%d not setup"),
ring_type, ring_num);
return;
}
if (srng->hal_srng) {
hal_srng_cleanup(soc->hal_soc, srng->hal_srng);
srng->hal_srng = NULL;
}
}
if (srng->alloc_size && srng->base_vaddr_unaligned) {
if (!srng->cached) {
qdf_mem_free_consistent(soc->osdev, soc->osdev->dev,
srng->alloc_size,
srng->base_vaddr_unaligned,
srng->base_paddr_unaligned, 0);
} else {
qdf_mem_free(srng->base_vaddr_unaligned);
}
srng->alloc_size = 0;
srng->base_vaddr_unaligned = NULL;
}
srng->hal_srng = NULL;
}
/* TODO: Need this interface from HIF */
void *hif_get_hal_handle(void *hif_handle);
#ifdef WLAN_FEATURE_DP_EVENT_HISTORY
int dp_srng_access_start(struct dp_intr *int_ctx, struct dp_soc *dp_soc,
void *hal_ring)
{
void *hal_soc = dp_soc->hal_soc;
uint32_t hp, tp;
uint8_t ring_id;
hal_get_sw_hptp(hal_soc, hal_ring, &tp, &hp);
ring_id = hal_srng_ring_id_get(hal_ring);
hif_record_event(dp_soc->hif_handle, int_ctx->dp_intr_id,
ring_id, hp, tp, HIF_EVENT_SRNG_ACCESS_START);
return hal_srng_access_start(hal_soc, hal_ring);
}
void dp_srng_access_end(struct dp_intr *int_ctx, struct dp_soc *dp_soc,
void *hal_ring)
{
void *hal_soc = dp_soc->hal_soc;
uint32_t hp, tp;
uint8_t ring_id;
hal_get_sw_hptp(hal_soc, hal_ring, &tp, &hp);
ring_id = hal_srng_ring_id_get(hal_ring);
hif_record_event(dp_soc->hif_handle, int_ctx->dp_intr_id,
ring_id, hp, tp, HIF_EVENT_SRNG_ACCESS_END);
return hal_srng_access_end(hal_soc, hal_ring);
}
#endif /* WLAN_FEATURE_DP_EVENT_HISTORY */
/*
* dp_should_timer_irq_yield() - Decide if the bottom half should yield
* @soc: DP soc handle
* @work_done: work done in softirq context
* @start_time: start time for the softirq
*
* Return: enum with yield code
*/
static enum timer_yield_status
dp_should_timer_irq_yield(struct dp_soc *soc, uint32_t work_done,
uint64_t start_time)
{
uint64_t cur_time = qdf_get_log_timestamp();
if (!work_done)
return DP_TIMER_WORK_DONE;
if (cur_time - start_time > DP_MAX_TIMER_EXEC_TIME_TICKS)
return DP_TIMER_TIME_EXHAUST;
return DP_TIMER_NO_YIELD;
}
/**
* dp_process_lmac_rings() - Process LMAC rings
* @int_ctx: interrupt context
* @total_budget: budget of work which can be done
*
* Return: work done
*/
static int dp_process_lmac_rings(struct dp_intr *int_ctx, int total_budget)
{
struct dp_intr_stats *intr_stats = &int_ctx->intr_stats;
struct dp_soc *soc = int_ctx->soc;
uint32_t remaining_quota = total_budget;
struct dp_pdev *pdev = NULL;
uint32_t work_done = 0;
int budget = total_budget;
int ring = 0;
int mac_id;
/* Process LMAC interrupts */
for (ring = 0 ; ring < MAX_PDEV_CNT; ring++) {
pdev = soc->pdev_list[ring];
if (!pdev)
continue;
for (mac_id = 0; mac_id < NUM_RXDMA_RINGS_PER_PDEV; mac_id++) {
int mac_for_pdev = dp_get_mac_id_for_pdev(mac_id,
pdev->pdev_id);
if (int_ctx->rx_mon_ring_mask & (1 << mac_for_pdev)) {
work_done = dp_mon_process(soc, mac_for_pdev,
remaining_quota);
if (work_done)
intr_stats->num_rx_mon_ring_masks++;
budget -= work_done;
if (budget <= 0)
goto budget_done;
remaining_quota = budget;
}
if (int_ctx->rxdma2host_ring_mask &
(1 << mac_for_pdev)) {
work_done = dp_rxdma_err_process(int_ctx, soc,
mac_for_pdev,
remaining_quota);
if (work_done)
intr_stats->num_rxdma2host_ring_masks++;
budget -= work_done;
if (budget <= 0)
goto budget_done;
remaining_quota = budget;
}
if (int_ctx->host2rxdma_ring_mask &
(1 << mac_for_pdev)) {
union dp_rx_desc_list_elem_t *desc_list = NULL;
union dp_rx_desc_list_elem_t *tail = NULL;
struct dp_srng *rx_refill_buf_ring =
&pdev->rx_refill_buf_ring;
intr_stats->num_host2rxdma_ring_masks++;
DP_STATS_INC(pdev, replenish.low_thresh_intrs,
1);
dp_rx_buffers_replenish(soc, mac_for_pdev,
rx_refill_buf_ring,
&soc->rx_desc_buf[mac_for_pdev],
0, &desc_list, &tail);
}
}
}
budget_done:
return total_budget - budget;
}
/*
* dp_service_srngs() - Top level interrupt handler for DP Ring interrupts
* @dp_ctx: DP SOC handle
* @budget: Number of frames/descriptors that can be processed in one shot
*
* Return: remaining budget/quota for the soc device
*/
static uint32_t dp_service_srngs(void *dp_ctx, uint32_t dp_budget)
{
struct dp_intr *int_ctx = (struct dp_intr *)dp_ctx;
struct dp_intr_stats *intr_stats = &int_ctx->intr_stats;
struct dp_soc *soc = int_ctx->soc;
int ring = 0;
uint32_t work_done = 0;
int budget = dp_budget;
uint8_t tx_mask = int_ctx->tx_ring_mask;
uint8_t rx_mask = int_ctx->rx_ring_mask;
uint8_t rx_err_mask = int_ctx->rx_err_ring_mask;
uint8_t rx_wbm_rel_mask = int_ctx->rx_wbm_rel_ring_mask;
uint8_t reo_status_mask = int_ctx->reo_status_ring_mask;
uint32_t remaining_quota = dp_budget;
dp_verbose_debug("tx %x rx %x rx_err %x rx_wbm_rel %x reo_status %x rx_mon_ring %x host2rxdma %x rxdma2host %x\n",
tx_mask, rx_mask, rx_err_mask, rx_wbm_rel_mask,
reo_status_mask,
int_ctx->rx_mon_ring_mask,
int_ctx->host2rxdma_ring_mask,
int_ctx->rxdma2host_ring_mask);
/* Process Tx completion interrupts first to return back buffers */
while (tx_mask) {
if (tx_mask & 0x1) {
work_done = dp_tx_comp_handler(int_ctx,
soc,
soc->tx_comp_ring[ring].hal_srng,
ring, remaining_quota);
if (work_done) {
intr_stats->num_tx_ring_masks[ring]++;
dp_verbose_debug("tx mask 0x%x ring %d, budget %d, work_done %d",
tx_mask, ring, budget,
work_done);
}
budget -= work_done;
if (budget <= 0)
goto budget_done;
remaining_quota = budget;
}
tx_mask = tx_mask >> 1;
ring++;
}
/* Process REO Exception ring interrupt */
if (rx_err_mask) {
work_done = dp_rx_err_process(int_ctx, soc,
soc->reo_exception_ring.hal_srng,
remaining_quota);
if (work_done) {
intr_stats->num_rx_err_ring_masks++;
dp_verbose_debug("REO Exception Ring: work_done %d budget %d",
work_done, budget);
}
budget -= work_done;
if (budget <= 0) {
goto budget_done;
}
remaining_quota = budget;
}
/* Process Rx WBM release ring interrupt */
if (rx_wbm_rel_mask) {
work_done = dp_rx_wbm_err_process(int_ctx, soc,
soc->rx_rel_ring.hal_srng,
remaining_quota);
if (work_done) {
intr_stats->num_rx_wbm_rel_ring_masks++;
dp_verbose_debug("WBM Release Ring: work_done %d budget %d",
work_done, budget);
}
budget -= work_done;
if (budget <= 0) {
goto budget_done;
}
remaining_quota = budget;
}
/* Process Rx interrupts */
if (rx_mask) {
for (ring = 0; ring < soc->num_reo_dest_rings; ring++) {
if (!(rx_mask & (1 << ring)))
continue;
work_done = dp_rx_process(int_ctx,
soc->reo_dest_ring[ring].hal_srng,
ring,
remaining_quota);
if (work_done) {
intr_stats->num_rx_ring_masks[ring]++;
dp_verbose_debug("rx mask 0x%x ring %d, work_done %d budget %d",
rx_mask, ring,
work_done, budget);
budget -= work_done;
if (budget <= 0)
goto budget_done;
remaining_quota = budget;
}
}
}
if (reo_status_mask) {
if (dp_reo_status_ring_handler(int_ctx, soc))
int_ctx->intr_stats.num_reo_status_ring_masks++;
}
work_done = dp_process_lmac_rings(int_ctx, remaining_quota);
if (work_done) {
budget -= work_done;
if (budget <= 0)
goto budget_done;
remaining_quota = budget;
}
qdf_lro_flush(int_ctx->lro_ctx);
intr_stats->num_masks++;
budget_done:
return dp_budget - budget;
}
/* dp_interrupt_timer()- timer poll for interrupts
*
* @arg: SoC Handle
*
* Return:
*
*/
static void dp_interrupt_timer(void *arg)
{
struct dp_soc *soc = (struct dp_soc *) arg;
enum timer_yield_status yield = DP_TIMER_NO_YIELD;
uint32_t work_done = 0, total_work_done = 0;
int budget = 0xffff;
uint32_t remaining_quota = budget;
uint64_t start_time;
int i;
if (!qdf_atomic_read(&soc->cmn_init_done))
return;
start_time = qdf_get_log_timestamp();
while (yield == DP_TIMER_NO_YIELD) {
for (i = 0;
i < wlan_cfg_get_num_contexts(soc->wlan_cfg_ctx); i++) {
if (!soc->intr_ctx[i].rx_mon_ring_mask)
continue;
work_done = dp_process_lmac_rings(&soc->intr_ctx[i],
remaining_quota);
if (work_done) {
budget -= work_done;
if (budget <= 0) {
yield = DP_TIMER_WORK_EXHAUST;
goto budget_done;
}
remaining_quota = budget;
total_work_done += work_done;
}
}
yield = dp_should_timer_irq_yield(soc, total_work_done,
start_time);
total_work_done = 0;
}
budget_done:
if (yield == DP_TIMER_WORK_EXHAUST ||
yield == DP_TIMER_TIME_EXHAUST)
qdf_timer_mod(&soc->int_timer, 1);
else
qdf_timer_mod(&soc->int_timer, DP_INTR_POLL_TIMER_MS);
}
/*
* dp_soc_attach_poll() - Register handlers for DP interrupts
* @txrx_soc: DP SOC handle
*
* Host driver will register for “DP_NUM_INTERRUPT_CONTEXTS” number of NAPI
* contexts. Each NAPI context will have a tx_ring_mask , rx_ring_mask ,and
* rx_monitor_ring mask to indicate the rings that are processed by the handler.
*
* Return: 0 for success, nonzero for failure.
*/
static QDF_STATUS dp_soc_attach_poll(void *txrx_soc)
{
struct dp_soc *soc = (struct dp_soc *)txrx_soc;
int i;
soc->intr_mode = DP_INTR_POLL;
for (i = 0; i < wlan_cfg_get_num_contexts(soc->wlan_cfg_ctx); i++) {
soc->intr_ctx[i].dp_intr_id = i;
soc->intr_ctx[i].tx_ring_mask =
wlan_cfg_get_tx_ring_mask(soc->wlan_cfg_ctx, i);
soc->intr_ctx[i].rx_ring_mask =
wlan_cfg_get_rx_ring_mask(soc->wlan_cfg_ctx, i);
soc->intr_ctx[i].rx_mon_ring_mask =
wlan_cfg_get_rx_mon_ring_mask(soc->wlan_cfg_ctx, i);
soc->intr_ctx[i].rx_err_ring_mask =
wlan_cfg_get_rx_err_ring_mask(soc->wlan_cfg_ctx, i);
soc->intr_ctx[i].rx_wbm_rel_ring_mask =
wlan_cfg_get_rx_wbm_rel_ring_mask(soc->wlan_cfg_ctx, i);
soc->intr_ctx[i].reo_status_ring_mask =
wlan_cfg_get_reo_status_ring_mask(soc->wlan_cfg_ctx, i);
soc->intr_ctx[i].rxdma2host_ring_mask =
wlan_cfg_get_rxdma2host_ring_mask(soc->wlan_cfg_ctx, i);
soc->intr_ctx[i].soc = soc;
soc->intr_ctx[i].lro_ctx = qdf_lro_init();
}
qdf_timer_init(soc->osdev, &soc->int_timer,
dp_interrupt_timer, (void *)soc,
QDF_TIMER_TYPE_WAKE_APPS);
return QDF_STATUS_SUCCESS;
}
/**
* dp_soc_set_interrupt_mode() - Set the interrupt mode in soc
* soc: DP soc handle
*
* Set the appropriate interrupt mode flag in the soc
*/
static void dp_soc_set_interrupt_mode(struct dp_soc *soc)
{
uint32_t msi_base_data, msi_vector_start;
int msi_vector_count, ret;
soc->intr_mode = DP_INTR_LEGACY;
if (!(soc->wlan_cfg_ctx->napi_enabled) ||
(soc->cdp_soc.ol_ops->get_con_mode &&
soc->cdp_soc.ol_ops->get_con_mode() == QDF_GLOBAL_MONITOR_MODE)) {
soc->intr_mode = DP_INTR_POLL;
} else {
ret = pld_get_user_msi_assignment(soc->osdev->dev, "DP",
&msi_vector_count,
&msi_base_data,
&msi_vector_start);
if (ret)
return;
soc->intr_mode = DP_INTR_MSI;
}
}
static QDF_STATUS dp_soc_interrupt_attach(void *txrx_soc);
#if defined(CONFIG_MCL)
/*
* dp_soc_interrupt_attach_wrapper() - Register handlers for DP interrupts
* @txrx_soc: DP SOC handle
*
* Call the appropriate attach function based on the mode of operation.
* This is a WAR for enabling monitor mode.
*
* Return: 0 for success. nonzero for failure.
*/
static QDF_STATUS dp_soc_interrupt_attach_wrapper(void *txrx_soc)
{
struct dp_soc *soc = (struct dp_soc *)txrx_soc;
if (!(soc->wlan_cfg_ctx->napi_enabled) ||
(soc->cdp_soc.ol_ops->get_con_mode &&
soc->cdp_soc.ol_ops->get_con_mode() ==
QDF_GLOBAL_MONITOR_MODE)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
"%s: Poll mode", __func__);
return dp_soc_attach_poll(txrx_soc);
} else {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
"%s: Interrupt mode", __func__);
return dp_soc_interrupt_attach(txrx_soc);
}
}
#else
#if defined(DP_INTR_POLL_BASED) && DP_INTR_POLL_BASED
static QDF_STATUS dp_soc_interrupt_attach_wrapper(void *txrx_soc)
{
return dp_soc_attach_poll(txrx_soc);
}
#else
static QDF_STATUS dp_soc_interrupt_attach_wrapper(void *txrx_soc)
{
struct dp_soc *soc = (struct dp_soc *)txrx_soc;
if (hif_is_polled_mode_enabled(soc->hif_handle))
return dp_soc_attach_poll(txrx_soc);
else
return dp_soc_interrupt_attach(txrx_soc);
}
#endif
#endif
static void dp_soc_interrupt_map_calculate_integrated(struct dp_soc *soc,
int intr_ctx_num, int *irq_id_map, int *num_irq_r)
{
int j;
int num_irq = 0;
int tx_mask =
wlan_cfg_get_tx_ring_mask(soc->wlan_cfg_ctx, intr_ctx_num);
int rx_mask =
wlan_cfg_get_rx_ring_mask(soc->wlan_cfg_ctx, intr_ctx_num);
int rx_mon_mask =
wlan_cfg_get_rx_mon_ring_mask(soc->wlan_cfg_ctx, intr_ctx_num);
int rx_err_ring_mask = wlan_cfg_get_rx_err_ring_mask(
soc->wlan_cfg_ctx, intr_ctx_num);
int rx_wbm_rel_ring_mask = wlan_cfg_get_rx_wbm_rel_ring_mask(
soc->wlan_cfg_ctx, intr_ctx_num);
int reo_status_ring_mask = wlan_cfg_get_reo_status_ring_mask(
soc->wlan_cfg_ctx, intr_ctx_num);
int rxdma2host_ring_mask = wlan_cfg_get_rxdma2host_ring_mask(
soc->wlan_cfg_ctx, intr_ctx_num);
int host2rxdma_ring_mask = wlan_cfg_get_host2rxdma_ring_mask(
soc->wlan_cfg_ctx, intr_ctx_num);
int host2rxdma_mon_ring_mask = wlan_cfg_get_host2rxdma_mon_ring_mask(
soc->wlan_cfg_ctx, intr_ctx_num);
soc->intr_mode = DP_INTR_LEGACY;
for (j = 0; j < HIF_MAX_GRP_IRQ; j++) {
if (tx_mask & (1 << j)) {
irq_id_map[num_irq++] =
(wbm2host_tx_completions_ring1 - j);
}
if (rx_mask & (1 << j)) {
irq_id_map[num_irq++] =
(reo2host_destination_ring1 - j);
}
if (rxdma2host_ring_mask & (1 << j)) {
irq_id_map[num_irq++] =
rxdma2host_destination_ring_mac1 -
wlan_cfg_get_hw_mac_idx(soc->wlan_cfg_ctx, j);
}
if (host2rxdma_ring_mask & (1 << j)) {
irq_id_map[num_irq++] =
host2rxdma_host_buf_ring_mac1 -
wlan_cfg_get_hw_mac_idx(soc->wlan_cfg_ctx, j);
}
if (host2rxdma_mon_ring_mask & (1 << j)) {
irq_id_map[num_irq++] =
host2rxdma_monitor_ring1 -
wlan_cfg_get_hw_mac_idx(soc->wlan_cfg_ctx, j);
}
if (rx_mon_mask & (1 << j)) {
irq_id_map[num_irq++] =
ppdu_end_interrupts_mac1 -
wlan_cfg_get_hw_mac_idx(soc->wlan_cfg_ctx, j);
irq_id_map[num_irq++] =
rxdma2host_monitor_status_ring_mac1 -
wlan_cfg_get_hw_mac_idx(soc->wlan_cfg_ctx, j);
}
if (rx_wbm_rel_ring_mask & (1 << j))
irq_id_map[num_irq++] = wbm2host_rx_release;
if (rx_err_ring_mask & (1 << j))
irq_id_map[num_irq++] = reo2host_exception;
if (reo_status_ring_mask & (1 << j))
irq_id_map[num_irq++] = reo2host_status;
}
*num_irq_r = num_irq;
}
static void dp_soc_interrupt_map_calculate_msi(struct dp_soc *soc,
int intr_ctx_num, int *irq_id_map, int *num_irq_r,
int msi_vector_count, int msi_vector_start)
{
int tx_mask = wlan_cfg_get_tx_ring_mask(
soc->wlan_cfg_ctx, intr_ctx_num);
int rx_mask = wlan_cfg_get_rx_ring_mask(
soc->wlan_cfg_ctx, intr_ctx_num);
int rx_mon_mask = wlan_cfg_get_rx_mon_ring_mask(
soc->wlan_cfg_ctx, intr_ctx_num);
int rx_err_ring_mask = wlan_cfg_get_rx_err_ring_mask(
soc->wlan_cfg_ctx, intr_ctx_num);
int rx_wbm_rel_ring_mask = wlan_cfg_get_rx_wbm_rel_ring_mask(
soc->wlan_cfg_ctx, intr_ctx_num);
int reo_status_ring_mask = wlan_cfg_get_reo_status_ring_mask(
soc->wlan_cfg_ctx, intr_ctx_num);
int rxdma2host_ring_mask = wlan_cfg_get_rxdma2host_ring_mask(
soc->wlan_cfg_ctx, intr_ctx_num);
unsigned int vector =
(intr_ctx_num % msi_vector_count) + msi_vector_start;
int num_irq = 0;
soc->intr_mode = DP_INTR_MSI;
if (tx_mask | rx_mask | rx_mon_mask | rx_err_ring_mask |
rx_wbm_rel_ring_mask | reo_status_ring_mask | rxdma2host_ring_mask)
irq_id_map[num_irq++] =
pld_get_msi_irq(soc->osdev->dev, vector);
*num_irq_r = num_irq;
}
static void dp_soc_interrupt_map_calculate(struct dp_soc *soc, int intr_ctx_num,
int *irq_id_map, int *num_irq)
{
int msi_vector_count, ret;
uint32_t msi_base_data, msi_vector_start;
ret = pld_get_user_msi_assignment(soc->osdev->dev, "DP",
&msi_vector_count,
&msi_base_data,
&msi_vector_start);
if (ret)
return dp_soc_interrupt_map_calculate_integrated(soc,
intr_ctx_num, irq_id_map, num_irq);
else
dp_soc_interrupt_map_calculate_msi(soc,
intr_ctx_num, irq_id_map, num_irq,
msi_vector_count, msi_vector_start);
}
/*
* dp_soc_interrupt_attach() - Register handlers for DP interrupts
* @txrx_soc: DP SOC handle
*
* Host driver will register for “DP_NUM_INTERRUPT_CONTEXTS” number of NAPI
* contexts. Each NAPI context will have a tx_ring_mask , rx_ring_mask ,and
* rx_monitor_ring mask to indicate the rings that are processed by the handler.
*
* Return: 0 for success. nonzero for failure.
*/
static QDF_STATUS dp_soc_interrupt_attach(void *txrx_soc)
{
struct dp_soc *soc = (struct dp_soc *)txrx_soc;
int i = 0;
int num_irq = 0;
for (i = 0; i < wlan_cfg_get_num_contexts(soc->wlan_cfg_ctx); i++) {
int ret = 0;
/* Map of IRQ ids registered with one interrupt context */
int irq_id_map[HIF_MAX_GRP_IRQ];
int tx_mask =
wlan_cfg_get_tx_ring_mask(soc->wlan_cfg_ctx, i);
int rx_mask =
wlan_cfg_get_rx_ring_mask(soc->wlan_cfg_ctx, i);
int rx_mon_mask =
dp_soc_get_mon_mask_for_interrupt_mode(soc, i);
int rx_err_ring_mask =
wlan_cfg_get_rx_err_ring_mask(soc->wlan_cfg_ctx, i);
int rx_wbm_rel_ring_mask =
wlan_cfg_get_rx_wbm_rel_ring_mask(soc->wlan_cfg_ctx, i);
int reo_status_ring_mask =
wlan_cfg_get_reo_status_ring_mask(soc->wlan_cfg_ctx, i);
int rxdma2host_ring_mask =
wlan_cfg_get_rxdma2host_ring_mask(soc->wlan_cfg_ctx, i);
int host2rxdma_ring_mask =
wlan_cfg_get_host2rxdma_ring_mask(soc->wlan_cfg_ctx, i);
int host2rxdma_mon_ring_mask =
wlan_cfg_get_host2rxdma_mon_ring_mask(
soc->wlan_cfg_ctx, i);
soc->intr_ctx[i].dp_intr_id = i;
soc->intr_ctx[i].tx_ring_mask = tx_mask;
soc->intr_ctx[i].rx_ring_mask = rx_mask;
soc->intr_ctx[i].rx_mon_ring_mask = rx_mon_mask;
soc->intr_ctx[i].rx_err_ring_mask = rx_err_ring_mask;
soc->intr_ctx[i].rxdma2host_ring_mask = rxdma2host_ring_mask;
soc->intr_ctx[i].host2rxdma_ring_mask = host2rxdma_ring_mask;
soc->intr_ctx[i].rx_wbm_rel_ring_mask = rx_wbm_rel_ring_mask;
soc->intr_ctx[i].reo_status_ring_mask = reo_status_ring_mask;
soc->intr_ctx[i].host2rxdma_mon_ring_mask =
host2rxdma_mon_ring_mask;
soc->intr_ctx[i].soc = soc;
num_irq = 0;
dp_soc_interrupt_map_calculate(soc, i, &irq_id_map[0],
&num_irq);
ret = hif_register_ext_group(soc->hif_handle,
num_irq, irq_id_map, dp_service_srngs,
&soc->intr_ctx[i], "dp_intr",
HIF_EXEC_NAPI_TYPE, QCA_NAPI_DEF_SCALE_BIN_SHIFT);
if (ret) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("failed, ret = %d"), ret);
return QDF_STATUS_E_FAILURE;
}
soc->intr_ctx[i].lro_ctx = qdf_lro_init();
}
hif_configure_ext_group_interrupts(soc->hif_handle);
hif_config_irq_set_perf_affinity_hint(soc->hif_handle);
return QDF_STATUS_SUCCESS;
}
/*
* dp_soc_interrupt_detach() - Deregister any allocations done for interrupts
* @txrx_soc: DP SOC handle
*
* Return: void
*/
static void dp_soc_interrupt_detach(void *txrx_soc)
{
struct dp_soc *soc = (struct dp_soc *)txrx_soc;
int i;
if (soc->intr_mode == DP_INTR_POLL) {
qdf_timer_free(&soc->int_timer);
} else {
hif_deregister_exec_group(soc->hif_handle, "dp_intr");
}
for (i = 0; i < wlan_cfg_get_num_contexts(soc->wlan_cfg_ctx); i++) {
soc->intr_ctx[i].tx_ring_mask = 0;
soc->intr_ctx[i].rx_ring_mask = 0;
soc->intr_ctx[i].rx_mon_ring_mask = 0;
soc->intr_ctx[i].rx_err_ring_mask = 0;
soc->intr_ctx[i].rx_wbm_rel_ring_mask = 0;
soc->intr_ctx[i].reo_status_ring_mask = 0;
soc->intr_ctx[i].rxdma2host_ring_mask = 0;
soc->intr_ctx[i].host2rxdma_ring_mask = 0;
soc->intr_ctx[i].host2rxdma_mon_ring_mask = 0;
qdf_lro_deinit(soc->intr_ctx[i].lro_ctx);
}
}
#define AVG_MAX_MPDUS_PER_TID 128
#define AVG_TIDS_PER_CLIENT 2
#define AVG_FLOWS_PER_TID 2
#define AVG_MSDUS_PER_FLOW 128
#define AVG_MSDUS_PER_MPDU 4
/*
* Allocate and setup link descriptor pool that will be used by HW for
* various link and queue descriptors and managed by WBM
*/
static int dp_hw_link_desc_pool_setup(struct dp_soc *soc)
{
int link_desc_size = hal_get_link_desc_size(soc->hal_soc);
int link_desc_align = hal_get_link_desc_align(soc->hal_soc);
uint32_t max_clients = wlan_cfg_get_max_clients(soc->wlan_cfg_ctx);
uint32_t num_mpdus_per_link_desc =
hal_num_mpdus_per_link_desc(soc->hal_soc);
uint32_t num_msdus_per_link_desc =
hal_num_msdus_per_link_desc(soc->hal_soc);
uint32_t num_mpdu_links_per_queue_desc =
hal_num_mpdu_links_per_queue_desc(soc->hal_soc);
uint32_t max_alloc_size = wlan_cfg_max_alloc_size(soc->wlan_cfg_ctx);
uint32_t total_link_descs, total_mem_size;
uint32_t num_mpdu_link_descs, num_mpdu_queue_descs;
uint32_t num_tx_msdu_link_descs, num_rx_msdu_link_descs;
uint32_t num_link_desc_banks;
uint32_t last_bank_size = 0;
uint32_t entry_size, num_entries;
int i;
uint32_t desc_id = 0;
qdf_dma_addr_t *baseaddr = NULL;
/* Only Tx queue descriptors are allocated from common link descriptor
* pool Rx queue descriptors are not included in this because (REO queue
* extension descriptors) they are expected to be allocated contiguously
* with REO queue descriptors
*/
num_mpdu_link_descs = (max_clients * AVG_TIDS_PER_CLIENT *
AVG_MAX_MPDUS_PER_TID) / num_mpdus_per_link_desc;
num_mpdu_queue_descs = num_mpdu_link_descs /
num_mpdu_links_per_queue_desc;
num_tx_msdu_link_descs = (max_clients * AVG_TIDS_PER_CLIENT *
AVG_FLOWS_PER_TID * AVG_MSDUS_PER_FLOW) /
num_msdus_per_link_desc;
num_rx_msdu_link_descs = (max_clients * AVG_TIDS_PER_CLIENT *
AVG_MAX_MPDUS_PER_TID * AVG_MSDUS_PER_MPDU) / 6;
num_entries = num_mpdu_link_descs + num_mpdu_queue_descs +
num_tx_msdu_link_descs + num_rx_msdu_link_descs;
/* Round up to power of 2 */
total_link_descs = 1;
while (total_link_descs < num_entries)
total_link_descs <<= 1;
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_HIGH,
FL("total_link_descs: %u, link_desc_size: %d"),
total_link_descs, link_desc_size);
total_mem_size = total_link_descs * link_desc_size;
total_mem_size += link_desc_align;
if (total_mem_size <= max_alloc_size) {
num_link_desc_banks = 0;
last_bank_size = total_mem_size;
} else {
num_link_desc_banks = (total_mem_size) /
(max_alloc_size - link_desc_align);
last_bank_size = total_mem_size %
(max_alloc_size - link_desc_align);
}
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_HIGH,
FL("total_mem_size: %d, num_link_desc_banks: %u"),
total_mem_size, num_link_desc_banks);
for (i = 0; i < num_link_desc_banks; i++) {
if (!dp_is_soc_reinit(soc)) {
baseaddr = &soc->link_desc_banks[i].
base_paddr_unaligned;
soc->link_desc_banks[i].base_vaddr_unaligned =
qdf_mem_alloc_consistent(soc->osdev,
soc->osdev->dev,
max_alloc_size,
baseaddr);
}
soc->link_desc_banks[i].size = max_alloc_size;
soc->link_desc_banks[i].base_vaddr = (void *)((unsigned long)(
soc->link_desc_banks[i].base_vaddr_unaligned) +
((unsigned long)(
soc->link_desc_banks[i].base_vaddr_unaligned) %
link_desc_align));
soc->link_desc_banks[i].base_paddr = (unsigned long)(
soc->link_desc_banks[i].base_paddr_unaligned) +
((unsigned long)(soc->link_desc_banks[i].base_vaddr) -
(unsigned long)(
soc->link_desc_banks[i].base_vaddr_unaligned));
if (!soc->link_desc_banks[i].base_vaddr_unaligned) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("Link descriptor memory alloc failed"));
goto fail;
}
qdf_minidump_log((void *)(soc->link_desc_banks[i].base_vaddr),
soc->link_desc_banks[i].size, "link_desc_bank");
}
if (last_bank_size) {
/* Allocate last bank in case total memory required is not exact
* multiple of max_alloc_size
*/
if (!dp_is_soc_reinit(soc)) {
baseaddr = &soc->link_desc_banks[i].
base_paddr_unaligned;
soc->link_desc_banks[i].base_vaddr_unaligned =
qdf_mem_alloc_consistent(soc->osdev,
soc->osdev->dev,
last_bank_size,
baseaddr);
}
soc->link_desc_banks[i].size = last_bank_size;
soc->link_desc_banks[i].base_vaddr = (void *)((unsigned long)
(soc->link_desc_banks[i].base_vaddr_unaligned) +
((unsigned long)(
soc->link_desc_banks[i].base_vaddr_unaligned) %
link_desc_align));
soc->link_desc_banks[i].base_paddr =
(unsigned long)(
soc->link_desc_banks[i].base_paddr_unaligned) +
((unsigned long)(soc->link_desc_banks[i].base_vaddr) -
(unsigned long)(
soc->link_desc_banks[i].base_vaddr_unaligned));
qdf_minidump_log((void *)(soc->link_desc_banks[i].base_vaddr),
soc->link_desc_banks[i].size, "link_desc_bank");
}
/* Allocate and setup link descriptor idle list for HW internal use */
entry_size = hal_srng_get_entrysize(soc->hal_soc, WBM_IDLE_LINK);
total_mem_size = entry_size * total_link_descs;
if (total_mem_size <= max_alloc_size) {
void *desc;
if (dp_srng_setup(soc, &soc->wbm_idle_link_ring,
WBM_IDLE_LINK, 0, 0, total_link_descs, 0)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("Link desc idle ring setup failed"));
goto fail;
}
qdf_minidump_log(
(void *)(soc->wbm_idle_link_ring.base_vaddr_unaligned),
soc->wbm_idle_link_ring.alloc_size,
"wbm_idle_link_ring");
hal_srng_access_start_unlocked(soc->hal_soc,
soc->wbm_idle_link_ring.hal_srng);
for (i = 0; i < MAX_LINK_DESC_BANKS &&
soc->link_desc_banks[i].base_paddr; i++) {
uint32_t num_entries = (soc->link_desc_banks[i].size -
((unsigned long)(
soc->link_desc_banks[i].base_vaddr) -
(unsigned long)(
soc->link_desc_banks[i].base_vaddr_unaligned)))
/ link_desc_size;
unsigned long paddr = (unsigned long)(
soc->link_desc_banks[i].base_paddr);
while (num_entries && (desc = hal_srng_src_get_next(
soc->hal_soc,
soc->wbm_idle_link_ring.hal_srng))) {
hal_set_link_desc_addr(desc,
LINK_DESC_COOKIE(desc_id, i), paddr);
num_entries--;
desc_id++;
paddr += link_desc_size;
}
}
hal_srng_access_end_unlocked(soc->hal_soc,
soc->wbm_idle_link_ring.hal_srng);
} else {
uint32_t num_scatter_bufs;
uint32_t num_entries_per_buf;
uint32_t rem_entries;
uint8_t *scatter_buf_ptr;
uint16_t scatter_buf_num;
uint32_t buf_size = 0;
soc->wbm_idle_scatter_buf_size =
hal_idle_list_scatter_buf_size(soc->hal_soc);
num_entries_per_buf = hal_idle_scatter_buf_num_entries(
soc->hal_soc, soc->wbm_idle_scatter_buf_size);
num_scatter_bufs = hal_idle_list_num_scatter_bufs(
soc->hal_soc, total_mem_size,
soc->wbm_idle_scatter_buf_size);
if (num_scatter_bufs > MAX_IDLE_SCATTER_BUFS) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("scatter bufs size out of bounds"));
goto fail;
}
for (i = 0; i < num_scatter_bufs; i++) {
baseaddr = &soc->wbm_idle_scatter_buf_base_paddr[i];
if (!dp_is_soc_reinit(soc)) {
buf_size = soc->wbm_idle_scatter_buf_size;
soc->wbm_idle_scatter_buf_base_vaddr[i] =
qdf_mem_alloc_consistent(soc->osdev,
soc->osdev->
dev,
buf_size,
baseaddr);
}
if (!soc->wbm_idle_scatter_buf_base_vaddr[i]) {
QDF_TRACE(QDF_MODULE_ID_DP,
QDF_TRACE_LEVEL_ERROR,
FL("Scatter lst memory alloc fail"));
goto fail;
}
}
/* Populate idle list scatter buffers with link descriptor
* pointers
*/
scatter_buf_num = 0;
scatter_buf_ptr = (uint8_t *)(
soc->wbm_idle_scatter_buf_base_vaddr[scatter_buf_num]);
rem_entries = num_entries_per_buf;
for (i = 0; i < MAX_LINK_DESC_BANKS &&
soc->link_desc_banks[i].base_paddr; i++) {
uint32_t num_link_descs =
(soc->link_desc_banks[i].size -
((unsigned long)(
soc->link_desc_banks[i].base_vaddr) -
(unsigned long)(
soc->link_desc_banks[i].base_vaddr_unaligned)))
/ link_desc_size;
unsigned long paddr = (unsigned long)(
soc->link_desc_banks[i].base_paddr);
while (num_link_descs) {
hal_set_link_desc_addr((void *)scatter_buf_ptr,
LINK_DESC_COOKIE(desc_id, i), paddr);
num_link_descs--;
desc_id++;
paddr += link_desc_size;
rem_entries--;
if (rem_entries) {
scatter_buf_ptr += entry_size;
} else {
rem_entries = num_entries_per_buf;
scatter_buf_num++;
if (scatter_buf_num >= num_scatter_bufs)
break;
scatter_buf_ptr = (uint8_t *)(
soc->wbm_idle_scatter_buf_base_vaddr[
scatter_buf_num]);
}
}
}
/* Setup link descriptor idle list in HW */
hal_setup_link_idle_list(soc->hal_soc,
soc->wbm_idle_scatter_buf_base_paddr,
soc->wbm_idle_scatter_buf_base_vaddr,
num_scatter_bufs, soc->wbm_idle_scatter_buf_size,
(uint32_t)(scatter_buf_ptr -
(uint8_t *)(soc->wbm_idle_scatter_buf_base_vaddr[
scatter_buf_num-1])), total_link_descs);
}
return 0;
fail:
if (soc->wbm_idle_link_ring.hal_srng) {
dp_srng_cleanup(soc, &soc->wbm_idle_link_ring,
WBM_IDLE_LINK, 0);
}
for (i = 0; i < MAX_IDLE_SCATTER_BUFS; i++) {
if (soc->wbm_idle_scatter_buf_base_vaddr[i]) {
qdf_mem_free_consistent(soc->osdev, soc->osdev->dev,
soc->wbm_idle_scatter_buf_size,
soc->wbm_idle_scatter_buf_base_vaddr[i],
soc->wbm_idle_scatter_buf_base_paddr[i], 0);
soc->wbm_idle_scatter_buf_base_vaddr[i] = NULL;
}
}
for (i = 0; i < MAX_LINK_DESC_BANKS; i++) {
if (soc->link_desc_banks[i].base_vaddr_unaligned) {
qdf_mem_free_consistent(soc->osdev, soc->osdev->dev,
soc->link_desc_banks[i].size,
soc->link_desc_banks[i].base_vaddr_unaligned,
soc->link_desc_banks[i].base_paddr_unaligned,
0);
soc->link_desc_banks[i].base_vaddr_unaligned = NULL;
}
}
return QDF_STATUS_E_FAILURE;
}
/*
* Free link descriptor pool that was setup HW
*/
static void dp_hw_link_desc_pool_cleanup(struct dp_soc *soc)
{
int i;
if (soc->wbm_idle_link_ring.hal_srng) {
dp_srng_cleanup(soc, &soc->wbm_idle_link_ring,
WBM_IDLE_LINK, 0);
}
for (i = 0; i < MAX_IDLE_SCATTER_BUFS; i++) {
if (soc->wbm_idle_scatter_buf_base_vaddr[i]) {
qdf_mem_free_consistent(soc->osdev, soc->osdev->dev,
soc->wbm_idle_scatter_buf_size,
soc->wbm_idle_scatter_buf_base_vaddr[i],
soc->wbm_idle_scatter_buf_base_paddr[i], 0);
soc->wbm_idle_scatter_buf_base_vaddr[i] = NULL;
}
}
for (i = 0; i < MAX_LINK_DESC_BANKS; i++) {
if (soc->link_desc_banks[i].base_vaddr_unaligned) {
qdf_mem_free_consistent(soc->osdev, soc->osdev->dev,
soc->link_desc_banks[i].size,
soc->link_desc_banks[i].base_vaddr_unaligned,
soc->link_desc_banks[i].base_paddr_unaligned,
0);
soc->link_desc_banks[i].base_vaddr_unaligned = NULL;
}
}
}
#ifdef IPA_OFFLOAD
#define REO_DST_RING_SIZE_QCA6290 1023
#ifndef QCA_WIFI_QCA8074_VP
#define REO_DST_RING_SIZE_QCA8074 1023
#else
#define REO_DST_RING_SIZE_QCA8074 8
#endif /* QCA_WIFI_QCA8074_VP */
#else
#define REO_DST_RING_SIZE_QCA6290 1024
#ifndef QCA_WIFI_QCA8074_VP
#define REO_DST_RING_SIZE_QCA8074 2048
#else
#define REO_DST_RING_SIZE_QCA8074 8
#endif /* QCA_WIFI_QCA8074_VP */
#endif /* IPA_OFFLOAD */
#ifndef FEATURE_WDS
static void dp_soc_wds_attach(struct dp_soc *soc)
{
}
static void dp_soc_wds_detach(struct dp_soc *soc)
{
}
#endif
/*
* dp_soc_reset_ring_map() - Reset cpu ring map
* @soc: Datapath soc handler
*
* This api resets the default cpu ring map
*/
static void dp_soc_reset_cpu_ring_map(struct dp_soc *soc)
{
uint8_t i;
int nss_config = wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx);
for (i = 0; i < WLAN_CFG_INT_NUM_CONTEXTS; i++) {
switch (nss_config) {
case dp_nss_cfg_first_radio:
/*
* Setting Tx ring map for one nss offloaded radio
*/
soc->tx_ring_map[i] = dp_cpu_ring_map[DP_NSS_FIRST_RADIO_OFFLOADED_MAP][i];
break;
case dp_nss_cfg_second_radio:
/*
* Setting Tx ring for two nss offloaded radios
*/
soc->tx_ring_map[i] = dp_cpu_ring_map[DP_NSS_SECOND_RADIO_OFFLOADED_MAP][i];
break;
case dp_nss_cfg_dbdc:
/*
* Setting Tx ring map for 2 nss offloaded radios
*/
soc->tx_ring_map[i] =
dp_cpu_ring_map[DP_NSS_DBDC_OFFLOADED_MAP][i];
break;
case dp_nss_cfg_dbtc:
/*
* Setting Tx ring map for 3 nss offloaded radios
*/
soc->tx_ring_map[i] =
dp_cpu_ring_map[DP_NSS_DBTC_OFFLOADED_MAP][i];
break;
default:
dp_err("tx_ring_map failed due to invalid nss cfg");
break;
}
}
}
/*
* dp_soc_ring_if_nss_offloaded() - find if ring is offloaded to NSS
* @dp_soc - DP soc handle
* @ring_type - ring type
* @ring_num - ring_num
*
* return 0 or 1
*/
static uint8_t dp_soc_ring_if_nss_offloaded(struct dp_soc *soc, enum hal_ring_type ring_type, int ring_num)
{
uint8_t nss_config = wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx);
uint8_t status = 0;
switch (ring_type) {
case WBM2SW_RELEASE:
case REO_DST:
case RXDMA_BUF:
status = ((nss_config) & (1 << ring_num));
break;
default:
break;
}
return status;
}
/*
* dp_soc_reset_intr_mask() - reset interrupt mask
* @dp_soc - DP Soc handle
*
* Return: Return void
*/
static void dp_soc_reset_intr_mask(struct dp_soc *soc)
{
uint8_t j;
int *grp_mask = NULL;
int group_number, mask, num_ring;
/* number of tx ring */
num_ring = wlan_cfg_num_tcl_data_rings(soc->wlan_cfg_ctx);
/*
* group mask for tx completion ring.
*/
grp_mask = &soc->wlan_cfg_ctx->int_tx_ring_mask[0];
/* loop and reset the mask for only offloaded ring */
for (j = 0; j < num_ring; j++) {
if (!dp_soc_ring_if_nss_offloaded(soc, WBM2SW_RELEASE, j)) {
continue;
}
/*
* Group number corresponding to tx offloaded ring.
*/
group_number = dp_srng_find_ring_in_mask(j, grp_mask);
if (group_number < 0) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
FL("ring not part of any group; ring_type: %d,ring_num %d"),
WBM2SW_RELEASE, j);
return;
}
/* reset the tx mask for offloaded ring */
mask = wlan_cfg_get_tx_ring_mask(soc->wlan_cfg_ctx, group_number);
mask &= (~(1 << j));
/*
* reset the interrupt mask for offloaded ring.
*/
wlan_cfg_set_tx_ring_mask(soc->wlan_cfg_ctx, group_number, mask);
}
/* number of rx rings */
num_ring = wlan_cfg_num_reo_dest_rings(soc->wlan_cfg_ctx);
/*
* group mask for reo destination ring.
*/
grp_mask = &soc->wlan_cfg_ctx->int_rx_ring_mask[0];
/* loop and reset the mask for only offloaded ring */
for (j = 0; j < num_ring; j++) {
if (!dp_soc_ring_if_nss_offloaded(soc, REO_DST, j)) {
continue;
}
/*
* Group number corresponding to rx offloaded ring.
*/
group_number = dp_srng_find_ring_in_mask(j, grp_mask);
if (group_number < 0) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
FL("ring not part of any group; ring_type: %d,ring_num %d"),
REO_DST, j);
return;
}
/* set the interrupt mask for offloaded ring */
mask = wlan_cfg_get_rx_ring_mask(soc->wlan_cfg_ctx, group_number);
mask &= (~(1 << j));
/*
* set the interrupt mask to zero for rx offloaded radio.
*/
wlan_cfg_set_rx_ring_mask(soc->wlan_cfg_ctx, group_number, mask);
}
/*
* group mask for Rx buffer refill ring
*/
grp_mask = &soc->wlan_cfg_ctx->int_host2rxdma_ring_mask[0];
/* loop and reset the mask for only offloaded ring */
for (j = 0; j < MAX_PDEV_CNT; j++) {
if (!dp_soc_ring_if_nss_offloaded(soc, RXDMA_BUF, j)) {
continue;
}
/*
* Group number corresponding to rx offloaded ring.
*/
group_number = dp_srng_find_ring_in_mask(j, grp_mask);
if (group_number < 0) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
FL("ring not part of any group; ring_type: %d,ring_num %d"),
REO_DST, j);
return;
}
/* set the interrupt mask for offloaded ring */
mask = wlan_cfg_get_host2rxdma_ring_mask(soc->wlan_cfg_ctx,
group_number);
mask &= (~(1 << j));
/*
* set the interrupt mask to zero for rx offloaded radio.
*/
wlan_cfg_set_host2rxdma_ring_mask(soc->wlan_cfg_ctx,
group_number, mask);
}
}
#ifdef IPA_OFFLOAD
/**
* dp_reo_remap_config() - configure reo remap register value based
* nss configuration.
* based on offload_radio value below remap configuration
* get applied.
* 0 - both Radios handled by host (remap rings 1, 2, 3 & 4)
* 1 - 1st Radio handled by NSS (remap rings 2, 3 & 4)
* 2 - 2nd Radio handled by NSS (remap rings 1, 2 & 4)
* 3 - both Radios handled by NSS (remap not required)
* 4 - IPA OFFLOAD enabled (remap rings 1,2 & 3)
*
* @remap1: output parameter indicates reo remap 1 register value
* @remap2: output parameter indicates reo remap 2 register value
* Return: bool type, true if remap is configured else false.
*/
bool dp_reo_remap_config(struct dp_soc *soc, uint32_t *remap1, uint32_t *remap2)
{
*remap1 = ((0x1 << 0) | (0x2 << 3) | (0x3 << 6) | (0x1 << 9) |
(0x2 << 12) | (0x3 << 15) | (0x1 << 18) | (0x2 << 21)) << 8;
*remap2 = ((0x3 << 0) | (0x1 << 3) | (0x2 << 6) | (0x3 << 9) |
(0x1 << 12) | (0x2 << 15) | (0x3 << 18) | (0x1 << 21)) << 8;
dp_debug("remap1 %x remap2 %x", *remap1, *remap2);
return true;
}
#else
static bool dp_reo_remap_config(struct dp_soc *soc,
uint32_t *remap1,
uint32_t *remap2)
{
uint8_t offload_radio = wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx);
switch (offload_radio) {
case dp_nss_cfg_default:
*remap1 = ((0x1 << 0) | (0x2 << 3) | (0x3 << 6) |
(0x4 << 9) | (0x1 << 12) | (0x2 << 15) |
(0x3 << 18) | (0x4 << 21)) << 8;
*remap2 = ((0x1 << 0) | (0x2 << 3) | (0x3 << 6) |
(0x4 << 9) | (0x1 << 12) | (0x2 << 15) |
(0x3 << 18) | (0x4 << 21)) << 8;
break;
case dp_nss_cfg_first_radio:
*remap1 = ((0x2 << 0) | (0x3 << 3) | (0x4 << 6) |
(0x2 << 9) | (0x3 << 12) | (0x4 << 15) |
(0x2 << 18) | (0x3 << 21)) << 8;
*remap2 = ((0x4 << 0) | (0x2 << 3) | (0x3 << 6) |
(0x4 << 9) | (0x2 << 12) | (0x3 << 15) |
(0x4 << 18) | (0x2 << 21)) << 8;
break;
case dp_nss_cfg_second_radio:
*remap1 = ((0x1 << 0) | (0x3 << 3) | (0x4 << 6) |
(0x1 << 9) | (0x3 << 12) | (0x4 << 15) |
(0x1 << 18) | (0x3 << 21)) << 8;
*remap2 = ((0x4 << 0) | (0x1 << 3) | (0x3 << 6) |
(0x4 << 9) | (0x1 << 12) | (0x3 << 15) |
(0x4 << 18) | (0x1 << 21)) << 8;
break;
case dp_nss_cfg_dbdc:
case dp_nss_cfg_dbtc:
/* return false if both or all are offloaded to NSS */
return false;
}
dp_debug("remap1 %x remap2 %x offload_radio %u",
*remap1, *remap2, offload_radio);
return true;
}
#endif
/*
* dp_reo_frag_dst_set() - configure reo register to set the
* fragment destination ring
* @soc : Datapath soc
* @frag_dst_ring : output parameter to set fragment destination ring
*
* Based on offload_radio below fragment destination rings is selected
* 0 - TCL
* 1 - SW1
* 2 - SW2
* 3 - SW3
* 4 - SW4
* 5 - Release
* 6 - FW
* 7 - alternate select
*
* return: void
*/
static void dp_reo_frag_dst_set(struct dp_soc *soc, uint8_t *frag_dst_ring)
{
uint8_t offload_radio = wlan_cfg_get_dp_soc_nss_cfg(soc->wlan_cfg_ctx);
switch (offload_radio) {
case dp_nss_cfg_default:
*frag_dst_ring = REO_REMAP_TCL;
break;
case dp_nss_cfg_dbdc:
case dp_nss_cfg_dbtc:
*frag_dst_ring = HAL_SRNG_REO_ALTERNATE_SELECT;
break;
default:
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_reo_frag_dst_set invalid offload radio config"));
break;
}
}
#ifdef ENABLE_VERBOSE_DEBUG
static void dp_enable_verbose_debug(struct dp_soc *soc)
{
struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx;
soc_cfg_ctx = soc->wlan_cfg_ctx;
if (soc_cfg_ctx->per_pkt_trace & dp_verbose_debug_mask)
is_dp_verbose_debug_enabled = true;
if (soc_cfg_ctx->per_pkt_trace & hal_verbose_debug_mask)
hal_set_verbose_debug(true);
else
hal_set_verbose_debug(false);
}
#else
static void dp_enable_verbose_debug(struct dp_soc *soc)
{
}
#endif
#ifdef WLAN_FEATURE_STATS_EXT
static inline void dp_create_ext_stats_event(struct dp_soc *soc)
{
qdf_event_create(&soc->rx_hw_stats_event);
}
#else
static inline void dp_create_ext_stats_event(struct dp_soc *soc)
{
}
#endif
/*
* dp_soc_cmn_setup() - Common SoC level initializion
* @soc: Datapath SOC handle
*
* This is an internal function used to setup common SOC data structures,
* to be called from PDEV attach after receiving HW mode capabilities from FW
*/
static int dp_soc_cmn_setup(struct dp_soc *soc)
{
int i;
struct hal_reo_params reo_params;
int tx_ring_size;
int tx_comp_ring_size;
int reo_dst_ring_size;
uint32_t entries;
struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx;
if (qdf_atomic_read(&soc->cmn_init_done))
return 0;
if (dp_hw_link_desc_pool_setup(soc))
goto fail1;
soc_cfg_ctx = soc->wlan_cfg_ctx;
dp_enable_verbose_debug(soc);
/* Setup SRNG rings */
/* Common rings */
entries = wlan_cfg_get_dp_soc_wbm_release_ring_size(soc_cfg_ctx);
if (dp_srng_setup(soc, &soc->wbm_desc_rel_ring, SW2WBM_RELEASE, 0, 0,
entries, 0)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_srng_setup failed for wbm_desc_rel_ring"));
goto fail1;
}
qdf_minidump_log(
(void *)(soc->wbm_desc_rel_ring.base_vaddr_unaligned),
soc->wbm_desc_rel_ring.alloc_size, "wbm_desc_rel_ring");
soc->num_tcl_data_rings = 0;
/* Tx data rings */
if (!wlan_cfg_per_pdev_tx_ring(soc_cfg_ctx)) {
soc->num_tcl_data_rings =
wlan_cfg_num_tcl_data_rings(soc_cfg_ctx);
tx_comp_ring_size =
wlan_cfg_tx_comp_ring_size(soc_cfg_ctx);
tx_ring_size =
wlan_cfg_tx_ring_size(soc_cfg_ctx);
for (i = 0; i < soc->num_tcl_data_rings; i++) {
if (dp_srng_setup(soc, &soc->tcl_data_ring[i],
TCL_DATA, i, 0, tx_ring_size, 0)) {
QDF_TRACE(QDF_MODULE_ID_DP,
QDF_TRACE_LEVEL_ERROR,
FL("dp_srng_setup failed for tcl_data_ring[%d]"), i);
goto fail1;
}
/*
* TBD: Set IPA WBM ring size with ini IPA UC tx buffer
* count
*/
if (dp_srng_setup(soc, &soc->tx_comp_ring[i],
WBM2SW_RELEASE, i, 0,
tx_comp_ring_size,
WLAN_CFG_DST_RING_CACHED_DESC)) {
QDF_TRACE(QDF_MODULE_ID_DP,
QDF_TRACE_LEVEL_ERROR,
FL("dp_srng_setup failed for tx_comp_ring[%d]"), i);
goto fail1;
}
}
} else {
/* This will be incremented during per pdev ring setup */
soc->num_tcl_data_rings = 0;
}
if (dp_tx_soc_attach(soc)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_tx_soc_attach failed"));
goto fail1;
}
entries = wlan_cfg_get_dp_soc_tcl_cmd_ring_size(soc_cfg_ctx);
/* TCL command and status rings */
if (dp_srng_setup(soc, &soc->tcl_cmd_ring, TCL_CMD, 0, 0,
entries, 0)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_srng_setup failed for tcl_cmd_ring"));
goto fail1;
}
entries = wlan_cfg_get_dp_soc_tcl_status_ring_size(soc_cfg_ctx);
if (dp_srng_setup(soc, &soc->tcl_status_ring, TCL_STATUS, 0, 0,
entries, 0)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_srng_setup failed for tcl_status_ring"));
goto fail1;
}
reo_dst_ring_size = wlan_cfg_get_reo_dst_ring_size(soc->wlan_cfg_ctx);
/* TBD: call dp_tx_init to setup Tx SW descriptors and MSDU extension
* descriptors
*/
/* Rx data rings */
if (!wlan_cfg_per_pdev_rx_ring(soc_cfg_ctx)) {
soc->num_reo_dest_rings =
wlan_cfg_num_reo_dest_rings(soc_cfg_ctx);
QDF_TRACE(QDF_MODULE_ID_DP,
QDF_TRACE_LEVEL_INFO,
FL("num_reo_dest_rings %d"), soc->num_reo_dest_rings);
for (i = 0; i < soc->num_reo_dest_rings; i++) {
if (dp_srng_setup(soc, &soc->reo_dest_ring[i], REO_DST,
i, 0, reo_dst_ring_size,
WLAN_CFG_DST_RING_CACHED_DESC)) {
QDF_TRACE(QDF_MODULE_ID_DP,
QDF_TRACE_LEVEL_ERROR,
FL(RNG_ERR "reo_dest_ring [%d]"), i);
goto fail1;
}
}
} else {
/* This will be incremented during per pdev ring setup */
soc->num_reo_dest_rings = 0;
}
entries = wlan_cfg_get_dp_soc_rxdma_err_dst_ring_size(soc_cfg_ctx);
/* LMAC RxDMA to SW Rings configuration */
if (!wlan_cfg_per_pdev_lmac_ring(soc_cfg_ctx)) {
/* Only valid for MCL */
struct dp_pdev *pdev = soc->pdev_list[0];
for (i = 0; i < MAX_RX_MAC_RINGS; i++) {
if (dp_srng_setup(soc, &pdev->rxdma_err_dst_ring[i],
RXDMA_DST, 0, i, entries, 0)) {
QDF_TRACE(QDF_MODULE_ID_DP,
QDF_TRACE_LEVEL_ERROR,
FL(RNG_ERR "rxdma_err_dst_ring"));
goto fail1;
}
}
}
/* TBD: call dp_rx_init to setup Rx SW descriptors */
/* REO reinjection ring */
entries = wlan_cfg_get_dp_soc_reo_reinject_ring_size(soc_cfg_ctx);
if (dp_srng_setup(soc, &soc->reo_reinject_ring, REO_REINJECT, 0, 0,
entries, 0)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_srng_setup failed for reo_reinject_ring"));
goto fail1;
}
/* Rx release ring */
if (dp_srng_setup(soc, &soc->rx_rel_ring, WBM2SW_RELEASE, 3, 0,
wlan_cfg_get_dp_soc_rx_release_ring_size(soc_cfg_ctx),
0)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_srng_setup failed for rx_rel_ring"));
goto fail1;
}
/* Rx exception ring */
entries = wlan_cfg_get_dp_soc_reo_exception_ring_size(soc_cfg_ctx);
if (dp_srng_setup(soc, &soc->reo_exception_ring,
REO_EXCEPTION, 0, MAX_REO_DEST_RINGS, entries, 0)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_srng_setup failed for reo_exception_ring"));
goto fail1;
}
/* REO command and status rings */
if (dp_srng_setup(soc, &soc->reo_cmd_ring, REO_CMD, 0, 0,
wlan_cfg_get_dp_soc_reo_cmd_ring_size(soc_cfg_ctx),
0)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_srng_setup failed for reo_cmd_ring"));
goto fail1;
}
hal_reo_init_cmd_ring(soc->hal_soc, soc->reo_cmd_ring.hal_srng);
TAILQ_INIT(&soc->rx.reo_cmd_list);
qdf_spinlock_create(&soc->rx.reo_cmd_lock);
if (dp_srng_setup(soc, &soc->reo_status_ring, REO_STATUS, 0, 0,
wlan_cfg_get_dp_soc_reo_status_ring_size(soc_cfg_ctx),
0)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_srng_setup failed for reo_status_ring"));
goto fail1;
}
/* Reset the cpu ring map if radio is NSS offloaded */
if (wlan_cfg_get_dp_soc_nss_cfg(soc_cfg_ctx)) {
dp_soc_reset_cpu_ring_map(soc);
dp_soc_reset_intr_mask(soc);
}
/* Setup HW REO */
qdf_mem_zero(&reo_params, sizeof(reo_params));
if (wlan_cfg_is_rx_hash_enabled(soc_cfg_ctx)) {
/*
* Reo ring remap is not required if both radios
* are offloaded to NSS
*/
if (!dp_reo_remap_config(soc,
&reo_params.remap1,
&reo_params.remap2))
goto out;
reo_params.rx_hash_enabled = true;
}
/* setup the global rx defrag waitlist */
TAILQ_INIT(&soc->rx.defrag.waitlist);
soc->rx.defrag.timeout_ms =
wlan_cfg_get_rx_defrag_min_timeout(soc_cfg_ctx);
soc->rx.defrag.next_flush_ms = 0;
soc->rx.flags.defrag_timeout_check =
wlan_cfg_get_defrag_timeout_check(soc_cfg_ctx);
qdf_spinlock_create(&soc->rx.defrag.defrag_lock);
dp_create_ext_stats_event(soc);
out:
/*
* set the fragment destination ring
*/
dp_reo_frag_dst_set(soc, &reo_params.frag_dst_ring);
hal_reo_setup(soc->hal_soc, &reo_params);
hal_reo_set_err_dst_remap(soc->hal_soc);
qdf_atomic_set(&soc->cmn_init_done, 1);
dp_soc_wds_attach(soc);
qdf_nbuf_queue_init(&soc->htt_stats.msg);
return 0;
fail1:
/*
* Cleanup will be done as part of soc_detach, which will
* be called on pdev attach failure
*/
return QDF_STATUS_E_FAILURE;
}
/*
* dp_soc_cmn_cleanup() - Common SoC level De-initializion
*
* @soc: Datapath SOC handle
*
* This function is responsible for cleaning up DP resource of Soc
* initialled in dp_pdev_attach_wifi3-->dp_soc_cmn_setup, since
* dp_soc_detach_wifi3 could not identify some of them
* whether they have done initialized or not accurately.
*
*/
static void dp_soc_cmn_cleanup(struct dp_soc *soc)
{
dp_tx_soc_detach(soc);
qdf_spinlock_destroy(&soc->rx.defrag.defrag_lock);
qdf_spinlock_destroy(&soc->rx.reo_cmd_lock);
}
static void dp_pdev_detach_wifi3(struct cdp_pdev *txrx_pdev, int force);
static QDF_STATUS dp_lro_hash_setup(struct dp_soc *soc, struct dp_pdev *pdev)
{
struct cdp_lro_hash_config lro_hash;
QDF_STATUS status;
if (!wlan_cfg_is_lro_enabled(soc->wlan_cfg_ctx) &&
!wlan_cfg_is_gro_enabled(soc->wlan_cfg_ctx) &&
!wlan_cfg_is_rx_hash_enabled(soc->wlan_cfg_ctx)) {
dp_err("LRO, GRO and RX hash disabled");
return QDF_STATUS_E_FAILURE;
}
qdf_mem_zero(&lro_hash, sizeof(lro_hash));
if (wlan_cfg_is_lro_enabled(soc->wlan_cfg_ctx) ||
wlan_cfg_is_gro_enabled(soc->wlan_cfg_ctx)) {
lro_hash.lro_enable = 1;
lro_hash.tcp_flag = QDF_TCPHDR_ACK;
lro_hash.tcp_flag_mask = QDF_TCPHDR_FIN | QDF_TCPHDR_SYN |
QDF_TCPHDR_RST | QDF_TCPHDR_ACK | QDF_TCPHDR_URG |
QDF_TCPHDR_ECE | QDF_TCPHDR_CWR;
}
qdf_get_random_bytes(lro_hash.toeplitz_hash_ipv4,
(sizeof(lro_hash.toeplitz_hash_ipv4[0]) *
LRO_IPV4_SEED_ARR_SZ));
qdf_get_random_bytes(lro_hash.toeplitz_hash_ipv6,
(sizeof(lro_hash.toeplitz_hash_ipv6[0]) *
LRO_IPV6_SEED_ARR_SZ));
qdf_assert(soc->cdp_soc.ol_ops->lro_hash_config);
if (!soc->cdp_soc.ol_ops->lro_hash_config) {
QDF_BUG(0);
dp_err("lro_hash_config not configured");
return QDF_STATUS_E_FAILURE;
}
status = soc->cdp_soc.ol_ops->lro_hash_config(pdev->ctrl_pdev,
&lro_hash);
if (!QDF_IS_STATUS_SUCCESS(status)) {
dp_err("failed to send lro_hash_config to FW %u", status);
return status;
}
dp_info("LRO CMD config: lro_enable: 0x%x tcp_flag 0x%x tcp_flag_mask 0x%x",
lro_hash.lro_enable, lro_hash.tcp_flag,
lro_hash.tcp_flag_mask);
dp_info("toeplitz_hash_ipv4:");
qdf_trace_hex_dump(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
(void *)lro_hash.toeplitz_hash_ipv4,
(sizeof(lro_hash.toeplitz_hash_ipv4[0]) *
LRO_IPV4_SEED_ARR_SZ));
dp_info("toeplitz_hash_ipv6:");
qdf_trace_hex_dump(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
(void *)lro_hash.toeplitz_hash_ipv6,
(sizeof(lro_hash.toeplitz_hash_ipv6[0]) *
LRO_IPV6_SEED_ARR_SZ));
return status;
}
/*
* dp_rxdma_ring_setup() - configure the RX DMA rings
* @soc: data path SoC handle
* @pdev: Physical device handle
*
* Return: 0 - success, > 0 - failure
*/
#ifdef QCA_HOST2FW_RXBUF_RING
static int dp_rxdma_ring_setup(struct dp_soc *soc,
struct dp_pdev *pdev)
{
struct wlan_cfg_dp_pdev_ctxt *pdev_cfg_ctx;
int max_mac_rings;
int i;
int ring_size;
pdev_cfg_ctx = pdev->wlan_cfg_ctx;
max_mac_rings = wlan_cfg_get_num_mac_rings(pdev_cfg_ctx);
ring_size = wlan_cfg_get_rx_dma_buf_ring_size(pdev_cfg_ctx);
for (i = 0; i < max_mac_rings; i++) {
dp_verbose_debug("pdev_id %d mac_id %d", pdev->pdev_id, i);
if (dp_srng_setup(soc, &pdev->rx_mac_buf_ring[i],
RXDMA_BUF, 1, i, ring_size, 0)) {
QDF_TRACE(QDF_MODULE_ID_DP,
QDF_TRACE_LEVEL_ERROR,
FL("failed rx mac ring setup"));
return QDF_STATUS_E_FAILURE;
}
}
return QDF_STATUS_SUCCESS;
}
#else
static int dp_rxdma_ring_setup(struct dp_soc *soc,
struct dp_pdev *pdev)
{
return QDF_STATUS_SUCCESS;
}
#endif
/**
* dp_dscp_tid_map_setup(): Initialize the dscp-tid maps
* @pdev - DP_PDEV handle
*
* Return: void
*/
static inline void
dp_dscp_tid_map_setup(struct dp_pdev *pdev)
{
uint8_t map_id;
struct dp_soc *soc = pdev->soc;
if (!soc)
return;
for (map_id = 0; map_id < DP_MAX_TID_MAPS; map_id++) {
qdf_mem_copy(pdev->dscp_tid_map[map_id],
default_dscp_tid_map,
sizeof(default_dscp_tid_map));
}
for (map_id = 0; map_id < soc->num_hw_dscp_tid_map; map_id++) {
hal_tx_set_dscp_tid_map(soc->hal_soc,
default_dscp_tid_map,
map_id);
}
}
/**
* dp_pcp_tid_map_setup(): Initialize the pcp-tid maps
* @pdev - DP_PDEV handle
*
* Return: void
*/
static inline void
dp_pcp_tid_map_setup(struct dp_pdev *pdev)
{
struct dp_soc *soc = pdev->soc;
if (!soc)
return;
qdf_mem_copy(soc->pcp_tid_map, default_pcp_tid_map,
sizeof(default_pcp_tid_map));
hal_tx_set_pcp_tid_map_default(soc->hal_soc, default_pcp_tid_map);
}
#ifdef IPA_OFFLOAD
/**
* dp_setup_ipa_rx_refill_buf_ring - Setup second Rx refill buffer ring
* @soc: data path instance
* @pdev: core txrx pdev context
*
* Return: QDF_STATUS_SUCCESS: success
* QDF_STATUS_E_RESOURCES: Error return
*/
static int dp_setup_ipa_rx_refill_buf_ring(struct dp_soc *soc,
struct dp_pdev *pdev)
{
struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx;
int entries;
soc_cfg_ctx = soc->wlan_cfg_ctx;
entries = wlan_cfg_get_dp_soc_rxdma_refill_ring_size(soc_cfg_ctx);
/* Setup second Rx refill buffer ring */
if (dp_srng_setup(soc, &pdev->rx_refill_buf_ring2, RXDMA_BUF,
IPA_RX_REFILL_BUF_RING_IDX, pdev->pdev_id, entries, 0)
) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_srng_setup failed second rx refill ring"));
return QDF_STATUS_E_FAILURE;
}
return QDF_STATUS_SUCCESS;
}
/**
* dp_cleanup_ipa_rx_refill_buf_ring - Cleanup second Rx refill buffer ring
* @soc: data path instance
* @pdev: core txrx pdev context
*
* Return: void
*/
static void dp_cleanup_ipa_rx_refill_buf_ring(struct dp_soc *soc,
struct dp_pdev *pdev)
{
dp_srng_cleanup(soc, &pdev->rx_refill_buf_ring2, RXDMA_BUF,
IPA_RX_REFILL_BUF_RING_IDX);
}
#else
static int dp_setup_ipa_rx_refill_buf_ring(struct dp_soc *soc,
struct dp_pdev *pdev)
{
return QDF_STATUS_SUCCESS;
}
static void dp_cleanup_ipa_rx_refill_buf_ring(struct dp_soc *soc,
struct dp_pdev *pdev)
{
}
#endif
#if !defined(DISABLE_MON_CONFIG)
/**
* dp_mon_rings_setup() - Initialize Monitor rings based on target
* @soc: soc handle
* @pdev: physical device handle
*
* Return: nonzero on failure and zero on success
*/
static
QDF_STATUS dp_mon_rings_setup(struct dp_soc *soc, struct dp_pdev *pdev)
{
int mac_id = 0;
int pdev_id = pdev->pdev_id;
int entries;
struct wlan_cfg_dp_pdev_ctxt *pdev_cfg_ctx;
pdev_cfg_ctx = pdev->wlan_cfg_ctx;
for (mac_id = 0; mac_id < NUM_RXDMA_RINGS_PER_PDEV; mac_id++) {
int mac_for_pdev = dp_get_mac_id_for_pdev(mac_id, pdev_id);
if (soc->wlan_cfg_ctx->rxdma1_enable) {
entries =
wlan_cfg_get_dma_mon_buf_ring_size(pdev_cfg_ctx);
if (dp_srng_setup(soc,
&pdev->rxdma_mon_buf_ring[mac_id],
RXDMA_MONITOR_BUF, 0, mac_for_pdev,
entries, 0)) {
QDF_TRACE(QDF_MODULE_ID_DP,
QDF_TRACE_LEVEL_ERROR,
FL(RNG_ERR "rxdma_mon_buf_ring "));
return QDF_STATUS_E_NOMEM;
}
entries =
wlan_cfg_get_dma_mon_dest_ring_size(pdev_cfg_ctx);
if (dp_srng_setup(soc,
&pdev->rxdma_mon_dst_ring[mac_id],
RXDMA_MONITOR_DST, 0, mac_for_pdev,
entries, 0)) {
QDF_TRACE(QDF_MODULE_ID_DP,
QDF_TRACE_LEVEL_ERROR,
FL(RNG_ERR "rxdma_mon_dst_ring"));
return QDF_STATUS_E_NOMEM;
}
entries =
wlan_cfg_get_dma_mon_stat_ring_size(pdev_cfg_ctx);
if (dp_srng_setup(soc,
&pdev->rxdma_mon_status_ring[mac_id],
RXDMA_MONITOR_STATUS, 0, mac_for_pdev,
entries, 0)) {
QDF_TRACE(QDF_MODULE_ID_DP,
QDF_TRACE_LEVEL_ERROR,
FL(RNG_ERR "rxdma_mon_status_ring"));
return QDF_STATUS_E_NOMEM;
}
entries =
wlan_cfg_get_dma_mon_desc_ring_size(pdev_cfg_ctx);
if (dp_srng_setup(soc,
&pdev->rxdma_mon_desc_ring[mac_id],
RXDMA_MONITOR_DESC, 0, mac_for_pdev,
entries, 0)) {
QDF_TRACE(QDF_MODULE_ID_DP,
QDF_TRACE_LEVEL_ERROR,
FL(RNG_ERR "rxdma_mon_desc_ring"));
return QDF_STATUS_E_NOMEM;
}
} else {
entries =
wlan_cfg_get_dma_mon_stat_ring_size(pdev_cfg_ctx);
if (dp_srng_setup(soc,
&pdev->rxdma_mon_status_ring[mac_id],
RXDMA_MONITOR_STATUS, 0, mac_for_pdev,
entries, 0)) {
QDF_TRACE(QDF_MODULE_ID_DP,
QDF_TRACE_LEVEL_ERROR,
FL(RNG_ERR "rxdma_mon_status_ring"));
return QDF_STATUS_E_NOMEM;
}
}
}
return QDF_STATUS_SUCCESS;
}
#else
static
QDF_STATUS dp_mon_rings_setup(struct dp_soc *soc, struct dp_pdev *pdev)
{
return QDF_STATUS_SUCCESS;
}
#endif
/*dp_iterate_update_peer_list - update peer stats on cal client timer
* @pdev_hdl: pdev handle
*/
#ifdef ATH_SUPPORT_EXT_STAT
void dp_iterate_update_peer_list(void *pdev_hdl)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_hdl;
struct dp_soc *soc = pdev->soc;
struct dp_vdev *vdev = NULL;
struct dp_peer *peer = NULL;
qdf_spin_lock_bh(&soc->peer_ref_mutex);
qdf_spin_lock_bh(&pdev->vdev_list_lock);
DP_PDEV_ITERATE_VDEV_LIST(pdev, vdev) {
DP_VDEV_ITERATE_PEER_LIST(vdev, peer) {
dp_cal_client_update_peer_stats(&peer->stats);
}
}
qdf_spin_unlock_bh(&pdev->vdev_list_lock);
qdf_spin_unlock_bh(&soc->peer_ref_mutex);
}
#else
void dp_iterate_update_peer_list(void *pdev_hdl)
{
}
#endif
/*
* dp_htt_ppdu_stats_attach() - attach resources for HTT PPDU stats processing
* @pdev: Datapath PDEV handle
*
* Return: QDF_STATUS_SUCCESS: Success
* QDF_STATUS_E_NOMEM: Error
*/
static QDF_STATUS dp_htt_ppdu_stats_attach(struct dp_pdev *pdev)
{
pdev->ppdu_tlv_buf = qdf_mem_malloc(HTT_T2H_MAX_MSG_SIZE);
if (!pdev->ppdu_tlv_buf) {
QDF_TRACE_ERROR(QDF_MODULE_ID_DP, "ppdu_tlv_buf alloc fail");
return QDF_STATUS_E_NOMEM;
}
return QDF_STATUS_SUCCESS;
}
/*
* dp_pdev_attach_wifi3() - attach txrx pdev
* @ctrl_pdev: Opaque PDEV object
* @txrx_soc: Datapath SOC handle
* @htc_handle: HTC handle for host-target interface
* @qdf_osdev: QDF OS device
* @pdev_id: PDEV ID
*
* Return: DP PDEV handle on success, NULL on failure
*/
static struct cdp_pdev *dp_pdev_attach_wifi3(struct cdp_soc_t *txrx_soc,
struct cdp_ctrl_objmgr_pdev *ctrl_pdev,
HTC_HANDLE htc_handle, qdf_device_t qdf_osdev, uint8_t pdev_id)
{
int ring_size;
int entries;
struct wlan_cfg_dp_soc_ctxt *soc_cfg_ctx;
int nss_cfg;
void *sojourn_buf;
struct dp_soc *soc = (struct dp_soc *)txrx_soc;
struct dp_pdev *pdev = NULL;
if (dp_is_soc_reinit(soc))
pdev = soc->pdev_list[pdev_id];
else
pdev = qdf_mem_malloc(sizeof(*pdev));
if (!pdev) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("DP PDEV memory allocation failed"));
goto fail0;
}
qdf_minidump_log((void *)pdev, sizeof(*pdev), "dp_pdev");
/*
* Variable to prevent double pdev deinitialization during
* radio detach execution .i.e. in the absence of any vdev.
*/
pdev->pdev_deinit = 0;
pdev->invalid_peer = qdf_mem_malloc(sizeof(struct dp_peer));
if (!pdev->invalid_peer) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("Invalid peer memory allocation failed"));
qdf_mem_free(pdev);
goto fail0;
}
soc_cfg_ctx = soc->wlan_cfg_ctx;
pdev->wlan_cfg_ctx = wlan_cfg_pdev_attach(soc->ctrl_psoc);
if (!pdev->wlan_cfg_ctx) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("pdev cfg_attach failed"));
qdf_mem_free(pdev->invalid_peer);
qdf_mem_free(pdev);
goto fail0;
}
/*
* set nss pdev config based on soc config
*/
nss_cfg = wlan_cfg_get_dp_soc_nss_cfg(soc_cfg_ctx);
wlan_cfg_set_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx,
(nss_cfg & (1 << pdev_id)));
pdev->soc = soc;
pdev->ctrl_pdev = ctrl_pdev;
pdev->pdev_id = pdev_id;
soc->pdev_list[pdev_id] = pdev;
pdev->lmac_id = wlan_cfg_get_hw_mac_idx(soc->wlan_cfg_ctx, pdev_id);
soc->pdev_count++;
TAILQ_INIT(&pdev->vdev_list);
qdf_spinlock_create(&pdev->vdev_list_lock);
pdev->vdev_count = 0;
qdf_spinlock_create(&pdev->tx_mutex);
qdf_spinlock_create(&pdev->neighbour_peer_mutex);
TAILQ_INIT(&pdev->neighbour_peers_list);
pdev->neighbour_peers_added = false;
pdev->monitor_configured = false;
if (dp_soc_cmn_setup(soc)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_soc_cmn_setup failed"));
goto fail1;
}
/* Setup per PDEV TCL rings if configured */
if (wlan_cfg_per_pdev_tx_ring(soc->wlan_cfg_ctx)) {
ring_size =
wlan_cfg_tx_ring_size(soc_cfg_ctx);
if (dp_srng_setup(soc, &soc->tcl_data_ring[pdev_id], TCL_DATA,
pdev_id, pdev_id, ring_size, 0)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_srng_setup failed for tcl_data_ring"));
goto fail1;
}
ring_size =
wlan_cfg_tx_comp_ring_size(soc_cfg_ctx);
if (dp_srng_setup(soc, &soc->tx_comp_ring[pdev_id],
WBM2SW_RELEASE, pdev_id, pdev_id,
ring_size, 0)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_srng_setup failed for tx_comp_ring"));
goto fail1;
}
soc->num_tcl_data_rings++;
}
/* Tx specific init */
if (dp_tx_pdev_attach(pdev)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_tx_pdev_attach failed"));
goto fail1;
}
ring_size = wlan_cfg_get_reo_dst_ring_size(soc->wlan_cfg_ctx);
/* Setup per PDEV REO rings if configured */
if (wlan_cfg_per_pdev_rx_ring(soc_cfg_ctx)) {
if (dp_srng_setup(soc, &soc->reo_dest_ring[pdev_id], REO_DST,
pdev_id, pdev_id, ring_size, 0)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_srng_setup failed for reo_dest_ringn"));
goto fail1;
}
soc->num_reo_dest_rings++;
}
ring_size =
wlan_cfg_get_dp_soc_rxdma_refill_ring_size(soc->wlan_cfg_ctx);
if (dp_srng_setup(soc, &pdev->rx_refill_buf_ring, RXDMA_BUF, 0, pdev_id,
ring_size, 0)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_srng_setup failed rx refill ring"));
goto fail1;
}
if (dp_rxdma_ring_setup(soc, pdev)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("RXDMA ring config failed"));
goto fail1;
}
if (dp_mon_rings_setup(soc, pdev)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("MONITOR rings setup failed"));
goto fail1;
}
entries = wlan_cfg_get_dp_soc_rxdma_err_dst_ring_size(soc_cfg_ctx);
if (wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx)) {
if (dp_srng_setup(soc, &pdev->rxdma_err_dst_ring[0], RXDMA_DST,
0, pdev_id, entries, 0)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL(RNG_ERR "rxdma_err_dst_ring"));
goto fail1;
}
}
if (dp_setup_ipa_rx_refill_buf_ring(soc, pdev))
goto fail1;
if (dp_ipa_ring_resource_setup(soc, pdev))
goto fail1;
if (dp_ipa_uc_attach(soc, pdev) != QDF_STATUS_SUCCESS) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_ipa_uc_attach failed"));
goto fail1;
}
/* Rx specific init */
if (dp_rx_pdev_attach(pdev)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("dp_rx_pdev_attach failed"));
goto fail2;
}
DP_STATS_INIT(pdev);
/* Monitor filter init */
pdev->mon_filter_mode = MON_FILTER_ALL;
pdev->fp_mgmt_filter = FILTER_MGMT_ALL;
pdev->fp_ctrl_filter = FILTER_CTRL_ALL;
pdev->fp_data_filter = FILTER_DATA_ALL;
pdev->mo_mgmt_filter = FILTER_MGMT_ALL;
pdev->mo_ctrl_filter = FILTER_CTRL_ALL;
pdev->mo_data_filter = FILTER_DATA_ALL;
dp_local_peer_id_pool_init(pdev);
dp_dscp_tid_map_setup(pdev);
dp_pcp_tid_map_setup(pdev);
/* Rx monitor mode specific init */
if (dp_rx_pdev_mon_attach(pdev)) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"dp_rx_pdev_mon_attach failed");
goto fail2;
}
if (dp_wdi_event_attach(pdev)) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"dp_wdi_evet_attach failed");
goto wdi_attach_fail;
}
/* set the reo destination during initialization */
pdev->reo_dest = pdev->pdev_id + 1;
/*
* initialize ppdu tlv list
*/
TAILQ_INIT(&pdev->ppdu_info_list);
pdev->tlv_count = 0;
pdev->list_depth = 0;
qdf_mem_zero(&pdev->sojourn_stats, sizeof(struct cdp_tx_sojourn_stats));
pdev->sojourn_buf = qdf_nbuf_alloc(pdev->soc->osdev,
sizeof(struct cdp_tx_sojourn_stats), 0, 4,
TRUE);
if (pdev->sojourn_buf) {
sojourn_buf = qdf_nbuf_data(pdev->sojourn_buf);
qdf_mem_zero(sojourn_buf, sizeof(struct cdp_tx_sojourn_stats));
}
/* initlialize cal client timer */
dp_cal_client_attach(&pdev->cal_client_ctx, pdev, pdev->soc->osdev,
&dp_iterate_update_peer_list);
qdf_event_create(&pdev->fw_peer_stats_event);
pdev->num_tx_allowed = wlan_cfg_get_num_tx_desc(soc->wlan_cfg_ctx);
if (dp_htt_ppdu_stats_attach(pdev) != QDF_STATUS_SUCCESS)
goto fail1;
dp_tx_ppdu_stats_attach(pdev);
return (struct cdp_pdev *)pdev;
wdi_attach_fail:
/*
* dp_mon_link_desc_pool_cleanup is done in dp_pdev_detach
* and hence need not to be done here.
*/
dp_rx_pdev_mon_detach(pdev);
fail2:
dp_rx_pdev_detach(pdev);
dp_ipa_uc_detach(soc, pdev);
fail1:
soc->pdev_count--;
if (pdev->invalid_peer)
qdf_mem_free(pdev->invalid_peer);
dp_pdev_detach((struct cdp_pdev *)pdev, 0);
fail0:
return NULL;
}
/*
* dp_rxdma_ring_cleanup() - configure the RX DMA rings
* @soc: data path SoC handle
* @pdev: Physical device handle
*
* Return: void
*/
#ifdef QCA_HOST2FW_RXBUF_RING
static void dp_rxdma_ring_cleanup(struct dp_soc *soc,
struct dp_pdev *pdev)
{
int i;
for (i = 0; i < MAX_RX_MAC_RINGS; i++)
dp_srng_cleanup(soc, &pdev->rx_mac_buf_ring[i],
RXDMA_BUF, 1);
if (soc->reap_timer_init) {
qdf_timer_free(&soc->mon_reap_timer);
soc->reap_timer_init = 0;
}
}
#else
static void dp_rxdma_ring_cleanup(struct dp_soc *soc,
struct dp_pdev *pdev)
{
}
#endif
/*
* dp_neighbour_peers_detach() - Detach neighbour peers(nac clients)
* @pdev: device object
*
* Return: void
*/
static void dp_neighbour_peers_detach(struct dp_pdev *pdev)
{
struct dp_neighbour_peer *peer = NULL;
struct dp_neighbour_peer *temp_peer = NULL;
TAILQ_FOREACH_SAFE(peer, &pdev->neighbour_peers_list,
neighbour_peer_list_elem, temp_peer) {
/* delete this peer from the list */
TAILQ_REMOVE(&pdev->neighbour_peers_list,
peer, neighbour_peer_list_elem);
qdf_mem_free(peer);
}
qdf_spinlock_destroy(&pdev->neighbour_peer_mutex);
}
/**
* dp_htt_ppdu_stats_detach() - detach stats resources
* @pdev: Datapath PDEV handle
*
* Return: void
*/
static void dp_htt_ppdu_stats_detach(struct dp_pdev *pdev)
{
struct ppdu_info *ppdu_info, *ppdu_info_next;
TAILQ_FOREACH_SAFE(ppdu_info, &pdev->ppdu_info_list,
ppdu_info_list_elem, ppdu_info_next) {
if (!ppdu_info)
break;
qdf_assert_always(ppdu_info->nbuf);
qdf_nbuf_free(ppdu_info->nbuf);
qdf_mem_free(ppdu_info);
}
if (pdev->ppdu_tlv_buf)
qdf_mem_free(pdev->ppdu_tlv_buf);
}
#if !defined(DISABLE_MON_CONFIG)
static
void dp_mon_ring_cleanup(struct dp_soc *soc, struct dp_pdev *pdev,
int mac_id)
{
if (soc->wlan_cfg_ctx->rxdma1_enable) {
dp_srng_cleanup(soc,
&pdev->rxdma_mon_buf_ring[mac_id],
RXDMA_MONITOR_BUF, 0);
dp_srng_cleanup(soc,
&pdev->rxdma_mon_dst_ring[mac_id],
RXDMA_MONITOR_DST, 0);
dp_srng_cleanup(soc,
&pdev->rxdma_mon_status_ring[mac_id],
RXDMA_MONITOR_STATUS, 0);
dp_srng_cleanup(soc,
&pdev->rxdma_mon_desc_ring[mac_id],
RXDMA_MONITOR_DESC, 0);
dp_srng_cleanup(soc,
&pdev->rxdma_err_dst_ring[mac_id],
RXDMA_DST, 0);
} else {
dp_srng_cleanup(soc,
&pdev->rxdma_mon_status_ring[mac_id],
RXDMA_MONITOR_STATUS, 0);
dp_srng_cleanup(soc,
&pdev->rxdma_err_dst_ring[mac_id],
RXDMA_DST, 0);
}
}
#else
static void dp_mon_ring_cleanup(struct dp_soc *soc, struct dp_pdev *pdev,
int mac_id)
{
}
#endif
/**
* dp_mon_ring_deinit() - Placeholder to deinitialize Monitor rings
*
* @soc: soc handle
* @pdev: datapath physical dev handle
* @mac_id: mac number
*
* Return: None
*/
static void dp_mon_ring_deinit(struct dp_soc *soc, struct dp_pdev *pdev,
int mac_id)
{
}
/**
* dp_pdev_mem_reset() - Reset txrx pdev memory
* @pdev: dp pdev handle
*
* Return: None
*/
static void dp_pdev_mem_reset(struct dp_pdev *pdev)
{
uint16_t len = 0;
uint8_t *dp_pdev_offset = (uint8_t *)pdev;
len = sizeof(struct dp_pdev) -
offsetof(struct dp_pdev, pdev_deinit) -
sizeof(pdev->pdev_deinit);
dp_pdev_offset = dp_pdev_offset +
offsetof(struct dp_pdev, pdev_deinit) +
sizeof(pdev->pdev_deinit);
qdf_mem_zero(dp_pdev_offset, len);
}
#ifdef WLAN_DP_PENDING_MEM_FLUSH
/**
* dp_pdev_flush_pending_vdevs() - Flush all delete pending vdevs in pdev
* @pdev: Datapath PDEV handle
*
* This is the last chance to flush all pending dp vdevs/peers,
* some peer/vdev leak case like Non-SSR + peer unmap missing
* will be covered here.
*
* Return: None
*/
static void dp_pdev_flush_pending_vdevs(struct dp_pdev *pdev)
{
struct dp_vdev *vdev = NULL;
while (true) {
qdf_spin_lock_bh(&pdev->vdev_list_lock);
TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
if (vdev->delete.pending)
break;
}
qdf_spin_unlock_bh(&pdev->vdev_list_lock);
/*
* vdev will be freed when all peers get cleanup,
* dp_delete_pending_vdev will remove vdev from vdev_list
* in pdev.
*/
if (vdev)
dp_vdev_flush_peers((struct cdp_vdev *)vdev, 0);
else
break;
}
}
#else
static void dp_pdev_flush_pending_vdevs(struct dp_pdev *pdev)
{
}
#endif
/**
* dp_pdev_deinit() - Deinit txrx pdev
* @txrx_pdev: Datapath PDEV handle
* @force: Force deinit
*
* Return: None
*/
static void dp_pdev_deinit(struct cdp_pdev *txrx_pdev, int force)
{
struct dp_pdev *pdev = (struct dp_pdev *)txrx_pdev;
struct dp_soc *soc = pdev->soc;
qdf_nbuf_t curr_nbuf, next_nbuf;
int mac_id;
/*
* Prevent double pdev deinitialization during radio detach
* execution .i.e. in the absence of any vdev
*/
if (pdev->pdev_deinit)
return;
pdev->pdev_deinit = 1;
dp_wdi_event_detach(pdev);
dp_pdev_flush_pending_vdevs(pdev);
dp_tx_pdev_detach(pdev);
if (wlan_cfg_per_pdev_tx_ring(soc->wlan_cfg_ctx)) {
dp_srng_deinit(soc, &soc->tcl_data_ring[pdev->pdev_id],
TCL_DATA, pdev->pdev_id);
dp_srng_deinit(soc, &soc->tx_comp_ring[pdev->pdev_id],
WBM2SW_RELEASE, pdev->pdev_id);
}
dp_pktlogmod_exit(pdev);
dp_rx_pdev_detach(pdev);
dp_rx_pdev_mon_detach(pdev);
dp_neighbour_peers_detach(pdev);
qdf_spinlock_destroy(&pdev->tx_mutex);
qdf_spinlock_destroy(&pdev->vdev_list_lock);
dp_ipa_uc_detach(soc, pdev);
dp_cleanup_ipa_rx_refill_buf_ring(soc, pdev);
/* Cleanup per PDEV REO rings if configured */
if (wlan_cfg_per_pdev_rx_ring(soc->wlan_cfg_ctx)) {
dp_srng_deinit(soc, &soc->reo_dest_ring[pdev->pdev_id],
REO_DST, pdev->pdev_id);
}
dp_srng_deinit(soc, &pdev->rx_refill_buf_ring, RXDMA_BUF, 0);
dp_rxdma_ring_cleanup(soc, pdev);
for (mac_id = 0; mac_id < NUM_RXDMA_RINGS_PER_PDEV; mac_id++) {
dp_mon_ring_deinit(soc, pdev, mac_id);
dp_srng_deinit(soc, &pdev->rxdma_err_dst_ring[mac_id],
RXDMA_DST, 0);
}
curr_nbuf = pdev->invalid_peer_head_msdu;
while (curr_nbuf) {
next_nbuf = qdf_nbuf_next(curr_nbuf);
qdf_nbuf_free(curr_nbuf);
curr_nbuf = next_nbuf;
}
pdev->invalid_peer_head_msdu = NULL;
pdev->invalid_peer_tail_msdu = NULL;
dp_htt_ppdu_stats_detach(pdev);
qdf_nbuf_free(pdev->sojourn_buf);
dp_cal_client_detach(&pdev->cal_client_ctx);
soc->pdev_count--;
/* only do soc common cleanup when last pdev do detach */
if (!(soc->pdev_count))
dp_reo_cmdlist_destroy(soc);
wlan_cfg_pdev_detach(pdev->wlan_cfg_ctx);
if (pdev->invalid_peer)
qdf_mem_free(pdev->invalid_peer);
qdf_mem_free(pdev->dp_txrx_handle);
dp_pdev_mem_reset(pdev);
}
/**
* dp_pdev_deinit_wifi3() - Deinit txrx pdev
* @txrx_pdev: Datapath PDEV handle
* @force: Force deinit
*
* Return: None
*/
static void dp_pdev_deinit_wifi3(struct cdp_pdev *txrx_pdev, int force)
{
struct dp_pdev *pdev = (struct dp_pdev *)txrx_pdev;
struct dp_soc *soc = pdev->soc;
soc->dp_soc_reinit = TRUE;
dp_pdev_deinit(txrx_pdev, force);
}
/*
* dp_pdev_detach() - Complete rest of pdev detach
* @txrx_pdev: Datapath PDEV handle
* @force: Force deinit
*
* Return: None
*/
static void dp_pdev_detach(struct cdp_pdev *txrx_pdev, int force)
{
struct dp_pdev *pdev = (struct dp_pdev *)txrx_pdev;
struct dp_soc *soc = pdev->soc;
struct rx_desc_pool *rx_desc_pool;
int mac_id, mac_for_pdev;
if (wlan_cfg_per_pdev_tx_ring(soc->wlan_cfg_ctx)) {
dp_srng_cleanup(soc, &soc->tcl_data_ring[pdev->pdev_id],
TCL_DATA, pdev->pdev_id);
dp_srng_cleanup(soc, &soc->tx_comp_ring[pdev->pdev_id],
WBM2SW_RELEASE, pdev->pdev_id);
}
dp_mon_link_free(pdev);
dp_tx_ppdu_stats_detach(pdev);
/* Cleanup per PDEV REO rings if configured */
if (wlan_cfg_per_pdev_rx_ring(soc->wlan_cfg_ctx)) {
dp_srng_cleanup(soc, &soc->reo_dest_ring[pdev->pdev_id],
REO_DST, pdev->pdev_id);
}
dp_rxdma_ring_cleanup(soc, pdev);
wlan_cfg_pdev_detach(pdev->wlan_cfg_ctx);
dp_srng_cleanup(soc, &pdev->rx_refill_buf_ring, RXDMA_BUF, 0);
dp_cleanup_ipa_rx_refill_buf_ring(soc, pdev);
for (mac_id = 0; mac_id < NUM_RXDMA_RINGS_PER_PDEV; mac_id++) {
dp_mon_ring_cleanup(soc, pdev, mac_id);
dp_srng_cleanup(soc, &pdev->rxdma_err_dst_ring[mac_id],
RXDMA_DST, 0);
if (dp_is_soc_reinit(soc)) {
mac_for_pdev = dp_get_mac_id_for_pdev(mac_id,
pdev->pdev_id);
rx_desc_pool = &soc->rx_desc_status[mac_for_pdev];
dp_rx_desc_pool_free(soc, rx_desc_pool);
rx_desc_pool = &soc->rx_desc_mon[mac_for_pdev];
dp_rx_desc_pool_free(soc, rx_desc_pool);
}
}
if (dp_is_soc_reinit(soc)) {
rx_desc_pool = &soc->rx_desc_buf[pdev->pdev_id];
dp_rx_desc_pool_free(soc, rx_desc_pool);
}
/* only do soc common cleanup when last pdev do detach */
if (!(soc->pdev_count))
dp_soc_cmn_cleanup(soc);
soc->pdev_list[pdev->pdev_id] = NULL;
qdf_mem_free(pdev);
}
/*
* dp_pdev_detach_wifi3() - detach txrx pdev
* @txrx_pdev: Datapath PDEV handle
* @force: Force detach
*
* Return: None
*/
static void dp_pdev_detach_wifi3(struct cdp_pdev *txrx_pdev, int force)
{
struct dp_pdev *pdev = (struct dp_pdev *)txrx_pdev;
struct dp_soc *soc = pdev->soc;
if (dp_is_soc_reinit(soc)) {
dp_pdev_detach(txrx_pdev, force);
} else {
dp_pdev_deinit(txrx_pdev, force);
dp_pdev_detach(txrx_pdev, force);
}
}
/*
* dp_reo_desc_freelist_destroy() - Flush REO descriptors from deferred freelist
* @soc: DP SOC handle
*/
static inline void dp_reo_desc_freelist_destroy(struct dp_soc *soc)
{
struct reo_desc_list_node *desc;
struct dp_rx_tid *rx_tid;
qdf_spin_lock_bh(&soc->reo_desc_freelist_lock);
while (qdf_list_remove_front(&soc->reo_desc_freelist,
(qdf_list_node_t **)&desc) == QDF_STATUS_SUCCESS) {
rx_tid = &desc->rx_tid;
qdf_mem_unmap_nbytes_single(soc->osdev,
rx_tid->hw_qdesc_paddr,
QDF_DMA_BIDIRECTIONAL,
rx_tid->hw_qdesc_alloc_size);
qdf_mem_free(rx_tid->hw_qdesc_vaddr_unaligned);
qdf_mem_free(desc);
}
qdf_spin_unlock_bh(&soc->reo_desc_freelist_lock);
qdf_list_destroy(&soc->reo_desc_freelist);
qdf_spinlock_destroy(&soc->reo_desc_freelist_lock);
}
/**
* dp_soc_mem_reset() - Reset Dp Soc memory
* @soc: DP handle
*
* Return: None
*/
static void dp_soc_mem_reset(struct dp_soc *soc)
{
uint16_t len = 0;
uint8_t *dp_soc_offset = (uint8_t *)soc;
len = sizeof(struct dp_soc) -
offsetof(struct dp_soc, dp_soc_reinit) -
sizeof(soc->dp_soc_reinit);
dp_soc_offset = dp_soc_offset +
offsetof(struct dp_soc, dp_soc_reinit) +
sizeof(soc->dp_soc_reinit);
qdf_mem_zero(dp_soc_offset, len);
}
/**
* dp_soc_deinit() - Deinitialize txrx SOC
* @txrx_soc: Opaque DP SOC handle
*
* Return: None
*/
static void dp_soc_deinit(void *txrx_soc)
{
struct dp_soc *soc = (struct dp_soc *)txrx_soc;
int i;
qdf_atomic_set(&soc->cmn_init_done, 0);
for (i = 0; i < MAX_PDEV_CNT; i++) {
if (soc->pdev_list[i])
dp_pdev_deinit((struct cdp_pdev *)
soc->pdev_list[i], 1);
}
qdf_flush_work(&soc->htt_stats.work);
qdf_disable_work(&soc->htt_stats.work);
/* Free pending htt stats messages */
qdf_nbuf_queue_free(&soc->htt_stats.msg);
dp_peer_find_detach(soc);
/* Free the ring memories */
/* Common rings */
dp_srng_deinit(soc, &soc->wbm_desc_rel_ring, SW2WBM_RELEASE, 0);
/* Tx data rings */
if (!wlan_cfg_per_pdev_tx_ring(soc->wlan_cfg_ctx)) {
for (i = 0; i < soc->num_tcl_data_rings; i++) {
dp_srng_deinit(soc, &soc->tcl_data_ring[i],
TCL_DATA, i);
dp_srng_deinit(soc, &soc->tx_comp_ring[i],
WBM2SW_RELEASE, i);
}
}
/* TCL command and status rings */
dp_srng_deinit(soc, &soc->tcl_cmd_ring, TCL_CMD, 0);
dp_srng_deinit(soc, &soc->tcl_status_ring, TCL_STATUS, 0);
/* Rx data rings */
if (!wlan_cfg_per_pdev_rx_ring(soc->wlan_cfg_ctx)) {
soc->num_reo_dest_rings =
wlan_cfg_num_reo_dest_rings(soc->wlan_cfg_ctx);
for (i = 0; i < soc->num_reo_dest_rings; i++) {
/* TODO: Get number of rings and ring sizes
* from wlan_cfg
*/
dp_srng_deinit(soc, &soc->reo_dest_ring[i],
REO_DST, i);
}
}
/* REO reinjection ring */
dp_srng_deinit(soc, &soc->reo_reinject_ring, REO_REINJECT, 0);
/* Rx release ring */
dp_srng_deinit(soc, &soc->rx_rel_ring, WBM2SW_RELEASE, 0);
/* Rx exception ring */
/* TODO: Better to store ring_type and ring_num in
* dp_srng during setup
*/
dp_srng_deinit(soc, &soc->reo_exception_ring, REO_EXCEPTION, 0);
/* REO command and status rings */
dp_srng_deinit(soc, &soc->reo_cmd_ring, REO_CMD, 0);
dp_srng_deinit(soc, &soc->reo_status_ring, REO_STATUS, 0);
dp_soc_wds_detach(soc);
qdf_spinlock_destroy(&soc->peer_ref_mutex);
qdf_spinlock_destroy(&soc->htt_stats.lock);
htt_soc_htc_dealloc(soc->htt_handle);
dp_reo_desc_freelist_destroy(soc);
qdf_spinlock_destroy(&soc->ast_lock);
DEINIT_RX_HW_STATS_LOCK(soc);
dp_soc_mem_reset(soc);
}
/**
* dp_soc_deinit_wifi3() - Deinitialize txrx SOC
* @txrx_soc: Opaque DP SOC handle
*
* Return: None
*/
static void dp_soc_deinit_wifi3(void *txrx_soc)
{
struct dp_soc *soc = (struct dp_soc *)txrx_soc;
soc->dp_soc_reinit = 1;
dp_soc_deinit(txrx_soc);
}
/*
* dp_soc_detach() - Detach rest of txrx SOC
* @txrx_soc: DP SOC handle, struct cdp_soc_t is first element of struct dp_soc.
*
* Return: None
*/
static void dp_soc_detach(void *txrx_soc)
{
struct dp_soc *soc = (struct dp_soc *)txrx_soc;
int i;
qdf_atomic_set(&soc->cmn_init_done, 0);
/* TBD: Call Tx and Rx cleanup functions to free buffers and
* SW descriptors
*/
for (i = 0; i < MAX_PDEV_CNT; i++) {
if (soc->pdev_list[i])
dp_pdev_detach((struct cdp_pdev *)
soc->pdev_list[i], 1);
}
/* Free the ring memories */
/* Common rings */
dp_srng_cleanup(soc, &soc->wbm_desc_rel_ring, SW2WBM_RELEASE, 0);
/* Tx data rings */
if (!wlan_cfg_per_pdev_tx_ring(soc->wlan_cfg_ctx)) {
for (i = 0; i < soc->num_tcl_data_rings; i++) {
dp_srng_cleanup(soc, &soc->tcl_data_ring[i],
TCL_DATA, i);
dp_srng_cleanup(soc, &soc->tx_comp_ring[i],
WBM2SW_RELEASE, i);
}
}
/* TCL command and status rings */
dp_srng_cleanup(soc, &soc->tcl_cmd_ring, TCL_CMD, 0);
dp_srng_cleanup(soc, &soc->tcl_status_ring, TCL_STATUS, 0);
/* Rx data rings */
if (!wlan_cfg_per_pdev_rx_ring(soc->wlan_cfg_ctx)) {
soc->num_reo_dest_rings =
wlan_cfg_num_reo_dest_rings(soc->wlan_cfg_ctx);
for (i = 0; i < soc->num_reo_dest_rings; i++) {
/* TODO: Get number of rings and ring sizes
* from wlan_cfg
*/
dp_srng_cleanup(soc, &soc->reo_dest_ring[i],
REO_DST, i);
}
}
/* REO reinjection ring */
dp_srng_cleanup(soc, &soc->reo_reinject_ring, REO_REINJECT, 0);
/* Rx release ring */
dp_srng_cleanup(soc, &soc->rx_rel_ring, WBM2SW_RELEASE, 0);
dp_srng_cleanup(soc, &soc->rx_rel_ring, WBM2SW_RELEASE, 3);
/* Rx exception ring */
/* TODO: Better to store ring_type and ring_num in
* dp_srng during setup
*/
dp_srng_cleanup(soc, &soc->reo_exception_ring, REO_EXCEPTION, 0);
/* REO command and status rings */
dp_srng_cleanup(soc, &soc->reo_cmd_ring, REO_CMD, 0);
dp_srng_cleanup(soc, &soc->reo_status_ring, REO_STATUS, 0);
dp_hw_link_desc_pool_cleanup(soc);
htt_soc_detach(soc->htt_handle);
soc->dp_soc_reinit = 0;
wlan_cfg_soc_detach(soc->wlan_cfg_ctx);
qdf_mem_free(soc);
}
/*
* dp_soc_detach_wifi3() - Detach txrx SOC
* @txrx_soc: DP SOC handle, struct cdp_soc_t is first element of struct dp_soc.
*
* Return: None
*/
static void dp_soc_detach_wifi3(void *txrx_soc)
{
struct dp_soc *soc = (struct dp_soc *)txrx_soc;
if (dp_is_soc_reinit(soc)) {
dp_soc_detach(txrx_soc);
} else {
dp_soc_deinit(txrx_soc);
dp_soc_detach(txrx_soc);
}
}
#if !defined(DISABLE_MON_CONFIG)
/**
* dp_mon_htt_srng_setup() - Prepare HTT messages for Monitor rings
* @soc: soc handle
* @pdev: physical device handle
* @mac_id: ring number
* @mac_for_pdev: mac_id
*
* Return: non-zero for failure, zero for success
*/
static QDF_STATUS dp_mon_htt_srng_setup(struct dp_soc *soc,
struct dp_pdev *pdev,
int mac_id,
int mac_for_pdev)
{
QDF_STATUS status = QDF_STATUS_SUCCESS;
if (soc->wlan_cfg_ctx->rxdma1_enable) {
status = htt_srng_setup(soc->htt_handle, mac_for_pdev,
pdev->rxdma_mon_buf_ring[mac_id]
.hal_srng,
RXDMA_MONITOR_BUF);
if (status != QDF_STATUS_SUCCESS) {
dp_err("Failed to send htt srng setup message for Rxdma mon buf ring");
return status;
}
status = htt_srng_setup(soc->htt_handle, mac_for_pdev,
pdev->rxdma_mon_dst_ring[mac_id]
.hal_srng,
RXDMA_MONITOR_DST);
if (status != QDF_STATUS_SUCCESS) {
dp_err("Failed to send htt srng setup message for Rxdma mon dst ring");
return status;
}
status = htt_srng_setup(soc->htt_handle, mac_for_pdev,
pdev->rxdma_mon_status_ring[mac_id]
.hal_srng,
RXDMA_MONITOR_STATUS);
if (status != QDF_STATUS_SUCCESS) {
dp_err("Failed to send htt srng setup message for Rxdma mon status ring");
return status;
}
status = htt_srng_setup(soc->htt_handle, mac_for_pdev,
pdev->rxdma_mon_desc_ring[mac_id]
.hal_srng,
RXDMA_MONITOR_DESC);
if (status != QDF_STATUS_SUCCESS) {
dp_err("Failed to send htt srng message for Rxdma mon desc ring");
return status;
}
} else {
status = htt_srng_setup(soc->htt_handle, mac_for_pdev,
pdev->rxdma_mon_status_ring[mac_id]
.hal_srng,
RXDMA_MONITOR_STATUS);
if (status != QDF_STATUS_SUCCESS) {
dp_err("Failed to send htt srng setup message for Rxdma mon status ring");
return status;
}
}
return status;
}
#else
static QDF_STATUS dp_mon_htt_srng_setup(struct dp_soc *soc,
struct dp_pdev *pdev,
int mac_id,
int mac_for_pdev)
{
return QDF_STATUS_SUCCESS;
}
#endif
/*
* dp_rxdma_ring_config() - configure the RX DMA rings
*
* This function is used to configure the MAC rings.
* On MCL host provides buffers in Host2FW ring
* FW refills (copies) buffers to the ring and updates
* ring_idx in register
*
* @soc: data path SoC handle
*
* Return: zero on success, non-zero on failure
*/
#ifdef QCA_HOST2FW_RXBUF_RING
static QDF_STATUS dp_rxdma_ring_config(struct dp_soc *soc)
{
int i;
QDF_STATUS status = QDF_STATUS_SUCCESS;
for (i = 0; i < MAX_PDEV_CNT; i++) {
struct dp_pdev *pdev = soc->pdev_list[i];
if (pdev) {
int mac_id;
bool dbs_enable = 0;
int max_mac_rings =
wlan_cfg_get_num_mac_rings
(pdev->wlan_cfg_ctx);
htt_srng_setup(soc->htt_handle, 0,
pdev->rx_refill_buf_ring.hal_srng,
RXDMA_BUF);
if (pdev->rx_refill_buf_ring2.hal_srng)
htt_srng_setup(soc->htt_handle, 0,
pdev->rx_refill_buf_ring2.hal_srng,
RXDMA_BUF);
if (soc->cdp_soc.ol_ops->
is_hw_dbs_2x2_capable) {
dbs_enable = soc->cdp_soc.ol_ops->
is_hw_dbs_2x2_capable(soc->ctrl_psoc);
}
if (dbs_enable) {
QDF_TRACE(QDF_MODULE_ID_TXRX,
QDF_TRACE_LEVEL_ERROR,
FL("DBS enabled max_mac_rings %d"),
max_mac_rings);
} else {
max_mac_rings = 1;
QDF_TRACE(QDF_MODULE_ID_TXRX,
QDF_TRACE_LEVEL_ERROR,
FL("DBS disabled, max_mac_rings %d"),
max_mac_rings);
}
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
FL("pdev_id %d max_mac_rings %d"),
pdev->pdev_id, max_mac_rings);
for (mac_id = 0; mac_id < max_mac_rings; mac_id++) {
int mac_for_pdev = dp_get_mac_id_for_pdev(
mac_id, pdev->pdev_id);
QDF_TRACE(QDF_MODULE_ID_TXRX,
QDF_TRACE_LEVEL_ERROR,
FL("mac_id %d"), mac_for_pdev);
htt_srng_setup(soc->htt_handle, mac_for_pdev,
pdev->rx_mac_buf_ring[mac_id]
.hal_srng,
RXDMA_BUF);
htt_srng_setup(soc->htt_handle, mac_for_pdev,
pdev->rxdma_err_dst_ring[mac_id]
.hal_srng,
RXDMA_DST);
/* Configure monitor mode rings */
status = dp_mon_htt_srng_setup(soc, pdev,
mac_id,
mac_for_pdev);
if (status != QDF_STATUS_SUCCESS) {
dp_err("Failed to send htt monitor messages to target");
return status;
}
}
}
}
/*
* Timer to reap rxdma status rings.
* Needed until we enable ppdu end interrupts
*/
qdf_timer_init(soc->osdev, &soc->mon_reap_timer,
dp_mon_reap_timer_handler, (void *)soc,
QDF_TIMER_TYPE_WAKE_APPS);
soc->reap_timer_init = 1;
return status;
}
#else
/* This is only for WIN */
static QDF_STATUS dp_rxdma_ring_config(struct dp_soc *soc)
{
int i;
int mac_id;
QDF_STATUS status = QDF_STATUS_SUCCESS;
for (i = 0; i < MAX_PDEV_CNT; i++) {
struct dp_pdev *pdev = soc->pdev_list[i];
if (!pdev)
continue;
for (mac_id = 0; mac_id < NUM_RXDMA_RINGS_PER_PDEV; mac_id++) {
int mac_for_pdev = dp_get_mac_id_for_pdev(mac_id, i);
htt_srng_setup(soc->htt_handle, mac_for_pdev,
pdev->rx_refill_buf_ring.hal_srng, RXDMA_BUF);
#ifndef DISABLE_MON_CONFIG
htt_srng_setup(soc->htt_handle, mac_for_pdev,
pdev->rxdma_mon_buf_ring[mac_id].hal_srng,
RXDMA_MONITOR_BUF);
htt_srng_setup(soc->htt_handle, mac_for_pdev,
pdev->rxdma_mon_dst_ring[mac_id].hal_srng,
RXDMA_MONITOR_DST);
htt_srng_setup(soc->htt_handle, mac_for_pdev,
pdev->rxdma_mon_status_ring[mac_id].hal_srng,
RXDMA_MONITOR_STATUS);
htt_srng_setup(soc->htt_handle, mac_for_pdev,
pdev->rxdma_mon_desc_ring[mac_id].hal_srng,
RXDMA_MONITOR_DESC);
#endif
htt_srng_setup(soc->htt_handle, mac_for_pdev,
pdev->rxdma_err_dst_ring[mac_id].hal_srng,
RXDMA_DST);
}
}
return status;
}
#endif
#ifdef NO_RX_PKT_HDR_TLV
static QDF_STATUS
dp_rxdma_ring_sel_cfg(struct dp_soc *soc)
{
int i;
int mac_id;
struct htt_rx_ring_tlv_filter htt_tlv_filter = {0};
QDF_STATUS status = QDF_STATUS_SUCCESS;
htt_tlv_filter.mpdu_start = 1;
htt_tlv_filter.msdu_start = 1;
htt_tlv_filter.mpdu_end = 1;
htt_tlv_filter.msdu_end = 1;
htt_tlv_filter.attention = 1;
htt_tlv_filter.packet = 1;
htt_tlv_filter.packet_header = 0;
htt_tlv_filter.ppdu_start = 0;
htt_tlv_filter.ppdu_end = 0;
htt_tlv_filter.ppdu_end_user_stats = 0;
htt_tlv_filter.ppdu_end_user_stats_ext = 0;
htt_tlv_filter.ppdu_end_status_done = 0;
htt_tlv_filter.enable_fp = 1;
htt_tlv_filter.enable_md = 0;
htt_tlv_filter.enable_md = 0;
htt_tlv_filter.enable_mo = 0;
htt_tlv_filter.fp_mgmt_filter = 0;
htt_tlv_filter.fp_ctrl_filter = FILTER_CTRL_BA_REQ;
htt_tlv_filter.fp_data_filter = (FILTER_DATA_UCAST |
FILTER_DATA_MCAST |
FILTER_DATA_DATA);
htt_tlv_filter.mo_mgmt_filter = 0;
htt_tlv_filter.mo_ctrl_filter = 0;
htt_tlv_filter.mo_data_filter = 0;
htt_tlv_filter.md_data_filter = 0;
htt_tlv_filter.offset_valid = true;
htt_tlv_filter.rx_packet_offset = RX_PKT_TLVS_LEN;
/*Not subscribing rx_pkt_header*/
htt_tlv_filter.rx_header_offset = 0;
htt_tlv_filter.rx_mpdu_start_offset =
HAL_RX_PKT_TLV_MPDU_START_OFFSET(soc->hal_soc);
htt_tlv_filter.rx_mpdu_end_offset =
HAL_RX_PKT_TLV_MPDU_END_OFFSET(soc->hal_soc);
htt_tlv_filter.rx_msdu_start_offset =
HAL_RX_PKT_TLV_MSDU_START_OFFSET(soc->hal_soc);
htt_tlv_filter.rx_msdu_end_offset =
HAL_RX_PKT_TLV_MSDU_END_OFFSET(soc->hal_soc);
htt_tlv_filter.rx_attn_offset =
HAL_RX_PKT_TLV_ATTN_OFFSET(soc->hal_soc);
for (i = 0; i < MAX_PDEV_CNT; i++) {
struct dp_pdev *pdev = soc->pdev_list[i];
if (!pdev)
continue;
for (mac_id = 0; mac_id < NUM_RXDMA_RINGS_PER_PDEV; mac_id++) {
int mac_for_pdev = dp_get_mac_id_for_pdev(mac_id,
pdev->pdev_id);
htt_h2t_rx_ring_cfg(soc->htt_handle, mac_for_pdev,
pdev->rx_refill_buf_ring.hal_srng,
RXDMA_BUF, RX_BUFFER_SIZE,
&htt_tlv_filter);
}
}
return status;
}
#else
static QDF_STATUS
dp_rxdma_ring_sel_cfg(struct dp_soc *soc)
{
return QDF_STATUS_SUCCESS;
}
#endif
/*
* dp_soc_attach_target_wifi3() - SOC initialization in the target
* @cdp_soc: Opaque Datapath SOC handle
*
* Return: zero on success, non-zero on failure
*/
static QDF_STATUS
dp_soc_attach_target_wifi3(struct cdp_soc_t *cdp_soc)
{
struct dp_soc *soc = (struct dp_soc *)cdp_soc;
QDF_STATUS status = QDF_STATUS_SUCCESS;
htt_soc_attach_target(soc->htt_handle);
status = dp_rxdma_ring_config(soc);
if (status != QDF_STATUS_SUCCESS) {
dp_err("Failed to send htt srng setup messages to target");
return status;
}
status = dp_rxdma_ring_sel_cfg(soc);
if (status != QDF_STATUS_SUCCESS) {
dp_err("Failed to send htt ring config message to target");
return status;
}
DP_STATS_INIT(soc);
/* initialize work queue for stats processing */
qdf_create_work(0, &soc->htt_stats.work, htt_t2h_stats_handler, soc);
qdf_minidump_log((void *)soc, sizeof(*soc), "dp_soc");
return QDF_STATUS_SUCCESS;
}
/*
* dp_soc_get_nss_cfg_wifi3() - SOC get nss config
* @txrx_soc: Datapath SOC handle
*/
static int dp_soc_get_nss_cfg_wifi3(struct cdp_soc_t *cdp_soc)
{
struct dp_soc *dsoc = (struct dp_soc *)cdp_soc;
return wlan_cfg_get_dp_soc_nss_cfg(dsoc->wlan_cfg_ctx);
}
/*
* dp_soc_set_nss_cfg_wifi3() - SOC set nss config
* @txrx_soc: Datapath SOC handle
* @nss_cfg: nss config
*/
static void dp_soc_set_nss_cfg_wifi3(struct cdp_soc_t *cdp_soc, int config)
{
struct dp_soc *dsoc = (struct dp_soc *)cdp_soc;
struct wlan_cfg_dp_soc_ctxt *wlan_cfg_ctx = dsoc->wlan_cfg_ctx;
wlan_cfg_set_dp_soc_nss_cfg(wlan_cfg_ctx, config);
/*
* TODO: masked out based on the per offloaded radio
*/
switch (config) {
case dp_nss_cfg_default:
break;
case dp_nss_cfg_dbdc:
case dp_nss_cfg_dbtc:
wlan_cfg_set_num_tx_desc_pool(wlan_cfg_ctx, 0);
wlan_cfg_set_num_tx_ext_desc_pool(wlan_cfg_ctx, 0);
wlan_cfg_set_num_tx_desc(wlan_cfg_ctx, 0);
wlan_cfg_set_num_tx_ext_desc(wlan_cfg_ctx, 0);
break;
default:
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"Invalid offload config %d", config);
}
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
FL("nss-wifi<0> nss config is enabled"));
}
/*
* dp_vdev_attach_wifi3() - attach txrx vdev
* @txrx_pdev: Datapath PDEV handle
* @vdev_mac_addr: MAC address of the virtual interface
* @vdev_id: VDEV Id
* @wlan_op_mode: VDEV operating mode
* @subtype: VDEV operating subtype
*
* Return: DP VDEV handle on success, NULL on failure
*/
static struct cdp_vdev *dp_vdev_attach_wifi3(struct cdp_pdev *txrx_pdev,
uint8_t *vdev_mac_addr, uint8_t vdev_id, enum wlan_op_mode op_mode,
enum wlan_op_subtype subtype)
{
struct dp_pdev *pdev = (struct dp_pdev *)txrx_pdev;
struct dp_soc *soc = pdev->soc;
struct dp_vdev *vdev = qdf_mem_malloc(sizeof(*vdev));
if (!vdev) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("DP VDEV memory allocation failed"));
goto fail0;
}
vdev->pdev = pdev;
vdev->vdev_id = vdev_id;
vdev->opmode = op_mode;
vdev->subtype = subtype;
vdev->osdev = soc->osdev;
vdev->osif_rx = NULL;
vdev->osif_rsim_rx_decap = NULL;
vdev->osif_get_key = NULL;
vdev->osif_rx_mon = NULL;
vdev->osif_tx_free_ext = NULL;
vdev->osif_vdev = NULL;
vdev->delete.pending = 0;
vdev->safemode = 0;
vdev->drop_unenc = 1;
vdev->sec_type = cdp_sec_type_none;
#ifdef notyet
vdev->filters_num = 0;
#endif
qdf_mem_copy(
&vdev->mac_addr.raw[0], vdev_mac_addr, QDF_MAC_ADDR_SIZE);
/* TODO: Initialize default HTT meta data that will be used in
* TCL descriptors for packets transmitted from this VDEV
*/
TAILQ_INIT(&vdev->peer_list);
if ((soc->intr_mode == DP_INTR_POLL) &&
wlan_cfg_get_num_contexts(soc->wlan_cfg_ctx) != 0) {
if ((pdev->vdev_count == 0) ||
(wlan_op_mode_monitor == vdev->opmode))
qdf_timer_mod(&soc->int_timer, DP_INTR_POLL_TIMER_MS);
}
if (wlan_op_mode_monitor == vdev->opmode) {
pdev->monitor_vdev = vdev;
return (struct cdp_vdev *)vdev;
}
vdev->tx_encap_type = wlan_cfg_pkt_type(soc->wlan_cfg_ctx);
vdev->rx_decap_type = wlan_cfg_pkt_type(soc->wlan_cfg_ctx);
vdev->dscp_tid_map_id = 0;
vdev->mcast_enhancement_en = 0;
vdev->raw_mode_war = wlan_cfg_get_raw_mode_war(soc->wlan_cfg_ctx);
vdev->prev_tx_enq_tstamp = 0;
vdev->prev_rx_deliver_tstamp = 0;
qdf_spin_lock_bh(&pdev->vdev_list_lock);
/* add this vdev into the pdev's list */
TAILQ_INSERT_TAIL(&pdev->vdev_list, vdev, vdev_list_elem);
qdf_spin_unlock_bh(&pdev->vdev_list_lock);
pdev->vdev_count++;
dp_tx_vdev_attach(vdev);
if (pdev->vdev_count == 1)
dp_lro_hash_setup(soc, pdev);
dp_info("Created vdev %pK (%pM)", vdev, vdev->mac_addr.raw);
DP_STATS_INIT(vdev);
if (wlan_op_mode_sta == vdev->opmode)
dp_peer_create_wifi3((struct cdp_vdev *)vdev,
vdev->mac_addr.raw,
NULL);
return (struct cdp_vdev *)vdev;
fail0:
return NULL;
}
/**
* dp_vdev_register_wifi3() - Register VDEV operations from osif layer
* @vdev: Datapath VDEV handle
* @osif_vdev: OSIF vdev handle
* @ctrl_vdev: UMAC vdev handle
* @txrx_ops: Tx and Rx operations
*
* Return: DP VDEV handle on success, NULL on failure
*/
static void dp_vdev_register_wifi3(struct cdp_vdev *vdev_handle,
void *osif_vdev, struct cdp_ctrl_objmgr_vdev *ctrl_vdev,
struct ol_txrx_ops *txrx_ops)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
vdev->osif_vdev = osif_vdev;
vdev->ctrl_vdev = ctrl_vdev;
vdev->osif_rx = txrx_ops->rx.rx;
vdev->osif_rx_stack = txrx_ops->rx.rx_stack;
vdev->osif_rx_flush = txrx_ops->rx.rx_flush;
vdev->osif_gro_flush = txrx_ops->rx.rx_gro_flush;
vdev->osif_rsim_rx_decap = txrx_ops->rx.rsim_rx_decap;
vdev->osif_get_key = txrx_ops->get_key;
vdev->osif_rx_mon = txrx_ops->rx.mon;
vdev->osif_tx_free_ext = txrx_ops->tx.tx_free_ext;
vdev->tx_comp = txrx_ops->tx.tx_comp;
#ifdef notyet
#if ATH_SUPPORT_WAPI
vdev->osif_check_wai = txrx_ops->rx.wai_check;
#endif
#endif
#ifdef UMAC_SUPPORT_PROXY_ARP
vdev->osif_proxy_arp = txrx_ops->proxy_arp;
#endif
vdev->me_convert = txrx_ops->me_convert;
/* TODO: Enable the following once Tx code is integrated */
if (vdev->mesh_vdev)
txrx_ops->tx.tx = dp_tx_send_mesh;
else
txrx_ops->tx.tx = dp_tx_send;
txrx_ops->tx.tx_exception = dp_tx_send_exception;
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_LOW,
"DP Vdev Register success");
}
/**
* dp_peer_flush_ast_entry() - Forcibily flush all AST entry of peer
* @soc: Datapath soc handle
* @peer: Datapath peer handle
* @peer_id: Peer ID
* @vdev_id: Vdev ID
*
* Return: void
*/
static void dp_peer_flush_ast_entry(struct dp_soc *soc,
struct dp_peer *peer,
uint16_t peer_id,
uint8_t vdev_id)
{
struct dp_ast_entry *ase, *tmp_ase;
if (soc->is_peer_map_unmap_v2) {
DP_PEER_ITERATE_ASE_LIST(peer, ase, tmp_ase) {
dp_rx_peer_unmap_handler
(soc, peer_id,
vdev_id,
ase->mac_addr.raw,
1);
}
}
}
/**
* dp_vdev_flush_peers() - Forcibily Flush peers of vdev
* @vdev: Datapath VDEV handle
* @unmap_only: Flag to indicate "only unmap"
*
* Return: void
*/
static void dp_vdev_flush_peers(struct cdp_vdev *vdev_handle, bool unmap_only)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
struct dp_pdev *pdev = vdev->pdev;
struct dp_soc *soc = pdev->soc;
struct dp_peer *peer;
uint16_t *peer_ids;
struct dp_peer **peer_array = NULL;
uint8_t i = 0, j = 0;
uint8_t m = 0, n = 0;
peer_ids = qdf_mem_malloc(soc->max_peers * sizeof(peer_ids[0]));
if (!peer_ids) {
dp_err("DP alloc failure - unable to flush peers");
return;
}
if (!unmap_only) {
peer_array = qdf_mem_malloc(
soc->max_peers * sizeof(struct dp_peer *));
if (!peer_array) {
qdf_mem_free(peer_ids);
dp_err("DP alloc failure - unable to flush peers");
return;
}
}
qdf_spin_lock_bh(&soc->peer_ref_mutex);
TAILQ_FOREACH(peer, &vdev->peer_list, peer_list_elem) {
if (!unmap_only && n < soc->max_peers)
peer_array[n++] = peer;
for (i = 0; i < MAX_NUM_PEER_ID_PER_PEER; i++)
if (peer->peer_ids[i] != HTT_INVALID_PEER)
if (j < soc->max_peers)
peer_ids[j++] = peer->peer_ids[i];
}
qdf_spin_unlock_bh(&soc->peer_ref_mutex);
/*
* If peer id is invalid, need to flush the peer if
* peer valid flag is true, this is needed for NAN + SSR case.
*/
if (!unmap_only) {
for (m = 0; m < n ; m++) {
peer = peer_array[m];
dp_info("peer: %pM is getting deleted",
peer->mac_addr.raw);
/* only if peer valid is true */
if (peer->valid)
dp_peer_delete_wifi3(peer, 0);
}
qdf_mem_free(peer_array);
}
for (i = 0; i < j ; i++) {
peer = __dp_peer_find_by_id(soc, peer_ids[i]);
if (!peer)
continue;
dp_info("peer ref cnt %d", qdf_atomic_read(&peer->ref_cnt));
/*
* set ref count to one to force delete the peers
* with ref count leak
*/
SET_PEER_REF_CNT_ONE(peer);
dp_info("peer: %pM is getting unmap",
peer->mac_addr.raw);
/* free AST entries of peer */
dp_peer_flush_ast_entry(soc, peer,
peer_ids[i],
vdev->vdev_id);
dp_rx_peer_unmap_handler(soc, peer_ids[i],
vdev->vdev_id,
peer->mac_addr.raw, 0);
}
qdf_mem_free(peer_ids);
dp_info("Flushed peers for vdev object %pK ", vdev);
}
/*
* dp_vdev_detach_wifi3() - Detach txrx vdev
* @txrx_vdev: Datapath VDEV handle
* @callback: Callback OL_IF on completion of detach
* @cb_context: Callback context
*
*/
static void dp_vdev_detach_wifi3(struct cdp_vdev *vdev_handle,
ol_txrx_vdev_delete_cb callback, void *cb_context)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
struct dp_pdev *pdev;
struct dp_soc *soc;
struct dp_neighbour_peer *peer = NULL;
struct dp_neighbour_peer *temp_peer = NULL;
/* preconditions */
qdf_assert_always(vdev);
pdev = vdev->pdev;
soc = pdev->soc;
if (wlan_op_mode_sta == vdev->opmode)
dp_peer_delete_wifi3(vdev->vap_self_peer, 0);
/*
* If Target is hung, flush all peers before detaching vdev
* this will free all references held due to missing
* unmap commands from Target
*/
if (!hif_is_target_ready(HIF_GET_SOFTC(soc->hif_handle)))
dp_vdev_flush_peers((struct cdp_vdev *)vdev, false);
dp_rx_vdev_detach(vdev);
/*
* Use peer_ref_mutex while accessing peer_list, in case
* a peer is in the process of being removed from the list.
*/
qdf_spin_lock_bh(&soc->peer_ref_mutex);
/* check that the vdev has no peers allocated */
if (!TAILQ_EMPTY(&vdev->peer_list)) {
/* debug print - will be removed later */
dp_warn("not deleting vdev object %pK (%pM) until deletion finishes for all its peers",
vdev, vdev->mac_addr.raw);
/* indicate that the vdev needs to be deleted */
vdev->delete.pending = 1;
vdev->delete.callback = callback;
vdev->delete.context = cb_context;
qdf_spin_unlock_bh(&soc->peer_ref_mutex);
return;
}
qdf_spin_unlock_bh(&soc->peer_ref_mutex);
if (wlan_op_mode_monitor == vdev->opmode)
goto free_vdev;
qdf_spin_lock_bh(&pdev->neighbour_peer_mutex);
if (!soc->hw_nac_monitor_support) {
TAILQ_FOREACH(peer, &pdev->neighbour_peers_list,
neighbour_peer_list_elem) {
QDF_ASSERT(peer->vdev != vdev);
}
} else {
TAILQ_FOREACH_SAFE(peer, &pdev->neighbour_peers_list,
neighbour_peer_list_elem, temp_peer) {
if (peer->vdev == vdev) {
TAILQ_REMOVE(&pdev->neighbour_peers_list, peer,
neighbour_peer_list_elem);
qdf_mem_free(peer);
}
}
}
qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
qdf_spin_lock_bh(&pdev->vdev_list_lock);
/* remove the vdev from its parent pdev's list */
TAILQ_REMOVE(&pdev->vdev_list, vdev, vdev_list_elem);
qdf_spin_unlock_bh(&pdev->vdev_list_lock);
dp_tx_vdev_detach(vdev);
free_vdev:
if (wlan_op_mode_monitor == vdev->opmode) {
if (soc->intr_mode == DP_INTR_POLL)
qdf_timer_sync_cancel(&soc->int_timer);
pdev->monitor_vdev = NULL;
}
dp_info("deleting vdev object %pK (%pM)", vdev, vdev->mac_addr.raw);
qdf_mem_free(vdev);
if (callback)
callback(cb_context);
}
#ifdef FEATURE_AST
/*
* dp_peer_delete_ast_entries(): Delete all AST entries for a peer
* @soc - datapath soc handle
* @peer - datapath peer handle
*
* Delete the AST entries belonging to a peer
*/
static inline void dp_peer_delete_ast_entries(struct dp_soc *soc,
struct dp_peer *peer)
{
struct dp_ast_entry *ast_entry, *temp_ast_entry;
DP_PEER_ITERATE_ASE_LIST(peer, ast_entry, temp_ast_entry)
dp_peer_del_ast(soc, ast_entry);
peer->self_ast_entry = NULL;
}
#else
static inline void dp_peer_delete_ast_entries(struct dp_soc *soc,
struct dp_peer *peer)
{
}
#endif
#if ATH_SUPPORT_WRAP
static inline struct dp_peer *dp_peer_can_reuse(struct dp_vdev *vdev,
uint8_t *peer_mac_addr)
{
struct dp_peer *peer;
peer = dp_peer_find_hash_find(vdev->pdev->soc, peer_mac_addr,
0, vdev->vdev_id);
if (!peer)
return NULL;
if (peer->bss_peer)
return peer;
dp_peer_unref_delete(peer);
return NULL;
}
#else
static inline struct dp_peer *dp_peer_can_reuse(struct dp_vdev *vdev,
uint8_t *peer_mac_addr)
{
struct dp_peer *peer;
peer = dp_peer_find_hash_find(vdev->pdev->soc, peer_mac_addr,
0, vdev->vdev_id);
if (!peer)
return NULL;
if (peer->bss_peer && (peer->vdev->vdev_id == vdev->vdev_id))
return peer;
dp_peer_unref_delete(peer);
return NULL;
}
#endif
#ifdef FEATURE_AST
static inline void dp_peer_ast_handle_roam_del(struct dp_soc *soc,
struct dp_pdev *pdev,
uint8_t *peer_mac_addr)
{
struct dp_ast_entry *ast_entry;
qdf_spin_lock_bh(&soc->ast_lock);
if (soc->ast_override_support)
ast_entry = dp_peer_ast_hash_find_by_pdevid(soc, peer_mac_addr,
pdev->pdev_id);
else
ast_entry = dp_peer_ast_hash_find_soc(soc, peer_mac_addr);
if (ast_entry && ast_entry->next_hop && !ast_entry->delete_in_progress)
dp_peer_del_ast(soc, ast_entry);
qdf_spin_unlock_bh(&soc->ast_lock);
}
#endif
#ifdef PEER_CACHE_RX_PKTS
static inline void dp_peer_rx_bufq_resources_init(struct dp_peer *peer)
{
qdf_spinlock_create(&peer->bufq_info.bufq_lock);
peer->bufq_info.thresh = DP_RX_CACHED_BUFQ_THRESH;
qdf_list_create(&peer->bufq_info.cached_bufq, DP_RX_CACHED_BUFQ_THRESH);
}
#else
static inline void dp_peer_rx_bufq_resources_init(struct dp_peer *peer)
{
}
#endif
/*
* dp_peer_create_wifi3() - attach txrx peer
* @txrx_vdev: Datapath VDEV handle
* @peer_mac_addr: Peer MAC address
*
* Return: DP peeer handle on success, NULL on failure
*/
static void *dp_peer_create_wifi3(struct cdp_vdev *vdev_handle,
uint8_t *peer_mac_addr, struct cdp_ctrl_objmgr_peer *ctrl_peer)
{
struct dp_peer *peer;
int i;
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
struct dp_pdev *pdev;
struct dp_soc *soc;
struct cdp_peer_cookie peer_cookie;
enum cdp_txrx_ast_entry_type ast_type = CDP_TXRX_AST_TYPE_STATIC;
/* preconditions */
qdf_assert(vdev);
qdf_assert(peer_mac_addr);
pdev = vdev->pdev;
soc = pdev->soc;
/*
* If a peer entry with given MAC address already exists,
* reuse the peer and reset the state of peer.
*/
peer = dp_peer_can_reuse(vdev, peer_mac_addr);
if (peer) {
qdf_atomic_init(&peer->is_default_route_set);
dp_peer_cleanup(vdev, peer, true);
qdf_spin_lock_bh(&soc->ast_lock);
dp_peer_delete_ast_entries(soc, peer);
peer->delete_in_progress = false;
qdf_spin_unlock_bh(&soc->ast_lock);
if ((vdev->opmode == wlan_op_mode_sta) &&
!qdf_mem_cmp(peer_mac_addr, &vdev->mac_addr.raw[0],
QDF_MAC_ADDR_SIZE)) {
ast_type = CDP_TXRX_AST_TYPE_SELF;
}
dp_peer_add_ast(soc, peer, peer_mac_addr, ast_type, 0);
/*
* Control path maintains a node count which is incremented
* for every new peer create command. Since new peer is not being
* created and earlier reference is reused here,
* peer_unref_delete event is sent to control path to
* increment the count back.
*/
if (soc->cdp_soc.ol_ops->peer_unref_delete) {
soc->cdp_soc.ol_ops->peer_unref_delete(pdev->ctrl_pdev,
peer->mac_addr.raw, vdev->mac_addr.raw,
vdev->opmode, peer->ctrl_peer, ctrl_peer);
}
peer->ctrl_peer = ctrl_peer;
peer->valid = 1;
dp_local_peer_id_alloc(pdev, peer);
qdf_spinlock_create(&peer->peer_info_lock);
dp_peer_rx_bufq_resources_init(peer);
DP_STATS_INIT(peer);
DP_STATS_UPD(peer, rx.avg_rssi, INVALID_RSSI);
return (void *)peer;
} else {
/*
* When a STA roams from RPTR AP to ROOT AP and vice versa, we
* need to remove the AST entry which was earlier added as a WDS
* entry.
* If an AST entry exists, but no peer entry exists with a given
* MAC addresses, we could deduce it as a WDS entry
*/
dp_peer_ast_handle_roam_del(soc, pdev, peer_mac_addr);
}
#ifdef notyet
peer = (struct dp_peer *)qdf_mempool_alloc(soc->osdev,
soc->mempool_ol_ath_peer);
#else
peer = (struct dp_peer *)qdf_mem_malloc(sizeof(*peer));
#endif
if (!peer)
return NULL; /* failure */
qdf_mem_zero(peer, sizeof(struct dp_peer));
TAILQ_INIT(&peer->ast_entry_list);
/* store provided params */
peer->vdev = vdev;
peer->ctrl_peer = ctrl_peer;
if ((vdev->opmode == wlan_op_mode_sta) &&
!qdf_mem_cmp(peer_mac_addr, &vdev->mac_addr.raw[0],
QDF_MAC_ADDR_SIZE)) {
ast_type = CDP_TXRX_AST_TYPE_SELF;
}
dp_peer_add_ast(soc, peer, peer_mac_addr, ast_type, 0);
qdf_spinlock_create(&peer->peer_info_lock);
dp_peer_rx_bufq_resources_init(peer);
qdf_mem_copy(
&peer->mac_addr.raw[0], peer_mac_addr, QDF_MAC_ADDR_SIZE);
/* TODO: See of rx_opt_proc is really required */
peer->rx_opt_proc = soc->rx_opt_proc;
/* initialize the peer_id */
for (i = 0; i < MAX_NUM_PEER_ID_PER_PEER; i++)
peer->peer_ids[i] = HTT_INVALID_PEER;
qdf_spin_lock_bh(&soc->peer_ref_mutex);
qdf_atomic_init(&peer->ref_cnt);
/* keep one reference for attach */
qdf_atomic_inc(&peer->ref_cnt);
/* add this peer into the vdev's list */
if (wlan_op_mode_sta == vdev->opmode)
TAILQ_INSERT_HEAD(&vdev->peer_list, peer, peer_list_elem);
else
TAILQ_INSERT_TAIL(&vdev->peer_list, peer, peer_list_elem);
qdf_spin_unlock_bh(&soc->peer_ref_mutex);
/* TODO: See if hash based search is required */
dp_peer_find_hash_add(soc, peer);
/* Initialize the peer state */
peer->state = OL_TXRX_PEER_STATE_DISC;
dp_info("vdev %pK created peer %pK (%pM) ref_cnt: %d",
vdev, peer, peer->mac_addr.raw,
qdf_atomic_read(&peer->ref_cnt));
/*
* For every peer MAp message search and set if bss_peer
*/
if (qdf_mem_cmp(peer->mac_addr.raw, vdev->mac_addr.raw,
QDF_MAC_ADDR_SIZE) == 0 &&
(wlan_op_mode_sta != vdev->opmode)) {
dp_info("vdev bss_peer!!");
peer->bss_peer = 1;
vdev->vap_bss_peer = peer;
}
if (wlan_op_mode_sta == vdev->opmode &&
qdf_mem_cmp(peer->mac_addr.raw, vdev->mac_addr.raw,
QDF_MAC_ADDR_SIZE) == 0) {
vdev->vap_self_peer = peer;
}
for (i = 0; i < DP_MAX_TIDS; i++)
qdf_spinlock_create(&peer->rx_tid[i].tid_lock);
peer->valid = 1;
dp_local_peer_id_alloc(pdev, peer);
DP_STATS_INIT(peer);
DP_STATS_UPD(peer, rx.avg_rssi, INVALID_RSSI);
qdf_mem_copy(peer_cookie.mac_addr, peer->mac_addr.raw,
QDF_MAC_ADDR_SIZE);
peer_cookie.ctx = NULL;
peer_cookie.cookie = pdev->next_peer_cookie++;
#if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
dp_wdi_event_handler(WDI_EVENT_PEER_CREATE, pdev->soc,
(void *)&peer_cookie,
peer->peer_ids[0], WDI_NO_VAL, pdev->pdev_id);
#endif
if (soc->wlanstats_enabled) {
if (!peer_cookie.ctx) {
pdev->next_peer_cookie--;
qdf_err("Failed to initialize peer rate stats");
} else {
peer->wlanstats_ctx = (void *)peer_cookie.ctx;
}
}
return (void *)peer;
}
/*
* dp_vdev_get_default_reo_hash() - get reo dest ring and hash values for a vdev
* @vdev: Datapath VDEV handle
* @reo_dest: pointer to default reo_dest ring for vdev to be populated
* @hash_based: pointer to hash value (enabled/disabled) to be populated
*
* Return: None
*/
static
void dp_vdev_get_default_reo_hash(struct dp_vdev *vdev,
enum cdp_host_reo_dest_ring *reo_dest,
bool *hash_based)
{
struct dp_soc *soc;
struct dp_pdev *pdev;
pdev = vdev->pdev;
soc = pdev->soc;
/*
* hash based steering is disabled for Radios which are offloaded
* to NSS
*/
if (!wlan_cfg_get_dp_pdev_nss_enabled(pdev->wlan_cfg_ctx))
*hash_based = wlan_cfg_is_rx_hash_enabled(soc->wlan_cfg_ctx);
/*
* Below line of code will ensure the proper reo_dest ring is chosen
* for cases where toeplitz hash cannot be generated (ex: non TCP/UDP)
*/
*reo_dest = pdev->reo_dest;
}
#ifdef IPA_OFFLOAD
/**
* dp_is_vdev_subtype_p2p() - Check if the subtype for vdev is P2P
* @vdev: Virtual device
*
* Return: true if the vdev is of subtype P2P
* false if the vdev is of any other subtype
*/
static inline bool dp_is_vdev_subtype_p2p(struct dp_vdev *vdev)
{
if (vdev->subtype == wlan_op_subtype_p2p_device ||
vdev->subtype == wlan_op_subtype_p2p_cli ||
vdev->subtype == wlan_op_subtype_p2p_go)
return true;
return false;
}
/*
* dp_peer_setup_get_reo_hash() - get reo dest ring and hash values for a peer
* @vdev: Datapath VDEV handle
* @reo_dest: pointer to default reo_dest ring for vdev to be populated
* @hash_based: pointer to hash value (enabled/disabled) to be populated
*
* If IPA is enabled in ini, for SAP mode, disable hash based
* steering, use default reo_dst ring for RX. Use config values for other modes.
* Return: None
*/
static void dp_peer_setup_get_reo_hash(struct dp_vdev *vdev,
enum cdp_host_reo_dest_ring *reo_dest,
bool *hash_based)
{
struct dp_soc *soc;
struct dp_pdev *pdev;
pdev = vdev->pdev;
soc = pdev->soc;
dp_vdev_get_default_reo_hash(vdev, reo_dest, hash_based);
/* For P2P-GO interfaces we do not need to change the REO
* configuration even if IPA config is enabled
*/
if (dp_is_vdev_subtype_p2p(vdev))
return;
/*
* If IPA is enabled, disable hash-based flow steering and set
* reo_dest_ring_4 as the REO ring to receive packets on.
* IPA is configured to reap reo_dest_ring_4.
*
* Note - REO DST indexes are from 0 - 3, while cdp_host_reo_dest_ring
* value enum value is from 1 - 4.
* Hence, *reo_dest = IPA_REO_DEST_RING_IDX + 1
*/
if (wlan_cfg_is_ipa_enabled(soc->wlan_cfg_ctx)) {
if (vdev->opmode == wlan_op_mode_ap) {
*reo_dest = IPA_REO_DEST_RING_IDX + 1;
*hash_based = 0;
} else if (vdev->opmode == wlan_op_mode_sta &&
dp_ipa_is_mdm_platform()) {
*reo_dest = IPA_REO_DEST_RING_IDX + 1;
}
}
}
#else
/*
* dp_peer_setup_get_reo_hash() - get reo dest ring and hash values for a peer
* @vdev: Datapath VDEV handle
* @reo_dest: pointer to default reo_dest ring for vdev to be populated
* @hash_based: pointer to hash value (enabled/disabled) to be populated
*
* Use system config values for hash based steering.
* Return: None
*/
static void dp_peer_setup_get_reo_hash(struct dp_vdev *vdev,
enum cdp_host_reo_dest_ring *reo_dest,
bool *hash_based)
{
dp_vdev_get_default_reo_hash(vdev, reo_dest, hash_based);
}
#endif /* IPA_OFFLOAD */
/*
* dp_peer_setup_wifi3() - initialize the peer
* @vdev_hdl: virtual device object
* @peer: Peer object
*
* Return: void
*/
static void dp_peer_setup_wifi3(struct cdp_vdev *vdev_hdl, void *peer_hdl)
{
struct dp_peer *peer = (struct dp_peer *)peer_hdl;
struct dp_vdev *vdev = (struct dp_vdev *)vdev_hdl;
struct dp_pdev *pdev;
struct dp_soc *soc;
bool hash_based = 0;
enum cdp_host_reo_dest_ring reo_dest;
/* preconditions */
qdf_assert(vdev);
qdf_assert(peer);
pdev = vdev->pdev;
soc = pdev->soc;
dp_peer_setup_get_reo_hash(vdev, &reo_dest, &hash_based);
dp_info("pdev: %d vdev :%d opmode:%u hash-based-steering:%d default-reo_dest:%u",
pdev->pdev_id, vdev->vdev_id,
vdev->opmode, hash_based, reo_dest);
/*
* There are corner cases where the AD1 = AD2 = "VAPs address"
* i.e both the devices have same MAC address. In these
* cases we want such pkts to be processed in NULL Q handler
* which is REO2TCL ring. for this reason we should
* not setup reo_queues and default route for bss_peer.
*/
if (peer->bss_peer && vdev->opmode == wlan_op_mode_ap)
return;
if (soc->cdp_soc.ol_ops->peer_set_default_routing) {
/* TODO: Check the destination ring number to be passed to FW */
soc->cdp_soc.ol_ops->peer_set_default_routing(
pdev->ctrl_pdev, peer->mac_addr.raw,
peer->vdev->vdev_id, hash_based, reo_dest);
}
qdf_atomic_set(&peer->is_default_route_set, 1);
dp_peer_rx_init(pdev, peer);
dp_peer_tx_init(pdev, peer);
return;
}
/*
* dp_cp_peer_del_resp_handler - Handle the peer delete response
* @soc_hdl: Datapath SOC handle
* @vdev_hdl: virtual device object
* @mac_addr: Mac address of the peer
*
* Return: void
*/
static void dp_cp_peer_del_resp_handler(struct cdp_soc_t *soc_hdl,
struct cdp_vdev *vdev_hdl,
uint8_t *mac_addr)
{
struct dp_soc *soc = (struct dp_soc *)soc_hdl;
struct dp_ast_entry *ast_entry = NULL;
struct dp_vdev *vdev = (struct dp_vdev *)vdev_hdl;
txrx_ast_free_cb cb = NULL;
void *cookie;
qdf_spin_lock_bh(&soc->ast_lock);
if (soc->ast_override_support)
ast_entry =
dp_peer_ast_hash_find_by_pdevid(soc, mac_addr,
vdev->pdev->pdev_id);
else
ast_entry = dp_peer_ast_hash_find_soc(soc, mac_addr);
/* in case of qwrap we have multiple BSS peers
* with same mac address
*
* AST entry for this mac address will be created
* only for one peer hence it will be NULL here
*/
if (!ast_entry || ast_entry->peer || !ast_entry->delete_in_progress) {
qdf_spin_unlock_bh(&soc->ast_lock);
return;
}
if (ast_entry->is_mapped)
soc->ast_table[ast_entry->ast_idx] = NULL;
DP_STATS_INC(soc, ast.deleted, 1);
dp_peer_ast_hash_remove(soc, ast_entry);
cb = ast_entry->callback;
cookie = ast_entry->cookie;
ast_entry->callback = NULL;
ast_entry->cookie = NULL;
soc->num_ast_entries--;
qdf_spin_unlock_bh(&soc->ast_lock);
if (cb) {
cb(soc->ctrl_psoc,
soc,
cookie,
CDP_TXRX_AST_DELETED);
}
qdf_mem_free(ast_entry);
}
/*
* dp_set_vdev_tx_encap_type() - set the encap type of the vdev
* @vdev_handle: virtual device object
* @htt_pkt_type: type of pkt
*
* Return: void
*/
static void dp_set_vdev_tx_encap_type(struct cdp_vdev *vdev_handle,
enum htt_cmn_pkt_type val)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
vdev->tx_encap_type = val;
}
/*
* dp_set_vdev_rx_decap_type() - set the decap type of the vdev
* @vdev_handle: virtual device object
* @htt_pkt_type: type of pkt
*
* Return: void
*/
static void dp_set_vdev_rx_decap_type(struct cdp_vdev *vdev_handle,
enum htt_cmn_pkt_type val)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
vdev->rx_decap_type = val;
}
/*
* dp_set_ba_aging_timeout() - set ba aging timeout per AC
* @txrx_soc: cdp soc handle
* @ac: Access category
* @value: timeout value in millisec
*
* Return: void
*/
static void dp_set_ba_aging_timeout(struct cdp_soc_t *txrx_soc,
uint8_t ac, uint32_t value)
{
struct dp_soc *soc = (struct dp_soc *)txrx_soc;
hal_set_ba_aging_timeout(soc->hal_soc, ac, value);
}
/*
* dp_get_ba_aging_timeout() - get ba aging timeout per AC
* @txrx_soc: cdp soc handle
* @ac: access category
* @value: timeout value in millisec
*
* Return: void
*/
static void dp_get_ba_aging_timeout(struct cdp_soc_t *txrx_soc,
uint8_t ac, uint32_t *value)
{
struct dp_soc *soc = (struct dp_soc *)txrx_soc;
hal_get_ba_aging_timeout(soc->hal_soc, ac, value);
}
/*
* dp_set_pdev_reo_dest() - set the reo destination ring for this pdev
* @pdev_handle: physical device object
* @val: reo destination ring index (1 - 4)
*
* Return: void
*/
static void dp_set_pdev_reo_dest(struct cdp_pdev *pdev_handle,
enum cdp_host_reo_dest_ring val)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
if (pdev)
pdev->reo_dest = val;
}
/*
* dp_get_pdev_reo_dest() - get the reo destination for this pdev
* @pdev_handle: physical device object
*
* Return: reo destination ring index
*/
static enum cdp_host_reo_dest_ring
dp_get_pdev_reo_dest(struct cdp_pdev *pdev_handle)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
if (pdev)
return pdev->reo_dest;
else
return cdp_host_reo_dest_ring_unknown;
}
/*
* dp_set_filter_neighbour_peers() - set filter neighbour peers for smart mesh
* @pdev_handle: device object
* @val: value to be set
*
* Return: void
*/
static int dp_set_filter_neighbour_peers(struct cdp_pdev *pdev_handle,
uint32_t val)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
/* Enable/Disable smart mesh filtering. This flag will be checked
* during rx processing to check if packets are from NAC clients.
*/
pdev->filter_neighbour_peers = val;
return 0;
}
/*
* dp_update_filter_neighbour_peers() - set neighbour peers(nac clients)
* address for smart mesh filtering
* @vdev_handle: virtual device object
* @cmd: Add/Del command
* @macaddr: nac client mac address
*
* Return: void
*/
static int dp_update_filter_neighbour_peers(struct cdp_vdev *vdev_handle,
uint32_t cmd, uint8_t *macaddr)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
struct dp_pdev *pdev = vdev->pdev;
struct dp_neighbour_peer *peer = NULL;
if (!macaddr)
goto fail0;
/* Store address of NAC (neighbour peer) which will be checked
* against TA of received packets.
*/
if (cmd == DP_NAC_PARAM_ADD) {
peer = (struct dp_neighbour_peer *) qdf_mem_malloc(
sizeof(*peer));
if (!peer) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("DP neighbour peer node memory allocation failed"));
goto fail0;
}
qdf_mem_copy(&peer->neighbour_peers_macaddr.raw[0],
macaddr, QDF_MAC_ADDR_SIZE);
peer->vdev = vdev;
qdf_spin_lock_bh(&pdev->neighbour_peer_mutex);
/* add this neighbour peer into the list */
TAILQ_INSERT_TAIL(&pdev->neighbour_peers_list, peer,
neighbour_peer_list_elem);
qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
/* first neighbour */
if (!pdev->neighbour_peers_added) {
pdev->neighbour_peers_added = true;
dp_ppdu_ring_cfg(pdev);
}
return 1;
} else if (cmd == DP_NAC_PARAM_DEL) {
qdf_spin_lock_bh(&pdev->neighbour_peer_mutex);
TAILQ_FOREACH(peer, &pdev->neighbour_peers_list,
neighbour_peer_list_elem) {
if (!qdf_mem_cmp(&peer->neighbour_peers_macaddr.raw[0],
macaddr, QDF_MAC_ADDR_SIZE)) {
/* delete this peer from the list */
TAILQ_REMOVE(&pdev->neighbour_peers_list,
peer, neighbour_peer_list_elem);
qdf_mem_free(peer);
break;
}
}
/* last neighbour deleted */
if (TAILQ_EMPTY(&pdev->neighbour_peers_list)) {
pdev->neighbour_peers_added = false;
dp_ppdu_ring_cfg(pdev);
}
qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
if (!pdev->mcopy_mode && !pdev->neighbour_peers_added &&
!pdev->enhanced_stats_en)
dp_ppdu_ring_reset(pdev);
return 1;
}
fail0:
return 0;
}
/*
* dp_get_sec_type() - Get the security type
* @peer: Datapath peer handle
* @sec_idx: Security id (mcast, ucast)
*
* return sec_type: Security type
*/
static int dp_get_sec_type(struct cdp_peer *peer, uint8_t sec_idx)
{
struct dp_peer *dpeer = (struct dp_peer *)peer;
return dpeer->security[sec_idx].sec_type;
}
/*
* dp_peer_authorize() - authorize txrx peer
* @peer_handle: Datapath peer handle
* @authorize
*
*/
static void dp_peer_authorize(struct cdp_peer *peer_handle, uint32_t authorize)
{
struct dp_peer *peer = (struct dp_peer *)peer_handle;
struct dp_soc *soc;
if (peer) {
soc = peer->vdev->pdev->soc;
qdf_spin_lock_bh(&soc->peer_ref_mutex);
peer->authorize = authorize ? 1 : 0;
qdf_spin_unlock_bh(&soc->peer_ref_mutex);
}
}
/*
* dp_vdev_reset_peer() - Update peer related member in vdev
as peer is going to free
* @vdev: datapath vdev handle
* @peer: dataptah peer handle
*
* Return: None
*/
static void dp_vdev_reset_peer(struct dp_vdev *vdev,
struct dp_peer *peer)
{
struct dp_peer *bss_peer = NULL;
if (!vdev) {
dp_err("vdev is NULL");
} else {
if (vdev->vap_bss_peer == peer) {
vdev->vap_bss_peer = NULL;
qdf_mem_zero(vdev->vap_bss_peer_mac_addr,
QDF_MAC_ADDR_SIZE);
}
if (vdev && vdev->vap_bss_peer) {
bss_peer = vdev->vap_bss_peer;
DP_UPDATE_STATS(vdev, peer);
}
}
}
/*
* dp_peer_release_mem() - free dp peer handle memory
* @soc: dataptah soc handle
* @pdev: datapath pdev handle
* @peer: datapath peer handle
* @vdev_opmode: Vdev operation mode
* @vdev_mac_addr: Vdev Mac address
*
* Return: None
*/
static void dp_peer_release_mem(struct dp_soc *soc,
struct dp_pdev *pdev,
struct dp_peer *peer,
enum wlan_op_mode vdev_opmode,
uint8_t *vdev_mac_addr)
{
if (soc->cdp_soc.ol_ops->peer_unref_delete)
soc->cdp_soc.ol_ops->peer_unref_delete(
pdev->ctrl_pdev,
peer->mac_addr.raw, vdev_mac_addr,
vdev_opmode, peer->ctrl_peer,
NULL);
/*
* Peer AST list hast to be empty here
*/
DP_AST_ASSERT(TAILQ_EMPTY(&peer->ast_entry_list));
qdf_mem_free(peer);
}
/**
* dp_delete_pending_vdev() - check and process vdev delete
* @pdev: DP specific pdev pointer
* @vdev: DP specific vdev pointer
* @vdev_id: vdev id corresponding to vdev
*
* This API does following:
* 1) It releases tx flow pools buffers as vdev is
* going down and no peers are associated.
* 2) It also detaches vdev before cleaning vdev (struct dp_vdev) memory
*/
static void dp_delete_pending_vdev(struct dp_pdev *pdev, struct dp_vdev *vdev,
uint8_t vdev_id)
{
ol_txrx_vdev_delete_cb vdev_delete_cb = NULL;
void *vdev_delete_context = NULL;
vdev_delete_cb = vdev->delete.callback;
vdev_delete_context = vdev->delete.context;
dp_info("deleting vdev object %pK (%pM)- its last peer is done",
vdev, vdev->mac_addr.raw);
/* all peers are gone, go ahead and delete it */
dp_tx_flow_pool_unmap_handler(pdev, vdev_id,
FLOW_TYPE_VDEV, vdev_id);
dp_tx_vdev_detach(vdev);
if (wlan_op_mode_monitor == vdev->opmode) {
pdev->monitor_vdev = NULL;
} else {
qdf_spin_lock_bh(&pdev->vdev_list_lock);
TAILQ_REMOVE(&pdev->vdev_list, vdev, vdev_list_elem);
qdf_spin_unlock_bh(&pdev->vdev_list_lock);
}
dp_info("deleting vdev object %pK (%pM)",
vdev, vdev->mac_addr.raw);
qdf_mem_free(vdev);
vdev = NULL;
if (vdev_delete_cb)
vdev_delete_cb(vdev_delete_context);
}
/*
* dp_peer_unref_delete() - unref and delete peer
* @peer_handle: Datapath peer handle
*
*/
void dp_peer_unref_delete(void *peer_handle)
{
struct dp_peer *peer = (struct dp_peer *)peer_handle;
struct dp_vdev *vdev = peer->vdev;
struct dp_pdev *pdev = vdev->pdev;
struct dp_soc *soc = pdev->soc;
struct dp_peer *tmppeer;
int found = 0;
uint16_t peer_id;
uint16_t vdev_id;
bool vdev_delete = false;
struct cdp_peer_cookie peer_cookie;
enum wlan_op_mode vdev_opmode;
uint8_t vdev_mac_addr[QDF_MAC_ADDR_SIZE];
/*
* Hold the lock all the way from checking if the peer ref count
* is zero until the peer references are removed from the hash
* table and vdev list (if the peer ref count is zero).
* This protects against a new HL tx operation starting to use the
* peer object just after this function concludes it's done being used.
* Furthermore, the lock needs to be held while checking whether the
* vdev's list of peers is empty, to make sure that list is not modified
* concurrently with the empty check.
*/
qdf_spin_lock_bh(&soc->peer_ref_mutex);
if (qdf_atomic_dec_and_test(&peer->ref_cnt)) {
peer_id = peer->peer_ids[0];
vdev_id = vdev->vdev_id;
/*
* Make sure that the reference to the peer in
* peer object map is removed
*/
if (peer_id != HTT_INVALID_PEER)
soc->peer_id_to_obj_map[peer_id] = NULL;
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
"Deleting peer %pK (%pM)", peer, peer->mac_addr.raw);
/* remove the reference to the peer from the hash table */
dp_peer_find_hash_remove(soc, peer);
qdf_spin_lock_bh(&soc->ast_lock);
if (peer->self_ast_entry) {
dp_peer_del_ast(soc, peer->self_ast_entry);
peer->self_ast_entry = NULL;
}
qdf_spin_unlock_bh(&soc->ast_lock);
TAILQ_FOREACH(tmppeer, &peer->vdev->peer_list, peer_list_elem) {
if (tmppeer == peer) {
found = 1;
break;
}
}
if (found) {
TAILQ_REMOVE(&peer->vdev->peer_list, peer,
peer_list_elem);
} else {
/*Ignoring the remove operation as peer not found*/
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
"peer:%pK not found in vdev:%pK peerlist:%pK",
peer, vdev, &peer->vdev->peer_list);
}
/* send peer destroy event to upper layer */
qdf_mem_copy(peer_cookie.mac_addr, peer->mac_addr.raw,
QDF_MAC_ADDR_SIZE);
peer_cookie.ctx = NULL;
peer_cookie.ctx = (void *)peer->wlanstats_ctx;
#if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
dp_wdi_event_handler(WDI_EVENT_PEER_DESTROY,
pdev->soc,
(void *)&peer_cookie,
peer->peer_ids[0],
WDI_NO_VAL,
pdev->pdev_id);
#endif
peer->wlanstats_ctx = NULL;
/* cleanup the peer data */
dp_peer_cleanup(vdev, peer, false);
/* reset this peer related info in vdev */
dp_vdev_reset_peer(vdev, peer);
/* save vdev related member in case vdev freed */
vdev_opmode = vdev->opmode;
qdf_mem_copy(vdev_mac_addr, vdev->mac_addr.raw,
QDF_MAC_ADDR_SIZE);
/*
* check whether the parent vdev is pending for deleting
* and no peers left.
*/
if (vdev->delete.pending && TAILQ_EMPTY(&vdev->peer_list))
vdev_delete = true;
/*
* Now that there are no references to the peer, we can
* release the peer reference lock.
*/
qdf_spin_unlock_bh(&soc->peer_ref_mutex);
/*
* Invoke soc.ol_ops->peer_unref_delete out of
* peer_ref_mutex in case deadlock issue.
*/
dp_peer_release_mem(soc, pdev, peer,
vdev_opmode,
vdev_mac_addr);
/*
* Delete the vdev if it's waiting all peer deleted
* and it's chance now.
*/
if (vdev_delete)
dp_delete_pending_vdev(pdev, vdev, vdev_id);
} else {
qdf_spin_unlock_bh(&soc->peer_ref_mutex);
}
}
#ifdef PEER_CACHE_RX_PKTS
static inline void dp_peer_rx_bufq_resources_deinit(struct dp_peer *peer)
{
qdf_list_destroy(&peer->bufq_info.cached_bufq);
qdf_spinlock_destroy(&peer->bufq_info.bufq_lock);
}
#else
static inline void dp_peer_rx_bufq_resources_deinit(struct dp_peer *peer)
{
}
#endif
/*
* dp_peer_detach_wifi3() – Detach txrx peer
* @peer_handle: Datapath peer handle
* @bitmap: bitmap indicating special handling of request.
*
*/
static void dp_peer_delete_wifi3(void *peer_handle, uint32_t bitmap)
{
struct dp_peer *peer = (struct dp_peer *)peer_handle;
struct dp_soc *soc = peer->vdev->pdev->soc;
/* redirect the peer's rx delivery function to point to a
* discard func
*/
peer->rx_opt_proc = dp_rx_discard;
/* Do not make ctrl_peer to NULL for connected sta peers.
* We need ctrl_peer to release the reference during dp
* peer free. This reference was held for
* obj_mgr peer during the creation of dp peer.
*/
if (!(peer->vdev && (peer->vdev->opmode != wlan_op_mode_sta) &&
!peer->bss_peer))
peer->ctrl_peer = NULL;
if (!peer->valid) {
dp_err("Invalid peer: %pM", peer->mac_addr.raw);
return;
}
peer->valid = 0;
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO_HIGH,
FL("peer %pK (%pM)"), peer, peer->mac_addr.raw);
dp_local_peer_id_free(peer->vdev->pdev, peer);
/* Drop all rx packets before deleting peer */
dp_clear_peer_internal(soc, peer);
dp_peer_rx_bufq_resources_deinit(peer);
qdf_spinlock_destroy(&peer->peer_info_lock);
/*
* Remove the reference added during peer_attach.
* The peer will still be left allocated until the
* PEER_UNMAP message arrives to remove the other
* reference, added by the PEER_MAP message.
*/
dp_peer_unref_delete(peer_handle);
}
/*
* dp_get_vdev_mac_addr_wifi3() – Detach txrx peer
* @peer_handle: Datapath peer handle
*
*/
static uint8 *dp_get_vdev_mac_addr_wifi3(struct cdp_vdev *pvdev)
{
struct dp_vdev *vdev = (struct dp_vdev *)pvdev;
return vdev->mac_addr.raw;
}
/*
* dp_vdev_set_wds() - Enable per packet stats
* @vdev_handle: DP VDEV handle
* @val: value
*
* Return: none
*/
static int dp_vdev_set_wds(void *vdev_handle, uint32_t val)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
vdev->wds_enabled = val;
return 0;
}
/*
* dp_get_vdev_from_vdev_id_wifi3() – Detach txrx peer
* @peer_handle: Datapath peer handle
*
*/
static struct cdp_vdev *dp_get_vdev_from_vdev_id_wifi3(struct cdp_pdev *dev,
uint8_t vdev_id)
{
struct dp_pdev *pdev = (struct dp_pdev *)dev;
struct dp_vdev *vdev = NULL;
if (qdf_unlikely(!pdev))
return NULL;
qdf_spin_lock_bh(&pdev->vdev_list_lock);
TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
if (vdev->delete.pending)
continue;
if (vdev->vdev_id == vdev_id)
break;
}
qdf_spin_unlock_bh(&pdev->vdev_list_lock);
return (struct cdp_vdev *)vdev;
}
/*
* dp_get_mon_vdev_from_pdev_wifi3() - Get vdev handle of monitor mode
* @dev: PDEV handle
*
* Return: VDEV handle of monitor mode
*/
static struct cdp_vdev *dp_get_mon_vdev_from_pdev_wifi3(struct cdp_pdev *dev)
{
struct dp_pdev *pdev = (struct dp_pdev *)dev;
if (qdf_unlikely(!pdev))
return NULL;
return (struct cdp_vdev *)pdev->monitor_vdev;
}
static int dp_get_opmode(struct cdp_vdev *vdev_handle)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
return vdev->opmode;
}
static
void dp_get_os_rx_handles_from_vdev_wifi3(struct cdp_vdev *pvdev,
ol_txrx_rx_fp *stack_fn_p,
ol_osif_vdev_handle *osif_vdev_p)
{
struct dp_vdev *vdev = dp_get_dp_vdev_from_cdp_vdev(pvdev);
qdf_assert(vdev);
*stack_fn_p = vdev->osif_rx_stack;
*osif_vdev_p = vdev->osif_vdev;
}
static struct cdp_cfg *dp_get_ctrl_pdev_from_vdev_wifi3(struct cdp_vdev *pvdev)
{
struct dp_vdev *vdev = (struct dp_vdev *)pvdev;
struct dp_pdev *pdev = vdev->pdev;
return (struct cdp_cfg *)pdev->wlan_cfg_ctx;
}
/**
* dp_monitor_mode_ring_config() - Send the tlv config to fw for monitor buffer
* ring based on target
* @soc: soc handle
* @mac_for_pdev: pdev_id
* @pdev: physical device handle
* @ring_num: mac id
* @htt_tlv_filter: tlv filter
*
* Return: zero on success, non-zero on failure
*/
static inline
QDF_STATUS dp_monitor_mode_ring_config(struct dp_soc *soc, uint8_t mac_for_pdev,
struct dp_pdev *pdev, uint8_t ring_num,
struct htt_rx_ring_tlv_filter htt_tlv_filter)
{
QDF_STATUS status;
if (soc->wlan_cfg_ctx->rxdma1_enable)
status = htt_h2t_rx_ring_cfg(soc->htt_handle, mac_for_pdev,
pdev->rxdma_mon_buf_ring[ring_num]
.hal_srng,
RXDMA_MONITOR_BUF, RX_BUFFER_SIZE,
&htt_tlv_filter);
else
status = htt_h2t_rx_ring_cfg(soc->htt_handle, mac_for_pdev,
pdev->rx_mac_buf_ring[ring_num]
.hal_srng,
RXDMA_BUF, RX_BUFFER_SIZE,
&htt_tlv_filter);
return status;
}
/**
* dp_reset_monitor_mode() - Disable monitor mode
* @pdev_handle: Datapath PDEV handle
*
* Return: QDF_STATUS
*/
QDF_STATUS dp_reset_monitor_mode(struct cdp_pdev *pdev_handle)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
struct htt_rx_ring_tlv_filter htt_tlv_filter;
struct dp_soc *soc = pdev->soc;
uint8_t pdev_id;
int mac_id;
QDF_STATUS status = QDF_STATUS_SUCCESS;
pdev_id = pdev->pdev_id;
soc = pdev->soc;
qdf_spin_lock_bh(&pdev->mon_lock);
qdf_mem_zero(&(htt_tlv_filter), sizeof(htt_tlv_filter));
for (mac_id = 0; mac_id < NUM_RXDMA_RINGS_PER_PDEV; mac_id++) {
int mac_for_pdev = dp_get_mac_id_for_pdev(mac_id, pdev_id);
status = dp_monitor_mode_ring_config(soc, mac_for_pdev,
pdev, mac_id,
htt_tlv_filter);
if (status != QDF_STATUS_SUCCESS) {
dp_err("Failed to send tlv filter for monitor mode rings");
qdf_spin_unlock_bh(&pdev->mon_lock);
return status;
}
htt_h2t_rx_ring_cfg(soc->htt_handle, mac_for_pdev,
pdev->rxdma_mon_status_ring[mac_id].hal_srng,
RXDMA_MONITOR_STATUS, RX_BUFFER_SIZE,
&htt_tlv_filter);
}
pdev->monitor_vdev = NULL;
pdev->mcopy_mode = 0;
pdev->monitor_configured = false;
qdf_spin_unlock_bh(&pdev->mon_lock);
return QDF_STATUS_SUCCESS;
}
/**
* dp_set_nac() - set peer_nac
* @peer_handle: Datapath PEER handle
*
* Return: void
*/
static void dp_set_nac(struct cdp_peer *peer_handle)
{
struct dp_peer *peer = (struct dp_peer *)peer_handle;
peer->nac = 1;
}
/**
* dp_get_tx_pending() - read pending tx
* @pdev_handle: Datapath PDEV handle
*
* Return: outstanding tx
*/
static int dp_get_tx_pending(struct cdp_pdev *pdev_handle)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
return qdf_atomic_read(&pdev->num_tx_outstanding);
}
/**
* dp_get_peer_mac_from_peer_id() - get peer mac
* @pdev_handle: Datapath PDEV handle
* @peer_id: Peer ID
* @peer_mac: MAC addr of PEER
*
* Return: void
*/
static void dp_get_peer_mac_from_peer_id(struct cdp_pdev *pdev_handle,
uint32_t peer_id, uint8_t *peer_mac)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
struct dp_peer *peer;
if (pdev && peer_mac) {
peer = dp_peer_find_by_id(pdev->soc, (uint16_t)peer_id);
if (peer) {
qdf_mem_copy(peer_mac, peer->mac_addr.raw,
QDF_MAC_ADDR_SIZE);
dp_peer_unref_del_find_by_id(peer);
}
}
}
/**
* dp_pdev_configure_monitor_rings() - configure monitor rings
* @vdev_handle: Datapath VDEV handle
*
* Return: QDF_STATUS
*/
QDF_STATUS dp_pdev_configure_monitor_rings(struct dp_pdev *pdev)
{
struct htt_rx_ring_tlv_filter htt_tlv_filter;
struct dp_soc *soc;
uint8_t pdev_id;
int mac_id;
QDF_STATUS status = QDF_STATUS_SUCCESS;
pdev_id = pdev->pdev_id;
soc = pdev->soc;
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_HIGH,
"MODE[%x] FP[%02x|%02x|%02x] MO[%02x|%02x|%02x]",
pdev->mon_filter_mode, pdev->fp_mgmt_filter,
pdev->fp_ctrl_filter, pdev->fp_data_filter,
pdev->mo_mgmt_filter, pdev->mo_ctrl_filter,
pdev->mo_data_filter);
qdf_mem_zero(&(htt_tlv_filter), sizeof(htt_tlv_filter));
htt_tlv_filter.mpdu_start = 1;
htt_tlv_filter.msdu_start = 1;
htt_tlv_filter.packet = 1;
htt_tlv_filter.msdu_end = 1;
htt_tlv_filter.mpdu_end = 1;
htt_tlv_filter.packet_header = 1;
htt_tlv_filter.attention = 1;
htt_tlv_filter.ppdu_start = 0;
htt_tlv_filter.ppdu_end = 0;
htt_tlv_filter.ppdu_end_user_stats = 0;
htt_tlv_filter.ppdu_end_user_stats_ext = 0;
htt_tlv_filter.ppdu_end_status_done = 0;
htt_tlv_filter.header_per_msdu = 1;
htt_tlv_filter.enable_fp =
(pdev->mon_filter_mode & MON_FILTER_PASS) ? 1 : 0;
htt_tlv_filter.enable_md = 0;
htt_tlv_filter.enable_mo =
(pdev->mon_filter_mode & MON_FILTER_OTHER) ? 1 : 0;
htt_tlv_filter.fp_mgmt_filter = pdev->fp_mgmt_filter;
htt_tlv_filter.fp_ctrl_filter = pdev->fp_ctrl_filter;
if (pdev->mcopy_mode) {
htt_tlv_filter.fp_data_filter = 0;
htt_tlv_filter.mo_data_filter = 0;
} else {
htt_tlv_filter.fp_data_filter = pdev->fp_data_filter;
htt_tlv_filter.mo_data_filter = pdev->mo_data_filter;
}
htt_tlv_filter.mo_mgmt_filter = pdev->mo_mgmt_filter;
htt_tlv_filter.mo_ctrl_filter = pdev->mo_ctrl_filter;
htt_tlv_filter.offset_valid = false;
if ((pdev->rx_enh_capture_mode == CDP_RX_ENH_CAPTURE_MPDU) ||
(pdev->rx_enh_capture_mode == CDP_RX_ENH_CAPTURE_MPDU_MSDU)) {
htt_tlv_filter.fp_mgmt_filter = 0;
htt_tlv_filter.fp_ctrl_filter = 0;
htt_tlv_filter.fp_data_filter = 0;
htt_tlv_filter.mo_mgmt_filter = 0;
htt_tlv_filter.mo_ctrl_filter = 0;
htt_tlv_filter.mo_data_filter = 0;
}
for (mac_id = 0; mac_id < NUM_RXDMA_RINGS_PER_PDEV; mac_id++) {
int mac_for_pdev = dp_get_mac_id_for_pdev(mac_id, pdev_id);
status = dp_monitor_mode_ring_config(soc, mac_for_pdev,
pdev, mac_id,
htt_tlv_filter);
if (status != QDF_STATUS_SUCCESS) {
dp_err("Failed to send tlv filter for monitor mode rings");
return status;
}
}
qdf_mem_zero(&(htt_tlv_filter), sizeof(htt_tlv_filter));
htt_tlv_filter.mpdu_start = 1;
htt_tlv_filter.msdu_start = 0;
htt_tlv_filter.packet = 0;
htt_tlv_filter.msdu_end = 0;
htt_tlv_filter.mpdu_end = 0;
if ((pdev->rx_enh_capture_mode == CDP_RX_ENH_CAPTURE_MPDU) ||
(pdev->rx_enh_capture_mode == CDP_RX_ENH_CAPTURE_MPDU_MSDU)) {
htt_tlv_filter.mpdu_end = 1;
}
htt_tlv_filter.attention = 0;
htt_tlv_filter.ppdu_start = 1;
htt_tlv_filter.ppdu_end = 1;
htt_tlv_filter.ppdu_end_user_stats = 1;
htt_tlv_filter.ppdu_end_user_stats_ext = 1;
htt_tlv_filter.ppdu_end_status_done = 1;
htt_tlv_filter.enable_fp = 1;
htt_tlv_filter.enable_md = 0;
htt_tlv_filter.enable_mo = 1;
if (pdev->mcopy_mode ||
(pdev->rx_enh_capture_mode != CDP_RX_ENH_CAPTURE_DISABLED)) {
htt_tlv_filter.packet_header = 1;
if (pdev->rx_enh_capture_mode == CDP_RX_ENH_CAPTURE_MPDU) {
htt_tlv_filter.header_per_msdu = 0;
htt_tlv_filter.enable_mo = 0;
} else if (pdev->rx_enh_capture_mode ==
CDP_RX_ENH_CAPTURE_MPDU_MSDU) {
htt_tlv_filter.header_per_msdu = 1;
htt_tlv_filter.enable_mo = 0;
if (pdev->is_rx_protocol_tagging_enabled ||
pdev->is_rx_enh_capture_trailer_enabled)
htt_tlv_filter.msdu_end = 1;
}
}
htt_tlv_filter.fp_mgmt_filter = FILTER_MGMT_ALL;
htt_tlv_filter.fp_ctrl_filter = FILTER_CTRL_ALL;
htt_tlv_filter.fp_data_filter = FILTER_DATA_ALL;
htt_tlv_filter.mo_mgmt_filter = FILTER_MGMT_ALL;
htt_tlv_filter.mo_ctrl_filter = FILTER_CTRL_ALL;
htt_tlv_filter.mo_data_filter = FILTER_DATA_ALL;
htt_tlv_filter.offset_valid = false;
for (mac_id = 0; mac_id < NUM_RXDMA_RINGS_PER_PDEV; mac_id++) {
int mac_for_pdev = dp_get_mac_id_for_pdev(mac_id,
pdev->pdev_id);
/*
* If two back to back HTT msg sending happened in
* short time, the second HTT msg source SRNG HP
* writing has chance to fail, this has been confirmed
* by HST HW.
* for monitor mode, here is the last HTT msg for sending.
* if the 2nd HTT msg for monitor status ring sending failed,
* HW won't provide anything into 2nd monitor status ring.
* as a WAR, add some delay before 2nd HTT msg start sending,
* > 2us is required per HST HW, delay 100 us for safe.
*/
if (mac_id)
qdf_udelay(100);
htt_h2t_rx_ring_cfg(soc->htt_handle, mac_for_pdev,
pdev->rxdma_mon_status_ring[mac_id].hal_srng,
RXDMA_MONITOR_STATUS, RX_BUFFER_SIZE, &htt_tlv_filter);
}
return status;
}
/**
* dp_vdev_set_monitor_mode() - Set DP VDEV to monitor mode
* @vdev_handle: Datapath VDEV handle
* @smart_monitor: Flag to denote if its smart monitor mode
*
* Return: 0 on success, not 0 on failure
*/
static QDF_STATUS dp_vdev_set_monitor_mode(struct cdp_vdev *vdev_handle,
uint8_t special_monitor)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
struct dp_pdev *pdev;
qdf_assert(vdev);
pdev = vdev->pdev;
pdev->monitor_vdev = vdev;
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_WARN,
"pdev=%pK, pdev_id=%d, soc=%pK vdev=%pK\n",
pdev, pdev->pdev_id, pdev->soc, vdev);
/*
* do not configure monitor buf ring and filter for smart and
* lite monitor
* for smart monitor filters are added along with first NAC
* for lite monitor required configuration done through
* dp_set_pdev_param
*/
if (special_monitor)
return QDF_STATUS_SUCCESS;
/*Check if current pdev's monitor_vdev exists */
if (pdev->monitor_configured) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"monitor vap already created vdev=%pK\n", vdev);
qdf_assert(vdev);
return QDF_STATUS_E_RESOURCES;
}
pdev->monitor_configured = true;
return dp_pdev_configure_monitor_rings(pdev);
}
/**
* dp_pdev_set_advance_monitor_filter() - Set DP PDEV monitor filter
* @pdev_handle: Datapath PDEV handle
* @filter_val: Flag to select Filter for monitor mode
* Return: 0 on success, not 0 on failure
*/
static QDF_STATUS
dp_pdev_set_advance_monitor_filter(struct cdp_pdev *pdev_handle,
struct cdp_monitor_filter *filter_val)
{
/* Many monitor VAPs can exists in a system but only one can be up at
* anytime
*/
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
struct dp_vdev *vdev = pdev->monitor_vdev;
struct htt_rx_ring_tlv_filter htt_tlv_filter;
struct dp_soc *soc;
uint8_t pdev_id;
int mac_id;
QDF_STATUS status = QDF_STATUS_SUCCESS;
pdev_id = pdev->pdev_id;
soc = pdev->soc;
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_WARN,
"pdev=%pK, pdev_id=%d, soc=%pK vdev=%pK",
pdev, pdev_id, soc, vdev);
/*Check if current pdev's monitor_vdev exists */
if (!pdev->monitor_vdev) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"vdev=%pK", vdev);
qdf_assert(vdev);
}
/* update filter mode, type in pdev structure */
pdev->mon_filter_mode = filter_val->mode;
pdev->fp_mgmt_filter = filter_val->fp_mgmt;
pdev->fp_ctrl_filter = filter_val->fp_ctrl;
pdev->fp_data_filter = filter_val->fp_data;
pdev->mo_mgmt_filter = filter_val->mo_mgmt;
pdev->mo_ctrl_filter = filter_val->mo_ctrl;
pdev->mo_data_filter = filter_val->mo_data;
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_INFO_HIGH,
"MODE[%x] FP[%02x|%02x|%02x] MO[%02x|%02x|%02x]",
pdev->mon_filter_mode, pdev->fp_mgmt_filter,
pdev->fp_ctrl_filter, pdev->fp_data_filter,
pdev->mo_mgmt_filter, pdev->mo_ctrl_filter,
pdev->mo_data_filter);
qdf_mem_zero(&(htt_tlv_filter), sizeof(htt_tlv_filter));
for (mac_id = 0; mac_id < NUM_RXDMA_RINGS_PER_PDEV; mac_id++) {
int mac_for_pdev = dp_get_mac_id_for_pdev(mac_id, pdev_id);
status = dp_monitor_mode_ring_config(soc, mac_for_pdev,
pdev, mac_id,
htt_tlv_filter);
if (status != QDF_STATUS_SUCCESS) {
dp_err("Failed to send tlv filter for monitor mode rings");
return status;
}
htt_h2t_rx_ring_cfg(soc->htt_handle, mac_for_pdev,
pdev->rxdma_mon_status_ring[mac_id].hal_srng,
RXDMA_MONITOR_STATUS, RX_BUFFER_SIZE, &htt_tlv_filter);
}
htt_tlv_filter.mpdu_start = 1;
htt_tlv_filter.msdu_start = 1;
htt_tlv_filter.packet = 1;
htt_tlv_filter.msdu_end = 1;
htt_tlv_filter.mpdu_end = 1;
htt_tlv_filter.packet_header = 1;
htt_tlv_filter.attention = 1;
htt_tlv_filter.ppdu_start = 0;
htt_tlv_filter.ppdu_end = 0;
htt_tlv_filter.ppdu_end_user_stats = 0;
htt_tlv_filter.ppdu_end_user_stats_ext = 0;
htt_tlv_filter.ppdu_end_status_done = 0;
htt_tlv_filter.header_per_msdu = 1;
htt_tlv_filter.enable_fp =
(pdev->mon_filter_mode & MON_FILTER_PASS) ? 1 : 0;
htt_tlv_filter.enable_md = 0;
htt_tlv_filter.enable_mo =
(pdev->mon_filter_mode & MON_FILTER_OTHER) ? 1 : 0;
htt_tlv_filter.fp_mgmt_filter = pdev->fp_mgmt_filter;
htt_tlv_filter.fp_ctrl_filter = pdev->fp_ctrl_filter;
if (pdev->mcopy_mode)
htt_tlv_filter.fp_data_filter = 0;
else
htt_tlv_filter.fp_data_filter = pdev->fp_data_filter;
htt_tlv_filter.mo_mgmt_filter = pdev->mo_mgmt_filter;
htt_tlv_filter.mo_ctrl_filter = pdev->mo_ctrl_filter;
htt_tlv_filter.mo_data_filter = pdev->mo_data_filter;
htt_tlv_filter.offset_valid = false;
for (mac_id = 0; mac_id < NUM_RXDMA_RINGS_PER_PDEV; mac_id++) {
int mac_for_pdev = dp_get_mac_id_for_pdev(mac_id, pdev_id);
status = dp_monitor_mode_ring_config(soc, mac_for_pdev,
pdev, mac_id,
htt_tlv_filter);
if (status != QDF_STATUS_SUCCESS) {
dp_err("Failed to send tlv filter for monitor mode rings");
return status;
}
}
qdf_mem_zero(&(htt_tlv_filter), sizeof(htt_tlv_filter));
htt_tlv_filter.mpdu_start = 1;
htt_tlv_filter.msdu_start = 0;
htt_tlv_filter.packet = 0;
htt_tlv_filter.msdu_end = 0;
htt_tlv_filter.mpdu_end = 0;
htt_tlv_filter.attention = 0;
htt_tlv_filter.ppdu_start = 1;
htt_tlv_filter.ppdu_end = 1;
htt_tlv_filter.ppdu_end_user_stats = 1;
htt_tlv_filter.ppdu_end_user_stats_ext = 1;
htt_tlv_filter.ppdu_end_status_done = 1;
htt_tlv_filter.enable_fp = 1;
htt_tlv_filter.enable_md = 0;
htt_tlv_filter.enable_mo = 1;
if (pdev->mcopy_mode) {
htt_tlv_filter.packet_header = 1;
}
htt_tlv_filter.fp_mgmt_filter = FILTER_MGMT_ALL;
htt_tlv_filter.fp_ctrl_filter = FILTER_CTRL_ALL;
htt_tlv_filter.fp_data_filter = FILTER_DATA_ALL;
htt_tlv_filter.mo_mgmt_filter = FILTER_MGMT_ALL;
htt_tlv_filter.mo_ctrl_filter = FILTER_CTRL_ALL;
htt_tlv_filter.mo_data_filter = FILTER_DATA_ALL;
htt_tlv_filter.offset_valid = false;
for (mac_id = 0; mac_id < NUM_RXDMA_RINGS_PER_PDEV; mac_id++) {
int mac_for_pdev = dp_get_mac_id_for_pdev(mac_id,
pdev->pdev_id);
htt_h2t_rx_ring_cfg(soc->htt_handle, mac_for_pdev,
pdev->rxdma_mon_status_ring[mac_id].hal_srng,
RXDMA_MONITOR_STATUS, RX_BUFFER_SIZE, &htt_tlv_filter);
}
return QDF_STATUS_SUCCESS;
}
/**
* dp_pdev_set_monitor_channel() - set monitor channel num in pdev
* @pdev_handle: Datapath PDEV handle
*
* Return: None
*/
static
void dp_pdev_set_monitor_channel(struct cdp_pdev *pdev_handle, int chan_num)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
pdev->mon_chan_num = chan_num;
}
/**
* dp_get_pdev_id_frm_pdev() - get pdev_id
* @pdev_handle: Datapath PDEV handle
*
* Return: pdev_id
*/
static
uint8_t dp_get_pdev_id_frm_pdev(struct cdp_pdev *pdev_handle)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
return pdev->pdev_id;
}
/**
* dp_get_delay_stats_flag() - get delay stats flag
* @pdev_handle: Datapath PDEV handle
*
* Return: 0 if flag is disabled else 1
*/
static
bool dp_get_delay_stats_flag(struct cdp_pdev *pdev_handle)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
return pdev->delay_stats_flag;
}
/**
* dp_pdev_set_chan_noise_floor() - set channel noise floor
* @pdev_handle: Datapath PDEV handle
* @chan_noise_floor: Channel Noise Floor
*
* Return: void
*/
static
void dp_pdev_set_chan_noise_floor(struct cdp_pdev *pdev_handle,
int16_t chan_noise_floor)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
pdev->chan_noise_floor = chan_noise_floor;
}
/**
* dp_vdev_get_filter_ucast_data() - get DP VDEV monitor ucast filter
* @vdev_handle: Datapath VDEV handle
* Return: true on ucast filter flag set
*/
static bool dp_vdev_get_filter_ucast_data(struct cdp_vdev *vdev_handle)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
struct dp_pdev *pdev;
pdev = vdev->pdev;
if ((pdev->fp_data_filter & FILTER_DATA_UCAST) ||
(pdev->mo_data_filter & FILTER_DATA_UCAST))
return true;
return false;
}
/**
* dp_vdev_get_filter_mcast_data() - get DP VDEV monitor mcast filter
* @vdev_handle: Datapath VDEV handle
* Return: true on mcast filter flag set
*/
static bool dp_vdev_get_filter_mcast_data(struct cdp_vdev *vdev_handle)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
struct dp_pdev *pdev;
pdev = vdev->pdev;
if ((pdev->fp_data_filter & FILTER_DATA_MCAST) ||
(pdev->mo_data_filter & FILTER_DATA_MCAST))
return true;
return false;
}
/**
* dp_vdev_get_filter_non_data() - get DP VDEV monitor non_data filter
* @vdev_handle: Datapath VDEV handle
* Return: true on non data filter flag set
*/
static bool dp_vdev_get_filter_non_data(struct cdp_vdev *vdev_handle)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
struct dp_pdev *pdev;
pdev = vdev->pdev;
if ((pdev->fp_mgmt_filter & FILTER_MGMT_ALL) ||
(pdev->mo_mgmt_filter & FILTER_MGMT_ALL)) {
if ((pdev->fp_ctrl_filter & FILTER_CTRL_ALL) ||
(pdev->mo_ctrl_filter & FILTER_CTRL_ALL)) {
return true;
}
}
return false;
}
#ifdef MESH_MODE_SUPPORT
void dp_peer_set_mesh_mode(struct cdp_vdev *vdev_hdl, uint32_t val)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_hdl;
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
FL("val %d"), val);
vdev->mesh_vdev = val;
}
/*
* dp_peer_set_mesh_rx_filter() - to set the mesh rx filter
* @vdev_hdl: virtual device object
* @val: value to be set
*
* Return: void
*/
void dp_peer_set_mesh_rx_filter(struct cdp_vdev *vdev_hdl, uint32_t val)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_hdl;
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
FL("val %d"), val);
vdev->mesh_rx_filter = val;
}
#endif
bool dp_check_pdev_exists(struct dp_soc *soc, struct dp_pdev *data)
{
uint8_t pdev_count;
for (pdev_count = 0; pdev_count < MAX_PDEV_CNT; pdev_count++) {
if (soc->pdev_list[pdev_count] &&
soc->pdev_list[pdev_count] == data)
return true;
}
return false;
}
/**
* dp_rx_bar_stats_cb(): BAR received stats callback
* @soc: SOC handle
* @cb_ctxt: Call back context
* @reo_status: Reo status
*
* return: void
*/
void dp_rx_bar_stats_cb(struct dp_soc *soc, void *cb_ctxt,
union hal_reo_status *reo_status)
{
struct dp_pdev *pdev = (struct dp_pdev *)cb_ctxt;
struct hal_reo_queue_status *queue_status = &(reo_status->queue_status);
if (!dp_check_pdev_exists(soc, pdev)) {
dp_err_rl("pdev doesn't exist");
return;
}
if (!qdf_atomic_read(&soc->cmn_init_done))
return;
if (queue_status->header.status != HAL_REO_CMD_SUCCESS) {
DP_PRINT_STATS("REO stats failure %d",
queue_status->header.status);
qdf_atomic_set(&(pdev->stats_cmd_complete), 1);
return;
}
pdev->stats.rx.bar_recv_cnt += queue_status->bar_rcvd_cnt;
qdf_atomic_set(&(pdev->stats_cmd_complete), 1);
}
/**
* dp_aggregate_vdev_stats(): Consolidate stats at VDEV level
* @vdev: DP VDEV handle
*
* return: void
*/
void dp_aggregate_vdev_stats(struct dp_vdev *vdev,
struct cdp_vdev_stats *vdev_stats)
{
struct dp_peer *peer = NULL;
struct dp_soc *soc = NULL;
if (!vdev || !vdev->pdev)
return;
soc = vdev->pdev->soc;
qdf_mem_copy(vdev_stats, &vdev->stats, sizeof(vdev->stats));
TAILQ_FOREACH(peer, &vdev->peer_list, peer_list_elem)
dp_update_vdev_stats(vdev_stats, peer);
#if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
dp_wdi_event_handler(WDI_EVENT_UPDATE_DP_STATS, vdev->pdev->soc,
vdev_stats, vdev->vdev_id,
UPDATE_VDEV_STATS, vdev->pdev->pdev_id);
#endif
}
void dp_aggregate_pdev_stats(struct dp_pdev *pdev)
{
struct dp_vdev *vdev = NULL;
struct dp_soc *soc;
struct cdp_vdev_stats *vdev_stats =
qdf_mem_malloc(sizeof(struct cdp_vdev_stats));
if (!vdev_stats) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"DP alloc failure - unable to get alloc vdev stats");
return;
}
qdf_mem_zero(&pdev->stats.tx, sizeof(pdev->stats.tx));
qdf_mem_zero(&pdev->stats.rx, sizeof(pdev->stats.rx));
qdf_mem_zero(&pdev->stats.tx_i, sizeof(pdev->stats.tx_i));
if (pdev->mcopy_mode)
DP_UPDATE_STATS(pdev, pdev->invalid_peer);
soc = pdev->soc;
qdf_spin_lock_bh(&soc->peer_ref_mutex);
qdf_spin_lock_bh(&pdev->vdev_list_lock);
TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
dp_aggregate_vdev_stats(vdev, vdev_stats);
dp_update_pdev_stats(pdev, vdev_stats);
dp_update_pdev_ingress_stats(pdev, vdev);
}
qdf_spin_unlock_bh(&pdev->vdev_list_lock);
qdf_spin_unlock_bh(&soc->peer_ref_mutex);
qdf_mem_free(vdev_stats);
#if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
dp_wdi_event_handler(WDI_EVENT_UPDATE_DP_STATS, pdev->soc, &pdev->stats,
pdev->pdev_id, UPDATE_PDEV_STATS, pdev->pdev_id);
#endif
}
/**
* dp_vdev_getstats() - get vdev packet level stats
* @vdev_handle: Datapath VDEV handle
* @stats: cdp network device stats structure
*
* Return: void
*/
static void dp_vdev_getstats(void *vdev_handle,
struct cdp_dev_stats *stats)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
struct dp_pdev *pdev;
struct dp_soc *soc;
struct cdp_vdev_stats *vdev_stats;
if (!vdev)
return;
pdev = vdev->pdev;
if (!pdev)
return;
soc = pdev->soc;
vdev_stats = qdf_mem_malloc(sizeof(struct cdp_vdev_stats));
if (!vdev_stats) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"DP alloc failure - unable to get alloc vdev stats");
return;
}
qdf_spin_lock_bh(&soc->peer_ref_mutex);
dp_aggregate_vdev_stats(vdev, vdev_stats);
qdf_spin_unlock_bh(&soc->peer_ref_mutex);
stats->tx_packets = vdev_stats->tx_i.rcvd.num;
stats->tx_bytes = vdev_stats->tx_i.rcvd.bytes;
stats->tx_errors = vdev_stats->tx.tx_failed +
vdev_stats->tx_i.dropped.dropped_pkt.num;
stats->tx_dropped = stats->tx_errors;
stats->rx_packets = vdev_stats->rx.unicast.num +
vdev_stats->rx.multicast.num +
vdev_stats->rx.bcast.num;
stats->rx_bytes = vdev_stats->rx.unicast.bytes +
vdev_stats->rx.multicast.bytes +
vdev_stats->rx.bcast.bytes;
qdf_mem_free(vdev_stats);
}
/**
* dp_pdev_getstats() - get pdev packet level stats
* @pdev_handle: Datapath PDEV handle
* @stats: cdp network device stats structure
*
* Return: void
*/
static void dp_pdev_getstats(void *pdev_handle,
struct cdp_dev_stats *stats)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
dp_aggregate_pdev_stats(pdev);
stats->tx_packets = pdev->stats.tx_i.rcvd.num;
stats->tx_bytes = pdev->stats.tx_i.rcvd.bytes;
stats->tx_errors = pdev->stats.tx.tx_failed +
pdev->stats.tx_i.dropped.dropped_pkt.num;
stats->tx_dropped = stats->tx_errors;
stats->rx_packets = pdev->stats.rx.unicast.num +
pdev->stats.rx.multicast.num +
pdev->stats.rx.bcast.num;
stats->rx_bytes = pdev->stats.rx.unicast.bytes +
pdev->stats.rx.multicast.bytes +
pdev->stats.rx.bcast.bytes;
}
/**
* dp_get_device_stats() - get interface level packet stats
* @handle: device handle
* @stats: cdp network device stats structure
* @type: device type pdev/vdev
*
* Return: void
*/
static void dp_get_device_stats(void *handle,
struct cdp_dev_stats *stats, uint8_t type)
{
switch (type) {
case UPDATE_VDEV_STATS:
dp_vdev_getstats(handle, stats);
break;
case UPDATE_PDEV_STATS:
dp_pdev_getstats(handle, stats);
break;
default:
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"apstats cannot be updated for this input "
"type %d", type);
break;
}
}
const
char *dp_srng_get_str_from_hal_ring_type(enum hal_ring_type ring_type)
{
switch (ring_type) {
case REO_DST:
return "Reo_dst";
case REO_EXCEPTION:
return "Reo_exception";
case REO_CMD:
return "Reo_cmd";
case REO_REINJECT:
return "Reo_reinject";
case REO_STATUS:
return "Reo_status";
case WBM2SW_RELEASE:
return "wbm2sw_release";
case TCL_DATA:
return "tcl_data";
case TCL_CMD:
return "tcl_cmd";
case TCL_STATUS:
return "tcl_status";
case SW2WBM_RELEASE:
return "sw2wbm_release";
case RXDMA_BUF:
return "Rxdma_buf";
case RXDMA_DST:
return "Rxdma_dst";
case RXDMA_MONITOR_BUF:
return "Rxdma_monitor_buf";
case RXDMA_MONITOR_DESC:
return "Rxdma_monitor_desc";
case RXDMA_MONITOR_STATUS:
return "Rxdma_monitor_status";
default:
dp_err("Invalid ring type");
break;
}
return "Invalid";
}
/*
* dp_print_napi_stats(): NAPI stats
* @soc - soc handle
*/
static void dp_print_napi_stats(struct dp_soc *soc)
{
hif_print_napi_stats(soc->hif_handle);
}
/**
* dp_txrx_host_stats_clr(): Reinitialize the txrx stats
* @vdev: DP_VDEV handle
*
* Return:void
*/
static inline void
dp_txrx_host_stats_clr(struct dp_vdev *vdev)
{
struct dp_peer *peer = NULL;
if (!vdev || !vdev->pdev)
return;
DP_STATS_CLR(vdev->pdev);
DP_STATS_CLR(vdev->pdev->soc);
DP_STATS_CLR(vdev);
hif_clear_napi_stats(vdev->pdev->soc->hif_handle);
TAILQ_FOREACH(peer, &vdev->peer_list, peer_list_elem) {
if (!peer)
return;
DP_STATS_CLR(peer);
#if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
dp_wdi_event_handler(WDI_EVENT_UPDATE_DP_STATS, vdev->pdev->soc,
&peer->stats, peer->peer_ids[0],
UPDATE_PEER_STATS, vdev->pdev->pdev_id);
#endif
}
#if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
dp_wdi_event_handler(WDI_EVENT_UPDATE_DP_STATS, vdev->pdev->soc,
&vdev->stats, vdev->vdev_id,
UPDATE_VDEV_STATS, vdev->pdev->pdev_id);
#endif
}
/*
* dp_get_host_peer_stats()- function to print peer stats
* @pdev_handle: DP_PDEV handle
* @mac_addr: mac address of the peer
*
* Return: void
*/
static void
dp_get_host_peer_stats(struct cdp_pdev *pdev_handle, char *mac_addr)
{
struct dp_peer *peer;
uint8_t local_id;
if (!mac_addr) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"Invalid MAC address\n");
return;
}
peer = (struct dp_peer *)dp_find_peer_by_addr(pdev_handle, mac_addr,
&local_id);
if (!peer) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"%s: Invalid peer\n", __func__);
return;
}
/* Making sure the peer is for the specific pdev */
if ((struct dp_pdev *)pdev_handle != peer->vdev->pdev) {
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_ERROR,
"%s: Peer is not for this pdev\n", __func__);
return;
}
dp_print_peer_stats(peer);
dp_peer_rxtid_stats(peer, dp_rx_tid_stats_cb, NULL);
}
/**
* dp_txrx_stats_help() - Helper function for Txrx_Stats
*
* Return: None
*/
static void dp_txrx_stats_help(void)
{
dp_info("Command: iwpriv wlan0 txrx_stats <stats_option> <mac_id>");
dp_info("stats_option:");
dp_info(" 1 -- HTT Tx Statistics");
dp_info(" 2 -- HTT Rx Statistics");
dp_info(" 3 -- HTT Tx HW Queue Statistics");
dp_info(" 4 -- HTT Tx HW Sched Statistics");
dp_info(" 5 -- HTT Error Statistics");
dp_info(" 6 -- HTT TQM Statistics");
dp_info(" 7 -- HTT TQM CMDQ Statistics");
dp_info(" 8 -- HTT TX_DE_CMN Statistics");
dp_info(" 9 -- HTT Tx Rate Statistics");
dp_info(" 10 -- HTT Rx Rate Statistics");
dp_info(" 11 -- HTT Peer Statistics");
dp_info(" 12 -- HTT Tx SelfGen Statistics");
dp_info(" 13 -- HTT Tx MU HWQ Statistics");
dp_info(" 14 -- HTT RING_IF_INFO Statistics");
dp_info(" 15 -- HTT SRNG Statistics");
dp_info(" 16 -- HTT SFM Info Statistics");
dp_info(" 17 -- HTT PDEV_TX_MU_MIMO_SCHED INFO Statistics");
dp_info(" 18 -- HTT Peer List Details");
dp_info(" 20 -- Clear Host Statistics");
dp_info(" 21 -- Host Rx Rate Statistics");
dp_info(" 22 -- Host Tx Rate Statistics");
dp_info(" 23 -- Host Tx Statistics");
dp_info(" 24 -- Host Rx Statistics");
dp_info(" 25 -- Host AST Statistics");
dp_info(" 26 -- Host SRNG PTR Statistics");
dp_info(" 27 -- Host Mon Statistics");
dp_info(" 28 -- Host REO Queue Statistics");
dp_info(" 29 -- Host Soc cfg param Statistics");
dp_info(" 30 -- Host pdev cfg param Statistics");
dp_info(" 32 -- Host Register Work stats");
}
/**
* dp_print_host_stats()- Function to print the stats aggregated at host
* @vdev_handle: DP_VDEV handle
* @type: host stats type
*
* Return: 0 on success, print error message in case of failure
*/
static int
dp_print_host_stats(struct cdp_vdev *vdev_handle,
struct cdp_txrx_stats_req *req)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
struct dp_pdev *pdev = (struct dp_pdev *)vdev->pdev;
enum cdp_host_txrx_stats type =
dp_stats_mapping_table[req->stats][STATS_HOST];
dp_aggregate_pdev_stats(pdev);
switch (type) {
case TXRX_CLEAR_STATS:
dp_txrx_host_stats_clr(vdev);
break;
case TXRX_RX_RATE_STATS:
dp_print_rx_rates(vdev);
break;
case TXRX_TX_RATE_STATS:
dp_print_tx_rates(vdev);
break;
case TXRX_TX_HOST_STATS:
dp_print_pdev_tx_stats(pdev);
dp_print_soc_tx_stats(pdev->soc);
break;
case TXRX_RX_HOST_STATS:
dp_print_pdev_rx_stats(pdev);
dp_print_soc_rx_stats(pdev->soc);
break;
case TXRX_AST_STATS:
dp_print_ast_stats(pdev->soc);
dp_print_peer_table(vdev);
break;
case TXRX_SRNG_PTR_STATS:
dp_print_ring_stats(pdev);
break;
case TXRX_RX_MON_STATS:
dp_print_pdev_rx_mon_stats(pdev);
break;
case TXRX_REO_QUEUE_STATS:
dp_get_host_peer_stats((struct cdp_pdev *)pdev, req->peer_addr);
break;
case TXRX_SOC_CFG_PARAMS:
dp_print_soc_cfg_params(pdev->soc);
break;
case TXRX_PDEV_CFG_PARAMS:
dp_print_pdev_cfg_params(pdev);
break;
case TXRX_NAPI_STATS:
dp_print_napi_stats(pdev->soc);
break;
case TXRX_SOC_INTERRUPT_STATS:
dp_print_soc_interrupt_stats(pdev->soc);
break;
case TXRX_HAL_REG_WRITE_STATS:
hal_dump_reg_write_stats(pdev->soc->hal_soc);
hal_dump_reg_write_srng_stats(pdev->soc->hal_soc);
break;
default:
dp_info("Wrong Input For TxRx Host Stats");
dp_txrx_stats_help();
break;
}
return 0;
}
/*
* dp_ppdu_ring_reset()- Reset PPDU Stats ring
* @pdev: DP_PDEV handle
*
* Return: void
*/
static void
dp_ppdu_ring_reset(struct dp_pdev *pdev)
{
struct htt_rx_ring_tlv_filter htt_tlv_filter;
int mac_id;
qdf_mem_zero(&(htt_tlv_filter), sizeof(htt_tlv_filter));
for (mac_id = 0; mac_id < NUM_RXDMA_RINGS_PER_PDEV; mac_id++) {
int mac_for_pdev = dp_get_mac_id_for_pdev(mac_id,
pdev->pdev_id);
htt_h2t_rx_ring_cfg(pdev->soc->htt_handle, mac_for_pdev,
pdev->rxdma_mon_status_ring[mac_id].hal_srng,
RXDMA_MONITOR_STATUS, RX_BUFFER_SIZE, &htt_tlv_filter);
}
}
/*
* dp_ppdu_ring_cfg()- Configure PPDU Stats ring
* @pdev: DP_PDEV handle
*
* Return: void
*/
static void
dp_ppdu_ring_cfg(struct dp_pdev *pdev)
{
struct htt_rx_ring_tlv_filter htt_tlv_filter = {0};
int mac_id;
htt_tlv_filter.mpdu_start = 1;
htt_tlv_filter.msdu_start = 0;
htt_tlv_filter.packet = 0;
htt_tlv_filter.msdu_end = 0;
htt_tlv_filter.mpdu_end = 0;
htt_tlv_filter.attention = 0;
htt_tlv_filter.ppdu_start = 1;
htt_tlv_filter.ppdu_end = 1;
htt_tlv_filter.ppdu_end_user_stats = 1;
htt_tlv_filter.ppdu_end_user_stats_ext = 1;
htt_tlv_filter.ppdu_end_status_done = 1;
htt_tlv_filter.enable_fp = 1;
htt_tlv_filter.enable_md = 0;
if (pdev->neighbour_peers_added &&
pdev->soc->hw_nac_monitor_support) {
htt_tlv_filter.enable_md = 1;
htt_tlv_filter.packet_header = 1;
}
if (pdev->mcopy_mode) {
htt_tlv_filter.packet_header = 1;
htt_tlv_filter.enable_mo = 1;
}
htt_tlv_filter.fp_mgmt_filter = FILTER_MGMT_ALL;
htt_tlv_filter.fp_ctrl_filter = FILTER_CTRL_ALL;
htt_tlv_filter.fp_data_filter = FILTER_DATA_ALL;
htt_tlv_filter.mo_mgmt_filter = FILTER_MGMT_ALL;
htt_tlv_filter.mo_ctrl_filter = FILTER_CTRL_ALL;
htt_tlv_filter.mo_data_filter = FILTER_DATA_ALL;
if (pdev->neighbour_peers_added &&
pdev->soc->hw_nac_monitor_support)
htt_tlv_filter.md_data_filter = FILTER_DATA_ALL;
htt_tlv_filter.offset_valid = false;
for (mac_id = 0; mac_id < NUM_RXDMA_RINGS_PER_PDEV; mac_id++) {
int mac_for_pdev = dp_get_mac_id_for_pdev(mac_id,
pdev->pdev_id);
htt_h2t_rx_ring_cfg(pdev->soc->htt_handle, mac_for_pdev,
pdev->rxdma_mon_status_ring[mac_id].hal_srng,
RXDMA_MONITOR_STATUS, RX_BUFFER_SIZE, &htt_tlv_filter);
}
}
/*
* is_ppdu_txrx_capture_enabled() - API to check both pktlog and debug_sniffer
* modes are enabled or not.
* @dp_pdev: dp pdev handle.
*
* Return: bool
*/
static inline bool is_ppdu_txrx_capture_enabled(struct dp_pdev *pdev)
{
if (!pdev->pktlog_ppdu_stats && !pdev->tx_sniffer_enable &&
!pdev->mcopy_mode)
return true;
else
return false;
}
/*
*dp_set_bpr_enable() - API to enable/disable bpr feature
*@pdev_handle: DP_PDEV handle.
*@val: Provided value.
*
*Return: 0 for success. nonzero for failure.
*/
static QDF_STATUS
dp_set_bpr_enable(struct cdp_pdev *pdev_handle, int val)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
switch (val) {
case CDP_BPR_DISABLE:
pdev->bpr_enable = CDP_BPR_DISABLE;
if (!pdev->pktlog_ppdu_stats && !pdev->enhanced_stats_en &&
!pdev->tx_sniffer_enable && !pdev->mcopy_mode) {
dp_h2t_cfg_stats_msg_send(pdev, 0, pdev->pdev_id);
} else if (pdev->enhanced_stats_en &&
!pdev->tx_sniffer_enable && !pdev->mcopy_mode &&
!pdev->pktlog_ppdu_stats) {
dp_h2t_cfg_stats_msg_send(pdev,
DP_PPDU_STATS_CFG_ENH_STATS,
pdev->pdev_id);
}
break;
case CDP_BPR_ENABLE:
pdev->bpr_enable = CDP_BPR_ENABLE;
if (!pdev->enhanced_stats_en && !pdev->tx_sniffer_enable &&
!pdev->mcopy_mode && !pdev->pktlog_ppdu_stats) {
dp_h2t_cfg_stats_msg_send(pdev,
DP_PPDU_STATS_CFG_BPR,
pdev->pdev_id);
} else if (pdev->enhanced_stats_en &&
!pdev->tx_sniffer_enable && !pdev->mcopy_mode &&
!pdev->pktlog_ppdu_stats) {
dp_h2t_cfg_stats_msg_send(pdev,
DP_PPDU_STATS_CFG_BPR_ENH,
pdev->pdev_id);
} else if (pdev->pktlog_ppdu_stats) {
dp_h2t_cfg_stats_msg_send(pdev,
DP_PPDU_STATS_CFG_BPR_PKTLOG,
pdev->pdev_id);
}
break;
default:
break;
}
return QDF_STATUS_SUCCESS;
}
/*
* dp_pdev_tid_stats_ingress_inc
* @pdev: pdev handle
* @val: increase in value
*
* Return: void
*/
static void
dp_pdev_tid_stats_ingress_inc(struct cdp_pdev *pdev, uint32_t val)
{
struct dp_pdev *dp_pdev = (struct dp_pdev *)pdev;
dp_pdev->stats.tid_stats.ingress_stack += val;
}
/*
* dp_pdev_tid_stats_osif_drop
* @pdev: pdev handle
* @val: increase in value
*
* Return: void
*/
static void
dp_pdev_tid_stats_osif_drop(struct cdp_pdev *pdev, uint32_t val)
{
struct dp_pdev *dp_pdev = (struct dp_pdev *)pdev;
dp_pdev->stats.tid_stats.osif_drop += val;
}
/*
* dp_config_debug_sniffer()- API to enable/disable debug sniffer
* @pdev_handle: DP_PDEV handle
* @val: user provided value
*
* Return: 0 for success. nonzero for failure.
*/
static QDF_STATUS
dp_config_debug_sniffer(struct cdp_pdev *pdev_handle, int val)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
QDF_STATUS status = QDF_STATUS_SUCCESS;
if (pdev->mcopy_mode)
dp_reset_monitor_mode(pdev_handle);
switch (val) {
case 0:
pdev->tx_sniffer_enable = 0;
pdev->mcopy_mode = 0;
pdev->monitor_configured = false;
if (!pdev->pktlog_ppdu_stats && !pdev->enhanced_stats_en &&
!pdev->bpr_enable) {
dp_h2t_cfg_stats_msg_send(pdev, 0, pdev->pdev_id);
dp_ppdu_ring_reset(pdev);
} else if (pdev->enhanced_stats_en && !pdev->bpr_enable) {
dp_h2t_cfg_stats_msg_send(pdev,
DP_PPDU_STATS_CFG_ENH_STATS, pdev->pdev_id);
} else if (!pdev->enhanced_stats_en && pdev->bpr_enable) {
dp_h2t_cfg_stats_msg_send(pdev,
DP_PPDU_STATS_CFG_BPR_ENH,
pdev->pdev_id);
} else {
dp_h2t_cfg_stats_msg_send(pdev,
DP_PPDU_STATS_CFG_BPR,
pdev->pdev_id);
}
break;
case 1:
pdev->tx_sniffer_enable = 1;
pdev->mcopy_mode = 0;
pdev->monitor_configured = false;
if (!pdev->pktlog_ppdu_stats)
dp_h2t_cfg_stats_msg_send(pdev,
DP_PPDU_STATS_CFG_SNIFFER, pdev->pdev_id);
break;
case 2:
if (pdev->monitor_vdev) {
status = QDF_STATUS_E_RESOURCES;
break;
}
pdev->mcopy_mode = 1;
dp_pdev_configure_monitor_rings(pdev);
pdev->monitor_configured = true;
pdev->tx_sniffer_enable = 0;
if (!pdev->pktlog_ppdu_stats)
dp_h2t_cfg_stats_msg_send(pdev,
DP_PPDU_STATS_CFG_SNIFFER, pdev->pdev_id);
break;
default:
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"Invalid value");
break;
}
return status;
}
/*
* dp_enable_enhanced_stats()- API to enable enhanced statistcs
* @pdev_handle: DP_PDEV handle
*
* Return: void
*/
static void
dp_enable_enhanced_stats(struct cdp_pdev *pdev_handle)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
if (pdev->enhanced_stats_en == 0)
dp_cal_client_timer_start(pdev->cal_client_ctx);
pdev->enhanced_stats_en = 1;
if (!pdev->mcopy_mode && !pdev->neighbour_peers_added &&
!pdev->monitor_vdev)
dp_ppdu_ring_cfg(pdev);
if (is_ppdu_txrx_capture_enabled(pdev) && !pdev->bpr_enable) {
dp_h2t_cfg_stats_msg_send(pdev, DP_PPDU_STATS_CFG_ENH_STATS, pdev->pdev_id);
} else if (is_ppdu_txrx_capture_enabled(pdev) && pdev->bpr_enable) {
dp_h2t_cfg_stats_msg_send(pdev,
DP_PPDU_STATS_CFG_BPR_ENH,
pdev->pdev_id);
}
}
/*
* dp_disable_enhanced_stats()- API to disable enhanced statistcs
* @pdev_handle: DP_PDEV handle
*
* Return: void
*/
static void
dp_disable_enhanced_stats(struct cdp_pdev *pdev_handle)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
if (pdev->enhanced_stats_en == 1)
dp_cal_client_timer_stop(pdev->cal_client_ctx);
pdev->enhanced_stats_en = 0;
if (is_ppdu_txrx_capture_enabled(pdev) && !pdev->bpr_enable) {
dp_h2t_cfg_stats_msg_send(pdev, 0, pdev->pdev_id);
} else if (is_ppdu_txrx_capture_enabled(pdev) && pdev->bpr_enable) {
dp_h2t_cfg_stats_msg_send(pdev,
DP_PPDU_STATS_CFG_BPR,
pdev->pdev_id);
}
if (!pdev->mcopy_mode && !pdev->neighbour_peers_added &&
!pdev->monitor_vdev)
dp_ppdu_ring_reset(pdev);
}
/*
* dp_get_fw_peer_stats()- function to print peer stats
* @pdev_handle: DP_PDEV handle
* @mac_addr: mac address of the peer
* @cap: Type of htt stats requested
* @is_wait: if set, wait on completion from firmware response
*
* Currently Supporting only MAC ID based requests Only
* 1: HTT_PEER_STATS_REQ_MODE_NO_QUERY
* 2: HTT_PEER_STATS_REQ_MODE_QUERY_TQM
* 3: HTT_PEER_STATS_REQ_MODE_FLUSH_TQM
*
* Return: void
*/
static void
dp_get_fw_peer_stats(struct cdp_pdev *pdev_handle, uint8_t *mac_addr,
uint32_t cap, uint32_t is_wait)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
int i;
uint32_t config_param0 = 0;
uint32_t config_param1 = 0;
uint32_t config_param2 = 0;
uint32_t config_param3 = 0;
HTT_DBG_EXT_STATS_PEER_INFO_IS_MAC_ADDR_SET(config_param0, 1);
config_param0 |= (1 << (cap + 1));
for (i = 0; i < HTT_PEER_STATS_MAX_TLV; i++) {
config_param1 |= (1 << i);
}
config_param2 |= (mac_addr[0] & 0x000000ff);
config_param2 |= ((mac_addr[1] << 8) & 0x0000ff00);
config_param2 |= ((mac_addr[2] << 16) & 0x00ff0000);
config_param2 |= ((mac_addr[3] << 24) & 0xff000000);
config_param3 |= (mac_addr[4] & 0x000000ff);
config_param3 |= ((mac_addr[5] << 8) & 0x0000ff00);
if (is_wait) {
qdf_event_reset(&pdev->fw_peer_stats_event);
dp_h2t_ext_stats_msg_send(pdev, HTT_DBG_EXT_STATS_PEER_INFO,
config_param0, config_param1,
config_param2, config_param3,
0, 1, 0);
qdf_wait_single_event(&pdev->fw_peer_stats_event,
DP_FW_PEER_STATS_CMP_TIMEOUT_MSEC);
} else {
dp_h2t_ext_stats_msg_send(pdev, HTT_DBG_EXT_STATS_PEER_INFO,
config_param0, config_param1,
config_param2, config_param3,
0, 0, 0);
}
}
/* This struct definition will be removed from here
* once it get added in FW headers*/
struct httstats_cmd_req {
uint32_t config_param0;
uint32_t config_param1;
uint32_t config_param2;
uint32_t config_param3;
int cookie;
u_int8_t stats_id;
};
/*
* dp_get_htt_stats: function to process the httstas request
* @pdev_handle: DP pdev handle
* @data: pointer to request data
* @data_len: length for request data
*
* return: void
*/
static void
dp_get_htt_stats(struct cdp_pdev *pdev_handle, void *data, uint32_t data_len)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
struct httstats_cmd_req *req = (struct httstats_cmd_req *)data;
QDF_ASSERT(data_len == sizeof(struct httstats_cmd_req));
dp_h2t_ext_stats_msg_send(pdev, req->stats_id,
req->config_param0, req->config_param1,
req->config_param2, req->config_param3,
req->cookie, 0, 0);
}
/*
* dp_set_pdev_param: function to set parameters in pdev
* @pdev_handle: DP pdev handle
* @param: parameter type to be set
* @val: value of parameter to be set
*
* Return: 0 for success. nonzero for failure.
*/
static QDF_STATUS dp_set_pdev_param(struct cdp_pdev *pdev_handle,
enum cdp_pdev_param_type param,
uint8_t val)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
switch (param) {
case CDP_CONFIG_DEBUG_SNIFFER:
return dp_config_debug_sniffer(pdev_handle, val);
case CDP_CONFIG_BPR_ENABLE:
return dp_set_bpr_enable(pdev_handle, val);
case CDP_CONFIG_PRIMARY_RADIO:
pdev->is_primary = val;
break;
case CDP_CONFIG_CAPTURE_LATENCY:
if (val == 1)
pdev->latency_capture_enable = true;
else
pdev->latency_capture_enable = false;
break;
case CDP_INGRESS_STATS:
dp_pdev_tid_stats_ingress_inc(pdev_handle, val);
break;
case CDP_OSIF_DROP:
dp_pdev_tid_stats_osif_drop(pdev_handle, val);
break;
case CDP_CONFIG_ENH_RX_CAPTURE:
return dp_config_enh_rx_capture(pdev_handle, val);
case CDP_CONFIG_TX_CAPTURE:
return dp_config_enh_tx_capture(pdev_handle, val);
default:
return QDF_STATUS_E_INVAL;
}
return QDF_STATUS_SUCCESS;
}
/*
* dp_calculate_delay_stats: function to get rx delay stats
* @vdev_handle: DP vdev handle
* @nbuf: skb
*
* Return: void
*/
static void dp_calculate_delay_stats(struct cdp_vdev *vdev_handle,
qdf_nbuf_t nbuf)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
dp_rx_compute_delay(vdev, nbuf);
}
/*
* dp_get_vdev_param: function to get parameters from vdev
* @param: parameter type to get value
*
* return: void
*/
static uint32_t dp_get_vdev_param(struct cdp_vdev *vdev_handle,
enum cdp_vdev_param_type param)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
uint32_t val;
switch (param) {
case CDP_ENABLE_WDS:
val = vdev->wds_enabled;
break;
case CDP_ENABLE_MEC:
val = vdev->mec_enabled;
break;
case CDP_ENABLE_DA_WAR:
val = vdev->pdev->soc->da_war_enabled;
break;
default:
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"param value %d is wrong\n",
param);
val = -1;
break;
}
return val;
}
/*
* dp_set_vdev_param: function to set parameters in vdev
* @param: parameter type to be set
* @val: value of parameter to be set
*
* return: void
*/
static void dp_set_vdev_param(struct cdp_vdev *vdev_handle,
enum cdp_vdev_param_type param, uint32_t val)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
switch (param) {
case CDP_ENABLE_WDS:
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"wds_enable %d for vdev(%pK) id(%d)\n",
val, vdev, vdev->vdev_id);
vdev->wds_enabled = val;
break;
case CDP_ENABLE_MEC:
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"mec_enable %d for vdev(%pK) id(%d)\n",
val, vdev, vdev->vdev_id);
vdev->mec_enabled = val;
break;
case CDP_ENABLE_DA_WAR:
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"da_war_enable %d for vdev(%pK) id(%d)\n",
val, vdev, vdev->vdev_id);
vdev->pdev->soc->da_war_enabled = val;
dp_wds_flush_ast_table_wifi3(((struct cdp_soc_t *)
vdev->pdev->soc));
break;
case CDP_ENABLE_NAWDS:
vdev->nawds_enabled = val;
break;
case CDP_ENABLE_MCAST_EN:
vdev->mcast_enhancement_en = val;
break;
case CDP_ENABLE_PROXYSTA:
vdev->proxysta_vdev = val;
break;
case CDP_UPDATE_TDLS_FLAGS:
vdev->tdls_link_connected = val;
break;
case CDP_CFG_WDS_AGING_TIMER:
if (val == 0)
qdf_timer_stop(&vdev->pdev->soc->ast_aging_timer);
else if (val != vdev->wds_aging_timer_val)
qdf_timer_mod(&vdev->pdev->soc->ast_aging_timer, val);
vdev->wds_aging_timer_val = val;
break;
case CDP_ENABLE_AP_BRIDGE:
if (wlan_op_mode_sta != vdev->opmode)
vdev->ap_bridge_enabled = val;
else
vdev->ap_bridge_enabled = false;
break;
case CDP_ENABLE_CIPHER:
vdev->sec_type = val;
break;
case CDP_ENABLE_QWRAP_ISOLATION:
vdev->isolation_vdev = val;
break;
default:
break;
}
dp_tx_vdev_update_search_flags(vdev);
}
/**
* dp_peer_set_nawds: set nawds bit in peer
* @peer_handle: pointer to peer
* @value: enable/disable nawds
*
* return: void
*/
static void dp_peer_set_nawds(struct cdp_peer *peer_handle, uint8_t value)
{
struct dp_peer *peer = (struct dp_peer *)peer_handle;
peer->nawds_enabled = value;
}
/*
* dp_set_vdev_dscp_tid_map_wifi3(): Update Map ID selected for particular vdev
* @vdev_handle: DP_VDEV handle
* @map_id:ID of map that needs to be updated
*
* Return: void
*/
static void dp_set_vdev_dscp_tid_map_wifi3(struct cdp_vdev *vdev_handle,
uint8_t map_id)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
vdev->dscp_tid_map_id = map_id;
return;
}
#ifdef DP_RATETABLE_SUPPORT
static int dp_txrx_get_ratekbps(int preamb, int mcs,
int htflag, int gintval)
{
uint32_t rix;
return dp_getrateindex((uint32_t)gintval, (uint16_t)mcs, 1,
(uint8_t)preamb, 1, &rix);
}
#else
static int dp_txrx_get_ratekbps(int preamb, int mcs,
int htflag, int gintval)
{
return 0;
}
#endif
/* dp_txrx_get_pdev_stats - Returns cdp_pdev_stats
* @peer_handle: DP pdev handle
*
* return : cdp_pdev_stats pointer
*/
static struct cdp_pdev_stats*
dp_txrx_get_pdev_stats(struct cdp_pdev *pdev_handle)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
dp_aggregate_pdev_stats(pdev);
return &pdev->stats;
}
/* dp_txrx_update_vdev_me_stats(): Update vdev ME stats sent from CDP
* @vdev_handle: DP vdev handle
* @buf: buffer containing specific stats structure
*
* Returns: void
*/
static void dp_txrx_update_vdev_me_stats(struct cdp_vdev *vdev_handle,
void *buf)
{
struct dp_vdev *vdev = NULL;
struct cdp_tx_ingress_stats *host_stats = NULL;
if (!vdev_handle) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"Invalid vdev handle");
return;
}
vdev = (struct dp_vdev *)vdev_handle;
if (!buf) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"Invalid host stats buf");
return;
}
host_stats = (struct cdp_tx_ingress_stats *)buf;
DP_STATS_INC_PKT(vdev, tx_i.mcast_en.mcast_pkt,
host_stats->mcast_en.mcast_pkt.num,
host_stats->mcast_en.mcast_pkt.bytes);
DP_STATS_INC(vdev, tx_i.mcast_en.dropped_map_error,
host_stats->mcast_en.dropped_map_error);
DP_STATS_INC(vdev, tx_i.mcast_en.dropped_self_mac,
host_stats->mcast_en.dropped_self_mac);
DP_STATS_INC(vdev, tx_i.mcast_en.dropped_send_fail,
host_stats->mcast_en.dropped_send_fail);
DP_STATS_INC(vdev, tx_i.mcast_en.ucast,
host_stats->mcast_en.ucast);
DP_STATS_INC(vdev, tx_i.mcast_en.fail_seg_alloc,
host_stats->mcast_en.fail_seg_alloc);
DP_STATS_INC(vdev, tx_i.mcast_en.clone_fail,
host_stats->mcast_en.clone_fail);
}
/* dp_txrx_update_vdev_host_stats(): Update stats sent through CDP
* @vdev_handle: DP vdev handle
* @buf: buffer containing specific stats structure
* @stats_id: stats type
*
* Returns: void
*/
static void dp_txrx_update_vdev_host_stats(struct cdp_vdev *vdev_handle,
void *buf,
uint16_t stats_id)
{
switch (stats_id) {
case DP_VDEV_STATS_PKT_CNT_ONLY:
break;
case DP_VDEV_STATS_TX_ME:
dp_txrx_update_vdev_me_stats(vdev_handle, buf);
break;
default:
qdf_info("Invalid stats_id %d", stats_id);
break;
}
}
/* dp_txrx_get_peer_stats - will return cdp_peer_stats
* @peer_handle: DP_PEER handle
*
* return : cdp_peer_stats pointer
*/
static struct cdp_peer_stats*
dp_txrx_get_peer_stats(struct cdp_peer *peer_handle)
{
struct dp_peer *peer = (struct dp_peer *)peer_handle;
qdf_assert(peer);
return &peer->stats;
}
/* dp_txrx_reset_peer_stats - reset cdp_peer_stats for particular peer
* @peer_handle: DP_PEER handle
*
* return : void
*/
static void dp_txrx_reset_peer_stats(struct cdp_peer *peer_handle)
{
struct dp_peer *peer = (struct dp_peer *)peer_handle;
qdf_assert(peer);
qdf_mem_zero(&peer->stats, sizeof(peer->stats));
}
/* dp_txrx_get_vdev_stats - Update buffer with cdp_vdev_stats
* @vdev_handle: DP_VDEV handle
* @buf: buffer for vdev stats
*
* return : int
*/
static int dp_txrx_get_vdev_stats(struct cdp_vdev *vdev_handle, void *buf,
bool is_aggregate)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
struct cdp_vdev_stats *vdev_stats;
struct dp_pdev *pdev;
struct dp_soc *soc;
if (!vdev)
return 1;
pdev = vdev->pdev;
if (!pdev)
return 1;
soc = pdev->soc;
vdev_stats = (struct cdp_vdev_stats *)buf;
if (is_aggregate) {
qdf_spin_lock_bh(&soc->peer_ref_mutex);
dp_aggregate_vdev_stats(vdev, buf);
qdf_spin_unlock_bh(&soc->peer_ref_mutex);
} else {
qdf_mem_copy(vdev_stats, &vdev->stats, sizeof(vdev->stats));
}
return 0;
}
/*
* dp_get_total_per(): get total per
* @pdev_handle: DP_PDEV handle
*
* Return: % error rate using retries per packet and success packets
*/
static int dp_get_total_per(struct cdp_pdev *pdev_handle)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
dp_aggregate_pdev_stats(pdev);
if ((pdev->stats.tx.tx_success.num + pdev->stats.tx.retries) == 0)
return 0;
return ((pdev->stats.tx.retries * 100) /
((pdev->stats.tx.tx_success.num) + (pdev->stats.tx.retries)));
}
/*
* dp_txrx_stats_publish(): publish pdev stats into a buffer
* @pdev_handle: DP_PDEV handle
* @buf: to hold pdev_stats
*
* Return: int
*/
static int
dp_txrx_stats_publish(struct cdp_pdev *pdev_handle, struct cdp_stats_extd *buf)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
struct cdp_pdev_stats *buffer = (struct cdp_pdev_stats *) buf;
struct cdp_txrx_stats_req req = {0,};
dp_aggregate_pdev_stats(pdev);
req.stats = (enum cdp_stats)HTT_DBG_EXT_STATS_PDEV_TX;
req.cookie_val = 1;
dp_h2t_ext_stats_msg_send(pdev, req.stats, req.param0,
req.param1, req.param2, req.param3, 0,
req.cookie_val, 0);
msleep(DP_MAX_SLEEP_TIME);
req.stats = (enum cdp_stats)HTT_DBG_EXT_STATS_PDEV_RX;
req.cookie_val = 1;
dp_h2t_ext_stats_msg_send(pdev, req.stats, req.param0,
req.param1, req.param2, req.param3, 0,
req.cookie_val, 0);
msleep(DP_MAX_SLEEP_TIME);
qdf_mem_copy(buffer, &pdev->stats, sizeof(pdev->stats));
return TXRX_STATS_LEVEL;
}
/**
* dp_set_pdev_dscp_tid_map_wifi3(): update dscp tid map in pdev
* @pdev: DP_PDEV handle
* @map_id: ID of map that needs to be updated
* @tos: index value in map
* @tid: tid value passed by the user
*
* Return: void
*/
static void dp_set_pdev_dscp_tid_map_wifi3(struct cdp_pdev *pdev_handle,
uint8_t map_id, uint8_t tos, uint8_t tid)
{
uint8_t dscp;
struct dp_pdev *pdev = (struct dp_pdev *) pdev_handle;
struct dp_soc *soc = pdev->soc;
if (!soc)
return;
dscp = (tos >> DP_IP_DSCP_SHIFT) & DP_IP_DSCP_MASK;
pdev->dscp_tid_map[map_id][dscp] = tid;
if (map_id < soc->num_hw_dscp_tid_map)
hal_tx_update_dscp_tid(soc->hal_soc, tid,
map_id, dscp);
return;
}
/**
* dp_hmmc_tid_override_en_wifi3(): Function to enable hmmc tid override.
* @pdev_handle: pdev handle
* @val: hmmc-dscp flag value
*
* Return: void
*/
static void dp_hmmc_tid_override_en_wifi3(struct cdp_pdev *pdev_handle,
bool val)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
pdev->hmmc_tid_override_en = val;
}
/**
* dp_set_hmmc_tid_val_wifi3(): Function to set hmmc tid value.
* @pdev_handle: pdev handle
* @tid: tid value
*
* Return: void
*/
static void dp_set_hmmc_tid_val_wifi3(struct cdp_pdev *pdev_handle,
uint8_t tid)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
pdev->hmmc_tid = tid;
}
/**
* dp_fw_stats_process(): Process TxRX FW stats request
* @vdev_handle: DP VDEV handle
* @req: stats request
*
* return: int
*/
static int dp_fw_stats_process(struct cdp_vdev *vdev_handle,
struct cdp_txrx_stats_req *req)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
struct dp_pdev *pdev = NULL;
uint32_t stats = req->stats;
uint8_t mac_id = req->mac_id;
if (!vdev) {
DP_TRACE(NONE, "VDEV not found");
return 1;
}
pdev = vdev->pdev;
/*
* For HTT_DBG_EXT_STATS_RESET command, FW need to config
* from param0 to param3 according to below rule:
*
* PARAM:
* - config_param0 : start_offset (stats type)
* - config_param1 : stats bmask from start offset
* - config_param2 : stats bmask from start offset + 32
* - config_param3 : stats bmask from start offset + 64
*/
if (req->stats == CDP_TXRX_STATS_0) {
req->param0 = HTT_DBG_EXT_STATS_PDEV_TX;
req->param1 = 0xFFFFFFFF;
req->param2 = 0xFFFFFFFF;
req->param3 = 0xFFFFFFFF;
} else if (req->stats == (uint8_t)HTT_DBG_EXT_STATS_PDEV_TX_MU) {
req->param0 = HTT_DBG_EXT_STATS_SET_VDEV_MASK(vdev->vdev_id);
}
return dp_h2t_ext_stats_msg_send(pdev, stats, req->param0,
req->param1, req->param2, req->param3,
0, 0, mac_id);
}
/**
* dp_txrx_stats_request - function to map to firmware and host stats
* @vdev: virtual handle
* @req: stats request
*
* Return: QDF_STATUS
*/
static
QDF_STATUS dp_txrx_stats_request(struct cdp_vdev *vdev,
struct cdp_txrx_stats_req *req)
{
int host_stats;
int fw_stats;
enum cdp_stats stats;
int num_stats;
if (!vdev || !req) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"Invalid vdev/req instance");
return QDF_STATUS_E_INVAL;
}
if (req->mac_id >= WLAN_CFG_MAC_PER_TARGET) {
dp_err("Invalid mac id request");
return QDF_STATUS_E_INVAL;
}
stats = req->stats;
if (stats >= CDP_TXRX_MAX_STATS)
return QDF_STATUS_E_INVAL;
/*
* DP_CURR_FW_STATS_AVAIL: no of FW stats currently available
* has to be updated if new FW HTT stats added
*/
if (stats > CDP_TXRX_STATS_HTT_MAX)
stats = stats + DP_CURR_FW_STATS_AVAIL - DP_HTT_DBG_EXT_STATS_MAX;
num_stats = QDF_ARRAY_SIZE(dp_stats_mapping_table);
if (stats >= num_stats) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"%s: Invalid stats option: %d", __func__, stats);
return QDF_STATUS_E_INVAL;
}
req->stats = stats;
fw_stats = dp_stats_mapping_table[stats][STATS_FW];
host_stats = dp_stats_mapping_table[stats][STATS_HOST];
dp_info("stats: %u fw_stats_type: %d host_stats: %d",
stats, fw_stats, host_stats);
if (fw_stats != TXRX_FW_STATS_INVALID) {
/* update request with FW stats type */
req->stats = fw_stats;
return dp_fw_stats_process(vdev, req);
}
if ((host_stats != TXRX_HOST_STATS_INVALID) &&
(host_stats <= TXRX_HOST_STATS_MAX))
return dp_print_host_stats(vdev, req);
else
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
"Wrong Input for TxRx Stats");
return QDF_STATUS_SUCCESS;
}
/*
* dp_txrx_dump_stats() - Dump statistics
* @value - Statistics option
*/
static QDF_STATUS dp_txrx_dump_stats(void *psoc, uint16_t value,
enum qdf_stats_verbosity_level level)
{
struct dp_soc *soc =
(struct dp_soc *)psoc;
QDF_STATUS status = QDF_STATUS_SUCCESS;
if (!soc) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"%s: soc is NULL", __func__);
return QDF_STATUS_E_INVAL;
}
switch (value) {
case CDP_TXRX_PATH_STATS:
dp_txrx_path_stats(soc);
dp_print_soc_interrupt_stats(soc);
hal_dump_reg_write_stats(soc->hal_soc);
break;
case CDP_RX_RING_STATS:
dp_print_per_ring_stats(soc);
break;
case CDP_TXRX_TSO_STATS:
/* TODO: NOT IMPLEMENTED */
break;
case CDP_DUMP_TX_FLOW_POOL_INFO:
cdp_dump_flow_pool_info((struct cdp_soc_t *)soc);
break;
case CDP_DP_NAPI_STATS:
dp_print_napi_stats(soc);
break;
case CDP_TXRX_DESC_STATS:
/* TODO: NOT IMPLEMENTED */
break;
default:
status = QDF_STATUS_E_INVAL;
break;
}
return status;
}
#ifdef QCA_LL_TX_FLOW_CONTROL_V2
/**
* dp_update_flow_control_parameters() - API to store datapath
* config parameters
* @soc: soc handle
* @cfg: ini parameter handle
*
* Return: void
*/
static inline
void dp_update_flow_control_parameters(struct dp_soc *soc,
struct cdp_config_params *params)
{
soc->wlan_cfg_ctx->tx_flow_stop_queue_threshold =
params->tx_flow_stop_queue_threshold;
soc->wlan_cfg_ctx->tx_flow_start_queue_offset =
params->tx_flow_start_queue_offset;
}
#else
static inline
void dp_update_flow_control_parameters(struct dp_soc *soc,
struct cdp_config_params *params)
{
}
#endif
#ifdef WLAN_FEATURE_RX_SOFTIRQ_TIME_LIMIT
/* Max packet limit for TX Comp packet loop (dp_tx_comp_handler) */
#define DP_TX_COMP_LOOP_PKT_LIMIT_MAX 1024
/* Max packet limit for RX REAP Loop (dp_rx_process) */
#define DP_RX_REAP_LOOP_PKT_LIMIT_MAX 1024
static
void dp_update_rx_soft_irq_limit_params(struct dp_soc *soc,
struct cdp_config_params *params)
{
soc->wlan_cfg_ctx->tx_comp_loop_pkt_limit =
params->tx_comp_loop_pkt_limit;
if (params->tx_comp_loop_pkt_limit < DP_TX_COMP_LOOP_PKT_LIMIT_MAX)
soc->wlan_cfg_ctx->tx_comp_enable_eol_data_check = true;
else
soc->wlan_cfg_ctx->tx_comp_enable_eol_data_check = false;
soc->wlan_cfg_ctx->rx_reap_loop_pkt_limit =
params->rx_reap_loop_pkt_limit;
if (params->rx_reap_loop_pkt_limit < DP_RX_REAP_LOOP_PKT_LIMIT_MAX)
soc->wlan_cfg_ctx->rx_enable_eol_data_check = true;
else
soc->wlan_cfg_ctx->rx_enable_eol_data_check = false;
soc->wlan_cfg_ctx->rx_hp_oos_update_limit =
params->rx_hp_oos_update_limit;
dp_info("tx_comp_loop_pkt_limit %u tx_comp_enable_eol_data_check %u rx_reap_loop_pkt_limit %u rx_enable_eol_data_check %u rx_hp_oos_update_limit %u",
soc->wlan_cfg_ctx->tx_comp_loop_pkt_limit,
soc->wlan_cfg_ctx->tx_comp_enable_eol_data_check,
soc->wlan_cfg_ctx->rx_reap_loop_pkt_limit,
soc->wlan_cfg_ctx->rx_enable_eol_data_check,
soc->wlan_cfg_ctx->rx_hp_oos_update_limit);
}
#else
static inline
void dp_update_rx_soft_irq_limit_params(struct dp_soc *soc,
struct cdp_config_params *params)
{ }
#endif /* WLAN_FEATURE_RX_SOFTIRQ_TIME_LIMIT */
/**
* dp_update_config_parameters() - API to store datapath
* config parameters
* @soc: soc handle
* @cfg: ini parameter handle
*
* Return: status
*/
static
QDF_STATUS dp_update_config_parameters(struct cdp_soc *psoc,
struct cdp_config_params *params)
{
struct dp_soc *soc = (struct dp_soc *)psoc;
if (!(soc)) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"%s: Invalid handle", __func__);
return QDF_STATUS_E_INVAL;
}
soc->wlan_cfg_ctx->tso_enabled = params->tso_enable;
soc->wlan_cfg_ctx->lro_enabled = params->lro_enable;
soc->wlan_cfg_ctx->rx_hash = params->flow_steering_enable;
soc->wlan_cfg_ctx->tcp_udp_checksumoffload =
params->tcp_udp_checksumoffload;
soc->wlan_cfg_ctx->napi_enabled = params->napi_enable;
soc->wlan_cfg_ctx->ipa_enabled = params->ipa_enable;
soc->wlan_cfg_ctx->gro_enabled = params->gro_enable;
dp_update_rx_soft_irq_limit_params(soc, params);
dp_update_flow_control_parameters(soc, params);
return QDF_STATUS_SUCCESS;
}
static struct cdp_wds_ops dp_ops_wds = {
.vdev_set_wds = dp_vdev_set_wds,
#ifdef WDS_VENDOR_EXTENSION
.txrx_set_wds_rx_policy = dp_txrx_set_wds_rx_policy,
.txrx_wds_peer_tx_policy_update = dp_txrx_peer_wds_tx_policy_update,
#endif
};
/*
* dp_txrx_data_tx_cb_set(): set the callback for non standard tx
* @vdev_handle - datapath vdev handle
* @callback - callback function
* @ctxt: callback context
*
*/
static void
dp_txrx_data_tx_cb_set(struct cdp_vdev *vdev_handle,
ol_txrx_data_tx_cb callback, void *ctxt)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
vdev->tx_non_std_data_callback.func = callback;
vdev->tx_non_std_data_callback.ctxt = ctxt;
}
/**
* dp_pdev_get_dp_txrx_handle() - get dp handle from pdev
* @pdev_hdl: datapath pdev handle
*
* Return: opaque pointer to dp txrx handle
*/
static void *dp_pdev_get_dp_txrx_handle(struct cdp_pdev *pdev_hdl)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_hdl;
return pdev->dp_txrx_handle;
}
/**
* dp_pdev_set_dp_txrx_handle() - set dp handle in pdev
* @pdev_hdl: datapath pdev handle
* @dp_txrx_hdl: opaque pointer for dp_txrx_handle
*
* Return: void
*/
static void
dp_pdev_set_dp_txrx_handle(struct cdp_pdev *pdev_hdl, void *dp_txrx_hdl)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_hdl;
pdev->dp_txrx_handle = dp_txrx_hdl;
}
/**
* dp_soc_get_dp_txrx_handle() - get context for external-dp from dp soc
* @soc_handle: datapath soc handle
*
* Return: opaque pointer to external dp (non-core DP)
*/
static void *dp_soc_get_dp_txrx_handle(struct cdp_soc *soc_handle)
{
struct dp_soc *soc = (struct dp_soc *)soc_handle;
return soc->external_txrx_handle;
}
/**
* dp_soc_set_dp_txrx_handle() - set external dp handle in soc
* @soc_handle: datapath soc handle
* @txrx_handle: opaque pointer to external dp (non-core DP)
*
* Return: void
*/
static void
dp_soc_set_dp_txrx_handle(struct cdp_soc *soc_handle, void *txrx_handle)
{
struct dp_soc *soc = (struct dp_soc *)soc_handle;
soc->external_txrx_handle = txrx_handle;
}
/**
* dp_soc_map_pdev_to_lmac() - Save pdev_id to lmac_id mapping
* @pdev_hdl: datapath pdev handle
* @lmac_id: lmac id
*
* Return: void
*/
static void
dp_soc_map_pdev_to_lmac(struct cdp_pdev *pdev_hdl, uint32_t lmac_id)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_hdl;
struct dp_soc *soc = pdev->soc;
pdev->lmac_id = lmac_id;
wlan_cfg_set_hw_macid(soc->wlan_cfg_ctx,
pdev->pdev_id,
(lmac_id + 1));
}
/**
* dp_get_cfg_capabilities() - get dp capabilities
* @soc_handle: datapath soc handle
* @dp_caps: enum for dp capabilities
*
* Return: bool to determine if dp caps is enabled
*/
static bool
dp_get_cfg_capabilities(struct cdp_soc_t *soc_handle,
enum cdp_capabilities dp_caps)
{
struct dp_soc *soc = (struct dp_soc *)soc_handle;
return wlan_cfg_get_dp_caps(soc->wlan_cfg_ctx, dp_caps);
}
#ifdef FEATURE_AST
static void dp_peer_teardown_wifi3(struct cdp_vdev *vdev_hdl, void *peer_hdl)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_hdl;
struct dp_peer *peer = (struct dp_peer *)peer_hdl;
struct dp_soc *soc = (struct dp_soc *)vdev->pdev->soc;
/*
* For BSS peer, new peer is not created on alloc_node if the
* peer with same address already exists , instead refcnt is
* increased for existing peer. Correspondingly in delete path,
* only refcnt is decreased; and peer is only deleted , when all
* references are deleted. So delete_in_progress should not be set
* for bss_peer, unless only 2 reference remains (peer map reference
* and peer hash table reference).
*/
if (peer->bss_peer && (qdf_atomic_read(&peer->ref_cnt) > 2))
return;
qdf_spin_lock_bh(&soc->ast_lock);
peer->delete_in_progress = true;
dp_peer_delete_ast_entries(soc, peer);
qdf_spin_unlock_bh(&soc->ast_lock);
}
#endif
#ifdef ATH_SUPPORT_NAC_RSSI
/**
* dp_vdev_get_neighbour_rssi(): Store RSSI for configured NAC
* @vdev_hdl: DP vdev handle
* @rssi: rssi value
*
* Return: 0 for success. nonzero for failure.
*/
static QDF_STATUS dp_vdev_get_neighbour_rssi(struct cdp_vdev *vdev_hdl,
char *mac_addr,
uint8_t *rssi)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_hdl;
struct dp_pdev *pdev = vdev->pdev;
struct dp_neighbour_peer *peer = NULL;
QDF_STATUS status = QDF_STATUS_E_FAILURE;
*rssi = 0;
qdf_spin_lock_bh(&pdev->neighbour_peer_mutex);
TAILQ_FOREACH(peer, &pdev->neighbour_peers_list,
neighbour_peer_list_elem) {
if (qdf_mem_cmp(&peer->neighbour_peers_macaddr.raw[0],
mac_addr, QDF_MAC_ADDR_SIZE) == 0) {
*rssi = peer->rssi;
status = QDF_STATUS_SUCCESS;
break;
}
}
qdf_spin_unlock_bh(&pdev->neighbour_peer_mutex);
return status;
}
static QDF_STATUS dp_config_for_nac_rssi(struct cdp_vdev *vdev_handle,
enum cdp_nac_param_cmd cmd, char *bssid, char *client_macaddr,
uint8_t chan_num)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
struct dp_pdev *pdev = (struct dp_pdev *)vdev->pdev;
struct dp_soc *soc = (struct dp_soc *) vdev->pdev->soc;
pdev->nac_rssi_filtering = 1;
/* Store address of NAC (neighbour peer) which will be checked
* against TA of received packets.
*/
if (cmd == CDP_NAC_PARAM_ADD) {
dp_update_filter_neighbour_peers(vdev_handle, DP_NAC_PARAM_ADD,
client_macaddr);
} else if (cmd == CDP_NAC_PARAM_DEL) {
dp_update_filter_neighbour_peers(vdev_handle,
DP_NAC_PARAM_DEL,
client_macaddr);
}
if (soc->cdp_soc.ol_ops->config_bssid_in_fw_for_nac_rssi)
soc->cdp_soc.ol_ops->config_bssid_in_fw_for_nac_rssi
((void *)vdev->pdev->ctrl_pdev,
vdev->vdev_id, cmd, bssid);
return QDF_STATUS_SUCCESS;
}
#endif
/**
* dp_enable_peer_based_pktlog() - Set Flag for peer based filtering
* for pktlog
* @txrx_pdev_handle: cdp_pdev handle
* @enb_dsb: Enable or disable peer based filtering
*
* Return: QDF_STATUS
*/
static int
dp_enable_peer_based_pktlog(
struct cdp_pdev *txrx_pdev_handle,
char *mac_addr, uint8_t enb_dsb)
{
struct dp_peer *peer;
uint8_t local_id;
struct dp_pdev *pdev = (struct dp_pdev *)txrx_pdev_handle;
peer = (struct dp_peer *)dp_find_peer_by_addr(txrx_pdev_handle,
mac_addr, &local_id);
if (!peer) {
dp_err("Invalid Peer");
return QDF_STATUS_E_FAILURE;
}
peer->peer_based_pktlog_filter = enb_dsb;
pdev->dp_peer_based_pktlog = enb_dsb;
return QDF_STATUS_SUCCESS;
}
#ifdef WLAN_SUPPORT_RX_PROTOCOL_TYPE_TAG
#ifdef WLAN_SUPPORT_RX_TAG_STATISTICS
/**
* dp_summarize_tag_stats - sums up the given protocol type's counters
* across all the rings and dumps the same
* @pdev_handle: cdp_pdev handle
* @protocol_type: protocol type for which stats should be displayed
*
* Return: none
*/
static uint64_t dp_summarize_tag_stats(struct cdp_pdev *pdev_handle,
uint16_t protocol_type)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
uint8_t ring_idx;
uint64_t total_tag_cnt = 0;
for (ring_idx = 0; ring_idx < MAX_REO_DEST_RINGS; ring_idx++) {
total_tag_cnt +=
pdev->reo_proto_tag_stats[ring_idx][protocol_type].tag_ctr;
}
total_tag_cnt += pdev->rx_err_proto_tag_stats[protocol_type].tag_ctr;
DP_PRINT_STATS("ProtoID: %d, Tag: %u Tagged MSDU cnt: %llu",
protocol_type,
pdev->rx_proto_tag_map[protocol_type].tag,
total_tag_cnt);
return total_tag_cnt;
}
/**
* dp_dump_pdev_rx_protocol_tag_stats - dump the number of packets tagged for
* given protocol type (RX_PROTOCOL_TAG_ALL indicates for all protocol)
* @pdev_handle: cdp_pdev handle
* @protocol_type: protocol type for which stats should be displayed
*
* Return: none
*/
static void
dp_dump_pdev_rx_protocol_tag_stats(struct cdp_pdev *pdev_handle,
uint16_t protocol_type)
{
uint16_t proto_idx;
if (protocol_type != RX_PROTOCOL_TAG_ALL &&
protocol_type >= RX_PROTOCOL_TAG_MAX) {
DP_PRINT_STATS("Invalid protocol type : %u", protocol_type);
return;
}
/* protocol_type in [0 ... RX_PROTOCOL_TAG_MAX] */
if (protocol_type != RX_PROTOCOL_TAG_ALL) {
dp_summarize_tag_stats(pdev_handle, protocol_type);
return;
}
/* protocol_type == RX_PROTOCOL_TAG_ALL */
for (proto_idx = 0; proto_idx < RX_PROTOCOL_TAG_MAX; proto_idx++)
dp_summarize_tag_stats(pdev_handle, proto_idx);
}
#endif /* WLAN_SUPPORT_RX_TAG_STATISTICS */
/**
* dp_reset_pdev_rx_protocol_tag_stats - resets the stats counters for
* given protocol type
* @pdev_handle: cdp_pdev handle
* @protocol_type: protocol type for which stats should be reset
*
* Return: none
*/
#ifdef WLAN_SUPPORT_RX_TAG_STATISTICS
static void
dp_reset_pdev_rx_protocol_tag_stats(struct cdp_pdev *pdev_handle,
uint16_t protocol_type)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
uint8_t ring_idx;
for (ring_idx = 0; ring_idx < MAX_REO_DEST_RINGS; ring_idx++)
pdev->reo_proto_tag_stats[ring_idx][protocol_type].tag_ctr = 0;
pdev->rx_err_proto_tag_stats[protocol_type].tag_ctr = 0;
}
#else
static void
dp_reset_pdev_rx_protocol_tag_stats(struct cdp_pdev *pdev_handle,
uint16_t protocol_type)
{
/** Stub API */
}
#endif /* WLAN_SUPPORT_RX_TAG_STATISTICS */
/**
* dp_update_pdev_rx_protocol_tag - Add/remove a protocol tag that should be
* applied to the desired protocol type packets
* @txrx_pdev_handle: cdp_pdev handle
* @enable_rx_protocol_tag - bitmask that indicates what protocol types
* are enabled for tagging. zero indicates disable feature, non-zero indicates
* enable feature
* @protocol_type: new protocol type for which the tag is being added
* @tag: user configured tag for the new protocol
*
* Return: QDF_STATUS
*/
static QDF_STATUS
dp_update_pdev_rx_protocol_tag(struct cdp_pdev *pdev_handle,
uint32_t enable_rx_protocol_tag,
uint16_t protocol_type,
uint16_t tag)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
/*
* dynamically enable/disable tagging based on enable_rx_protocol_tag
* flag.
*/
if (enable_rx_protocol_tag) {
/* Tagging for one or more protocols has been set by user */
pdev->is_rx_protocol_tagging_enabled = true;
} else {
/*
* No protocols being tagged, disable feature till next add
* operation
*/
pdev->is_rx_protocol_tagging_enabled = false;
}
/** Reset stats counter across all rings for given protocol */
dp_reset_pdev_rx_protocol_tag_stats(pdev_handle, protocol_type);
pdev->rx_proto_tag_map[protocol_type].tag = tag;
return QDF_STATUS_SUCCESS;
}
#endif /* WLAN_SUPPORT_RX_PROTOCOL_TYPE_TAG */
static QDF_STATUS dp_peer_map_attach_wifi3(struct cdp_soc_t *soc_hdl,
uint32_t max_peers,
uint32_t max_ast_index,
bool peer_map_unmap_v2)
{
struct dp_soc *soc = (struct dp_soc *)soc_hdl;
soc->max_peers = max_peers;
qdf_print ("%s max_peers %u, max_ast_index: %u\n",
__func__, max_peers, max_ast_index);
wlan_cfg_set_max_ast_idx(soc->wlan_cfg_ctx, max_ast_index);
if (dp_peer_find_attach(soc))
return QDF_STATUS_E_FAILURE;
soc->is_peer_map_unmap_v2 = peer_map_unmap_v2;
return QDF_STATUS_SUCCESS;
}
/**
* dp_pdev_set_ctrl_pdev() - set ctrl pdev handle in dp pdev
* @dp_pdev: dp pdev handle
* @ctrl_pdev: UMAC ctrl pdev handle
*
* Return: void
*/
static void dp_pdev_set_ctrl_pdev(struct cdp_pdev *dp_pdev,
struct cdp_ctrl_objmgr_pdev *ctrl_pdev)
{
struct dp_pdev *pdev = (struct dp_pdev *)dp_pdev;
pdev->ctrl_pdev = ctrl_pdev;
}
static void dp_set_rate_stats_cap(struct cdp_soc_t *soc_hdl,
uint8_t val)
{
struct dp_soc *soc = (struct dp_soc *)soc_hdl;
soc->wlanstats_enabled = val;
}
static void dp_soc_set_rate_stats_ctx(struct cdp_soc_t *soc_handle,
void *stats_ctx)
{
struct dp_soc *soc = (struct dp_soc *)soc_handle;
soc->rate_stats_ctx = stats_ctx;
}
#if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
static void dp_flush_rate_stats_req(struct cdp_soc_t *soc_hdl,
struct cdp_pdev *pdev_hdl)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_hdl;
struct dp_soc *soc = (struct dp_soc *)pdev->soc;
struct dp_vdev *vdev = NULL;
struct dp_peer *peer = NULL;
qdf_spin_lock_bh(&soc->peer_ref_mutex);
qdf_spin_lock_bh(&pdev->vdev_list_lock);
TAILQ_FOREACH(vdev, &pdev->vdev_list, vdev_list_elem) {
TAILQ_FOREACH(peer, &vdev->peer_list, peer_list_elem) {
if (peer)
dp_wdi_event_handler(
WDI_EVENT_FLUSH_RATE_STATS_REQ,
pdev->soc, peer->wlanstats_ctx,
peer->peer_ids[0],
WDI_NO_VAL, pdev->pdev_id);
}
}
qdf_spin_unlock_bh(&pdev->vdev_list_lock);
qdf_spin_unlock_bh(&soc->peer_ref_mutex);
}
#else
static inline void
dp_flush_rate_stats_req(struct cdp_soc_t *soc_hdl,
struct cdp_pdev *pdev_hdl)
{
}
#endif
#if defined(FEATURE_PERPKT_INFO) && WDI_EVENT_ENABLE
static void dp_peer_flush_rate_stats(struct cdp_soc_t *soc,
struct cdp_pdev *pdev_handle,
void *buf)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
dp_wdi_event_handler(WDI_EVENT_PEER_FLUSH_RATE_STATS,
pdev->soc, buf, HTT_INVALID_PEER,
WDI_NO_VAL, pdev->pdev_id);
}
#else
static inline void
dp_peer_flush_rate_stats(struct cdp_soc_t *soc,
struct cdp_pdev *pdev_handle,
void *buf)
{
}
#endif
static void *dp_soc_get_rate_stats_ctx(struct cdp_soc_t *soc_handle)
{
struct dp_soc *soc = (struct dp_soc *)soc_handle;
return soc->rate_stats_ctx;
}
/*
* dp_get_cfg() - get dp cfg
* @soc: cdp soc handle
* @cfg: cfg enum
*
* Return: cfg value
*/
static uint32_t dp_get_cfg(void *soc, enum cdp_dp_cfg cfg)
{
struct dp_soc *dpsoc = (struct dp_soc *)soc;
uint32_t value = 0;
switch (cfg) {
case cfg_dp_enable_data_stall:
value = dpsoc->wlan_cfg_ctx->enable_data_stall_detection;
break;
case cfg_dp_enable_ip_tcp_udp_checksum_offload:
value = dpsoc->wlan_cfg_ctx->tcp_udp_checksumoffload;
break;
case cfg_dp_tso_enable:
value = dpsoc->wlan_cfg_ctx->tso_enabled;
break;
case cfg_dp_lro_enable:
value = dpsoc->wlan_cfg_ctx->lro_enabled;
break;
case cfg_dp_gro_enable:
value = dpsoc->wlan_cfg_ctx->gro_enabled;
break;
case cfg_dp_tx_flow_start_queue_offset:
value = dpsoc->wlan_cfg_ctx->tx_flow_start_queue_offset;
break;
case cfg_dp_tx_flow_stop_queue_threshold:
value = dpsoc->wlan_cfg_ctx->tx_flow_stop_queue_threshold;
break;
case cfg_dp_disable_intra_bss_fwd:
value = dpsoc->wlan_cfg_ctx->disable_intra_bss_fwd;
break;
case cfg_dp_pktlog_buffer_size:
value = dpsoc->wlan_cfg_ctx->pktlog_buffer_size;
break;
default:
value = 0;
}
return value;
}
#ifdef CONFIG_WIN
/**
* dp_tx_flow_ctrl_configure_pdev() - Configure flow control params
* @pdev_hdl: datapath pdev handle
* @param: ol ath params
* @value: value of the flag
* @buff: Buffer to be passed
*
* Implemented this function same as legacy function. In legacy code, single
* function is used to display stats and update pdev params.
*
* Return: 0 for success. nonzero for failure.
*/
static uint32_t dp_tx_flow_ctrl_configure_pdev(void *pdev_handle,
enum _ol_ath_param_t param,
uint32_t value, void *buff)
{
struct dp_soc *soc = NULL;
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
if (qdf_unlikely(!pdev))
return 1;
soc = pdev->soc;
if (!soc)
return 1;
switch (param) {
case OL_ATH_PARAM_VIDEO_DELAY_STATS_FC:
if (value)
pdev->delay_stats_flag = true;
else
pdev->delay_stats_flag = false;
break;
case OL_ATH_PARAM_VIDEO_STATS_FC:
qdf_print("------- TID Stats ------\n");
dp_pdev_print_tid_stats(pdev);
qdf_print("------ Delay Stats ------\n");
dp_pdev_print_delay_stats(pdev);
break;
case OL_ATH_PARAM_TOTAL_Q_SIZE:
{
uint32_t tx_min, tx_max;
tx_min = wlan_cfg_get_min_tx_desc(soc->wlan_cfg_ctx);
tx_max = wlan_cfg_get_num_tx_desc(soc->wlan_cfg_ctx);
if (!buff) {
if ((value >= tx_min) && (value <= tx_max)) {
pdev->num_tx_allowed = value;
} else {
QDF_TRACE(QDF_MODULE_ID_DP,
QDF_TRACE_LEVEL_INFO,
"Failed to update num_tx_allowed, Q_min = %d Q_max = %d",
tx_min, tx_max);
break;
}
} else {
*(int *)buff = pdev->num_tx_allowed;
}
}
break;
default:
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
"%s: not handled param %d ", __func__, param);
break;
}
return 0;
}
#endif
/**
* dp_set_pdev_pcp_tid_map_wifi3(): update pcp tid map in pdev
* @vdev: DP_PDEV handle
* @pcp: pcp value
* @tid: tid value passed by the user
*
* Return: QDF_STATUS_SUCCESS on success
*/
static QDF_STATUS dp_set_pdev_pcp_tid_map_wifi3(struct cdp_pdev *pdev_handle,
uint8_t pcp, uint8_t tid)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
struct dp_soc *soc = pdev->soc;
soc->pcp_tid_map[pcp] = tid;
hal_tx_update_pcp_tid_map(soc->hal_soc, pcp, tid);
return QDF_STATUS_SUCCESS;
}
/**
* dp_set_pdev_tidmap_prty_wifi3(): update tidmap priority in pdev
* @vdev: DP_PDEV handle
* @prio: tidmap priority value passed by the user
*
* Return: QDF_STATUS_SUCCESS on success
*/
static QDF_STATUS dp_set_pdev_tidmap_prty_wifi3(struct cdp_pdev *pdev_handle,
uint8_t prio)
{
struct dp_pdev *pdev = (struct dp_pdev *)pdev_handle;
struct dp_soc *soc = pdev->soc;
soc->tidmap_prty = prio;
hal_tx_set_tidmap_prty(soc->hal_soc, prio);
return QDF_STATUS_SUCCESS;
}
/**
* dp_set_vdev_pcp_tid_map_wifi3(): update pcp tid map in vdev
* @vdev: DP_VDEV handle
* @pcp: pcp value
* @tid: tid value passed by the user
*
* Return: QDF_STATUS_SUCCESS on success
*/
static QDF_STATUS dp_set_vdev_pcp_tid_map_wifi3(struct cdp_vdev *vdev_handle,
uint8_t pcp, uint8_t tid)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
vdev->pcp_tid_map[pcp] = tid;
return QDF_STATUS_SUCCESS;
}
/**
* dp_set_vdev_tidmap_tbl_id_wifi3(): update tidmapi tbl id in vdev
* @vdev: DP_VDEV handle
* @mapid: map_id value passed by the user
*
* Return: QDF_STATUS_SUCCESS on success
*/
static QDF_STATUS dp_set_vdev_tidmap_tbl_id_wifi3(struct cdp_vdev *vdev_handle,
uint8_t mapid)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
vdev->tidmap_tbl_id = mapid;
return QDF_STATUS_SUCCESS;
}
/**
* dp_set_vdev_tidmap_prty_wifi3(): update tidmap priority in vdev
* @vdev: DP_VDEV handle
* @prio: tidmap priority value passed by the user
*
* Return: QDF_STATUS_SUCCESS on success
*/
static QDF_STATUS dp_set_vdev_tidmap_prty_wifi3(struct cdp_vdev *vdev_handle,
uint8_t prio)
{
struct dp_vdev *vdev = (struct dp_vdev *)vdev_handle;
vdev->tidmap_prty = prio;
return QDF_STATUS_SUCCESS;
}
static struct cdp_cmn_ops dp_ops_cmn = {
.txrx_soc_attach_target = dp_soc_attach_target_wifi3,
.txrx_vdev_attach = dp_vdev_attach_wifi3,
.txrx_vdev_detach = dp_vdev_detach_wifi3,
.txrx_pdev_attach = dp_pdev_attach_wifi3,
.txrx_pdev_detach = dp_pdev_detach_wifi3,
.txrx_pdev_deinit = dp_pdev_deinit_wifi3,
.txrx_peer_create = dp_peer_create_wifi3,
.txrx_peer_setup = dp_peer_setup_wifi3,
#ifdef FEATURE_AST
.txrx_peer_teardown = dp_peer_teardown_wifi3,
#else
.txrx_peer_teardown = NULL,
#endif
.txrx_peer_add_ast = dp_peer_add_ast_wifi3,
.txrx_peer_update_ast = dp_peer_update_ast_wifi3,
.txrx_peer_get_ast_info_by_soc = dp_peer_get_ast_info_by_soc_wifi3,
.txrx_peer_get_ast_info_by_pdev =
dp_peer_get_ast_info_by_pdevid_wifi3,
.txrx_peer_ast_delete_by_soc =
dp_peer_ast_entry_del_by_soc,
.txrx_peer_ast_delete_by_pdev =
dp_peer_ast_entry_del_by_pdev,
.txrx_peer_delete = dp_peer_delete_wifi3,
.txrx_vdev_register = dp_vdev_register_wifi3,
.txrx_vdev_flush_peers = dp_vdev_flush_peers,
.txrx_soc_detach = dp_soc_detach_wifi3,
.txrx_soc_deinit = dp_soc_deinit_wifi3,
.txrx_soc_init = dp_soc_init_wifi3,
.txrx_tso_soc_attach = dp_tso_soc_attach,
.txrx_tso_soc_detach = dp_tso_soc_detach,
.txrx_get_vdev_mac_addr = dp_get_vdev_mac_addr_wifi3,
.txrx_get_vdev_from_vdev_id = dp_get_vdev_from_vdev_id_wifi3,
.txrx_get_mon_vdev_from_pdev = dp_get_mon_vdev_from_pdev_wifi3,
.txrx_get_ctrl_pdev_from_vdev = dp_get_ctrl_pdev_from_vdev_wifi3,
.txrx_ath_getstats = dp_get_device_stats,
.addba_requestprocess = dp_addba_requestprocess_wifi3,
.addba_responsesetup = dp_addba_responsesetup_wifi3,
.addba_resp_tx_completion = dp_addba_resp_tx_completion_wifi3,
.delba_process = dp_delba_process_wifi3,
.set_addba_response = dp_set_addba_response,
.get_peer_mac_addr_frm_id = dp_get_peer_mac_addr_frm_id,
.flush_cache_rx_queue = NULL,
/* TODO: get API's for dscp-tid need to be added*/
.set_vdev_dscp_tid_map = dp_set_vdev_dscp_tid_map_wifi3,
.set_pdev_dscp_tid_map = dp_set_pdev_dscp_tid_map_wifi3,
.hmmc_tid_override_en = dp_hmmc_tid_override_en_wifi3,
.set_hmmc_tid_val = dp_set_hmmc_tid_val_wifi3,
.txrx_get_total_per = dp_get_total_per,
.txrx_stats_request = dp_txrx_stats_request,
.txrx_set_monitor_mode = dp_vdev_set_monitor_mode,
.txrx_get_pdev_id_frm_pdev = dp_get_pdev_id_frm_pdev,
.txrx_get_vow_config_frm_pdev = dp_get_delay_stats_flag,
.txrx_pdev_set_chan_noise_floor = dp_pdev_set_chan_noise_floor,
.txrx_set_nac = dp_set_nac,
.txrx_get_tx_pending = dp_get_tx_pending,
.txrx_set_pdev_tx_capture = dp_config_debug_sniffer,
.txrx_get_peer_mac_from_peer_id = dp_get_peer_mac_from_peer_id,
.display_stats = dp_txrx_dump_stats,
.txrx_soc_set_nss_cfg = dp_soc_set_nss_cfg_wifi3,
.txrx_soc_get_nss_cfg = dp_soc_get_nss_cfg_wifi3,
.txrx_intr_attach = dp_soc_interrupt_attach_wrapper,
.txrx_intr_detach = dp_soc_interrupt_detach,
.set_pn_check = dp_set_pn_check_wifi3,
.set_key_sec_type = dp_set_key_sec_type_wifi3,
.update_config_parameters = dp_update_config_parameters,
/* TODO: Add other functions */
.txrx_data_tx_cb_set = dp_txrx_data_tx_cb_set,
.get_dp_txrx_handle = dp_pdev_get_dp_txrx_handle,
.set_dp_txrx_handle = dp_pdev_set_dp_txrx_handle,
.get_soc_dp_txrx_handle = dp_soc_get_dp_txrx_handle,
.set_soc_dp_txrx_handle = dp_soc_set_dp_txrx_handle,
.map_pdev_to_lmac = dp_soc_map_pdev_to_lmac,
.txrx_set_ba_aging_timeout = dp_set_ba_aging_timeout,
.txrx_get_ba_aging_timeout = dp_get_ba_aging_timeout,
.tx_send = dp_tx_send,
.txrx_peer_reset_ast = dp_wds_reset_ast_wifi3,
.txrx_peer_reset_ast_table = dp_wds_reset_ast_table_wifi3,
.txrx_peer_flush_ast_table = dp_wds_flush_ast_table_wifi3,
.txrx_peer_map_attach = dp_peer_map_attach_wifi3,
.txrx_pdev_set_ctrl_pdev = dp_pdev_set_ctrl_pdev,
.txrx_get_os_rx_handles_from_vdev =
dp_get_os_rx_handles_from_vdev_wifi3,
.delba_tx_completion = dp_delba_tx_completion_wifi3,
.get_dp_capabilities = dp_get_cfg_capabilities,
.txrx_get_cfg = dp_get_cfg,
.set_rate_stats_ctx = dp_soc_set_rate_stats_ctx,
.get_rate_stats_ctx = dp_soc_get_rate_stats_ctx,
.txrx_peer_flush_rate_stats = dp_peer_flush_rate_stats,
.txrx_flush_rate_stats_request = dp_flush_rate_stats_req,
.set_pdev_pcp_tid_map = dp_set_pdev_pcp_tid_map_wifi3,
.set_pdev_tidmap_prty = dp_set_pdev_tidmap_prty_wifi3,
.set_vdev_pcp_tid_map = dp_set_vdev_pcp_tid_map_wifi3,
.set_vdev_tidmap_prty = dp_set_vdev_tidmap_prty_wifi3,
.set_vdev_tidmap_tbl_id = dp_set_vdev_tidmap_tbl_id_wifi3,
.txrx_cp_peer_del_response = dp_cp_peer_del_resp_handler,
};
static struct cdp_ctrl_ops dp_ops_ctrl = {
.txrx_peer_authorize = dp_peer_authorize,
.txrx_set_vdev_rx_decap_type = dp_set_vdev_rx_decap_type,
.txrx_set_tx_encap_type = dp_set_vdev_tx_encap_type,
#ifdef MESH_MODE_SUPPORT
.txrx_set_mesh_mode = dp_peer_set_mesh_mode,
.txrx_set_mesh_rx_filter = dp_peer_set_mesh_rx_filter,
#endif
.txrx_set_vdev_param = dp_set_vdev_param,
.txrx_peer_set_nawds = dp_peer_set_nawds,
.txrx_set_pdev_reo_dest = dp_set_pdev_reo_dest,
.txrx_get_pdev_reo_dest = dp_get_pdev_reo_dest,
.txrx_set_filter_neighbour_peers = dp_set_filter_neighbour_peers,
.txrx_update_filter_neighbour_peers =
dp_update_filter_neighbour_peers,
.txrx_get_sec_type = dp_get_sec_type,
/* TODO: Add other functions */
.txrx_wdi_event_sub = dp_wdi_event_sub,
.txrx_wdi_event_unsub = dp_wdi_event_unsub,
#ifdef WDI_EVENT_ENABLE
.txrx_get_pldev = dp_get_pldev,
#endif
.txrx_set_pdev_param = dp_set_pdev_param,
#ifdef ATH_SUPPORT_NAC_RSSI
.txrx_vdev_config_for_nac_rssi = dp_config_for_nac_rssi,
.txrx_vdev_get_neighbour_rssi = dp_vdev_get_neighbour_rssi,
#endif
.set_key = dp_set_michael_key,
.txrx_get_vdev_param = dp_get_vdev_param,
.enable_peer_based_pktlog = dp_enable_peer_based_pktlog,
.calculate_delay_stats = dp_calculate_delay_stats,
#ifdef WLAN_SUPPORT_RX_PROTOCOL_TYPE_TAG
.txrx_update_pdev_rx_protocol_tag = dp_update_pdev_rx_protocol_tag,
#ifdef WLAN_SUPPORT_RX_TAG_STATISTICS
.txrx_dump_pdev_rx_protocol_tag_stats =
dp_dump_pdev_rx_protocol_tag_stats,
#endif /* WLAN_SUPPORT_RX_TAG_STATISTICS */
#endif /* WLAN_SUPPORT_RX_PROTOCOL_TYPE_TAG */
};
static struct cdp_me_ops dp_ops_me = {
#ifdef ATH_SUPPORT_IQUE
.tx_me_alloc_descriptor = dp_tx_me_alloc_descriptor,
.tx_me_free_descriptor = dp_tx_me_free_descriptor,
.tx_me_convert_ucast = dp_tx_me_send_convert_ucast,
#endif
};
static struct cdp_mon_ops dp_ops_mon = {
.txrx_monitor_set_filter_ucast_data = NULL,
.txrx_monitor_set_filter_mcast_data = NULL,
.txrx_monitor_set_filter_non_data = NULL,
.txrx_monitor_get_filter_ucast_data = dp_vdev_get_filter_ucast_data,
.txrx_monitor_get_filter_mcast_data = dp_vdev_get_filter_mcast_data,
.txrx_monitor_get_filter_non_data = dp_vdev_get_filter_non_data,
.txrx_reset_monitor_mode = dp_reset_monitor_mode,
/* Added support for HK advance filter */
.txrx_set_advance_monitor_filter = dp_pdev_set_advance_monitor_filter,
.txrx_monitor_record_channel = dp_pdev_set_monitor_channel,
};
static struct cdp_host_stats_ops dp_ops_host_stats = {
.txrx_per_peer_stats = dp_get_host_peer_stats,
.get_fw_peer_stats = dp_get_fw_peer_stats,
.get_htt_stats = dp_get_htt_stats,
.txrx_enable_enhanced_stats = dp_enable_enhanced_stats,
.txrx_disable_enhanced_stats = dp_disable_enhanced_stats,
.txrx_stats_publish = dp_txrx_stats_publish,
.txrx_get_vdev_stats = dp_txrx_get_vdev_stats,
.txrx_get_peer_stats = dp_txrx_get_peer_stats,
.txrx_reset_peer_stats = dp_txrx_reset_peer_stats,
.txrx_get_pdev_stats = dp_txrx_get_pdev_stats,
.txrx_get_ratekbps = dp_txrx_get_ratekbps,
.configure_rate_stats = dp_set_rate_stats_cap,
.txrx_update_vdev_stats = dp_txrx_update_vdev_host_stats,
/* TODO */
};
static struct cdp_raw_ops dp_ops_raw = {
/* TODO */
};
#ifdef CONFIG_WIN
static struct cdp_pflow_ops dp_ops_pflow = {
dp_tx_flow_ctrl_configure_pdev,
};
#endif /* CONFIG_WIN */
#ifdef FEATURE_RUNTIME_PM
/**
* dp_runtime_suspend() - ensure DP is ready to runtime suspend
* @opaque_pdev: DP pdev context
*
* DP is ready to runtime suspend if there are no pending TX packets.
*
* Return: QDF_STATUS
*/
static QDF_STATUS dp_runtime_suspend(struct cdp_pdev *opaque_pdev)
{
struct dp_pdev *pdev = (struct dp_pdev *)opaque_pdev;
struct dp_soc *soc = pdev->soc;
/* Abort if there are any pending TX packets */
if (dp_get_tx_pending(opaque_pdev) > 0) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_INFO,
FL("Abort suspend due to pending TX packets"));
return QDF_STATUS_E_AGAIN;
}
if (soc->intr_mode == DP_INTR_POLL)
qdf_timer_stop(&soc->int_timer);
return QDF_STATUS_SUCCESS;
}
/**
* dp_flush_ring_hptp() - Update ring shadow
* register HP/TP address when runtime
* resume
* @opaque_soc: DP soc context
*
* Return: None
*/
static
void dp_flush_ring_hptp(struct dp_soc *soc, void *hal_ring)
{
struct hal_srng *hal_srng = (struct hal_srng *)hal_ring;
if (hal_srng && hal_srng_get_clear_event(hal_srng,
HAL_SRNG_FLUSH_EVENT)) {
/* Acquire the lock */
hal_srng_access_start(soc->hal_soc, hal_srng);
hal_srng_access_end(soc->hal_soc, hal_srng);
hal_srng_set_flush_last_ts(hal_srng);
}
}
/**
* dp_runtime_resume() - ensure DP is ready to runtime resume
* @opaque_pdev: DP pdev context
*
* Resume DP for runtime PM.
*
* Return: QDF_STATUS
*/
static QDF_STATUS dp_runtime_resume(struct cdp_pdev *opaque_pdev)
{
struct dp_pdev *pdev = (struct dp_pdev *)opaque_pdev;
struct dp_soc *soc = pdev->soc;
int i;
if (soc->intr_mode == DP_INTR_POLL)
qdf_timer_mod(&soc->int_timer, DP_INTR_POLL_TIMER_MS);
for (i = 0; i < MAX_TCL_DATA_RINGS; i++) {
dp_flush_ring_hptp(soc, soc->tcl_data_ring[i].hal_srng);
}
dp_flush_ring_hptp(soc, soc->reo_cmd_ring.hal_srng);
return QDF_STATUS_SUCCESS;
}
#endif /* FEATURE_RUNTIME_PM */
/**
* dp_tx_get_success_ack_stats() - get tx success completion count
* @opaque_pdev: dp pdev context
* @vdevid: vdev identifier
*
* Return: tx success ack count
*/
static uint32_t dp_tx_get_success_ack_stats(struct cdp_pdev *pdev,
uint8_t vdev_id)
{
struct dp_vdev *vdev =
(struct dp_vdev *)dp_get_vdev_from_vdev_id_wifi3(pdev,
vdev_id);
struct dp_soc *soc = ((struct dp_pdev *)pdev)->soc;
struct cdp_vdev_stats *vdev_stats = NULL;
uint32_t tx_success;
if (!vdev) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
FL("Invalid vdev id %d"), vdev_id);
return 0;
}
vdev_stats = qdf_mem_malloc_atomic(sizeof(struct cdp_vdev_stats));
if (!vdev_stats) {
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_ERROR,
"DP alloc failure - unable to get alloc vdev stats");
return 0;
}
qdf_spin_lock_bh(&soc->peer_ref_mutex);
dp_aggregate_vdev_stats(vdev, vdev_stats);
qdf_spin_unlock_bh(&soc->peer_ref_mutex);
tx_success = vdev_stats->tx.tx_success.num;
qdf_mem_free(vdev_stats);
return tx_success;
}
#ifdef WLAN_SUPPORT_DATA_STALL
/**
* dp_register_data_stall_detect_cb() - register data stall callback
* @opaque_pdev: DP pdev context
* @data_stall_detect_callback: data stall callback function
*
* Return: QDF_STATUS Enumeration
*/
static QDF_STATUS dp_register_data_stall_detect_cb(
struct cdp_pdev *opaque_pdev,
data_stall_detect_cb data_stall_detect_callback)
{
struct dp_pdev *pdev = (struct dp_pdev *)opaque_pdev;
if (!pdev) {
dp_err("pdev NULL!");
return QDF_STATUS_E_INVAL;
}
pdev->data_stall_detect_callback = data_stall_detect_callback;
return QDF_STATUS_SUCCESS;
}
/**
* dp_deregister_data_stall_detect_cb() - de-register data stall callback
* @opaque_pdev: DP pdev context
* @data_stall_detect_callback: data stall callback function
*
* Return: QDF_STATUS Enumeration
*/
static QDF_STATUS dp_deregister_data_stall_detect_cb(
struct cdp_pdev *opaque_pdev,
data_stall_detect_cb data_stall_detect_callback)
{
struct dp_pdev *pdev = (struct dp_pdev *)opaque_pdev;
if (!pdev) {
dp_err("pdev NULL!");
return QDF_STATUS_E_INVAL;
}
pdev->data_stall_detect_callback = NULL;
return QDF_STATUS_SUCCESS;
}
/**
* dp_txrx_post_data_stall_event() - post data stall event
* @opaque_pdev: DP pdev context
* @indicator: Module triggering data stall
* @data_stall_type: data stall event type
* @pdev_id: pdev id
* @vdev_id_bitmap: vdev id bitmap
* @recovery_type: data stall recovery type
*
* Return: None
*/
static void dp_txrx_post_data_stall_event(
struct cdp_pdev *opaque_pdev,
enum data_stall_log_event_indicator indicator,
enum data_stall_log_event_type data_stall_type,
uint32_t pdev_id, uint32_t vdev_id_bitmap,
enum data_stall_log_recovery_type recovery_type)
{
struct data_stall_event_info data_stall_info;
struct dp_pdev *pdev;
pdev = (struct dp_pdev *)opaque_pdev;
if (!pdev) {
dp_err("pdev NULL!");
return;
}
if (!pdev->data_stall_detect_callback) {
dp_err("data stall cb not registered!");
return;
}
dp_info("data_stall_type: %x pdev_id: %d",
data_stall_type, pdev_id);
data_stall_info.indicator = indicator;
data_stall_info.data_stall_type = data_stall_type;
data_stall_info.vdev_id_bitmap = vdev_id_bitmap;
data_stall_info.pdev_id = pdev_id;
data_stall_info.recovery_type = recovery_type;
pdev->data_stall_detect_callback(&data_stall_info);
}
#endif /* WLAN_SUPPORT_DATA_STALL */
/**
* dp_peer_get_ref_find_by_addr - get peer with addr by ref count inc
* @dev: physical device instance
* @peer_mac_addr: peer mac address
* @debug_id: to track enum peer access
*
* Return: peer instance pointer
*/
static void *
dp_peer_get_ref_find_by_addr(struct cdp_pdev *dev, uint8_t *peer_mac_addr,
uint8_t *local_id,
enum peer_debug_id_type debug_id)
{
struct dp_pdev *pdev = (struct dp_pdev *)dev;
struct dp_peer *peer;
peer = dp_peer_find_hash_find(pdev->soc, peer_mac_addr, 0, DP_VDEV_ALL);
if (!peer)
return NULL;
if (peer->delete_in_progress) {
dp_err("Peer deletion in progress");
dp_peer_unref_delete(peer);
return NULL;
}
*local_id = peer->local_id;
dp_info_rl("peer %pK mac: %pM", peer, peer->mac_addr.raw);
return peer;
}
#ifdef WLAN_FEATURE_STATS_EXT
/* rx hw stats event wait timeout in ms */
#define DP_REO_STATUS_STATS_TIMEOUT 1500
/**
* dp_txrx_ext_stats_request - request dp txrx extended stats request
* @ppdev: pdev handle
* @req: stats request
*
* Return: QDF_STATUS
*/
static QDF_STATUS
dp_txrx_ext_stats_request(struct cdp_pdev *ppdev,
struct cdp_txrx_ext_stats *req)
{
struct dp_pdev *pdev = (struct dp_pdev *)ppdev;
struct dp_soc *soc = NULL;
if (!pdev) {
dp_err("pdev is null");
return QDF_STATUS_E_INVAL;
}
soc = pdev->soc;
dp_aggregate_pdev_stats(pdev);
req->tx_msdu_enqueue = pdev->stats.tx_i.processed.num;
req->tx_msdu_overflow = pdev->stats.tx_i.dropped.ring_full;
req->rx_mpdu_received = soc->ext_stats.rx_mpdu_received;
req->rx_mpdu_delivered = soc->ext_stats.rx_mpdu_received;
req->rx_mpdu_missed = soc->ext_stats.rx_mpdu_missed;
req->rx_mpdu_error = soc->stats.rx.err_ring_pkts -
soc->stats.rx.rx_frags;
return QDF_STATUS_SUCCESS;
}
/**
* dp_rx_hw_stats_cb - request rx hw stats response callback
* @soc: soc handle
* @cb_ctxt: callback context
* @reo_status: reo command response status
*
* Return: None
*/
static void dp_rx_hw_stats_cb(struct dp_soc *soc, void *cb_ctxt,
union hal_reo_status *reo_status)
{
struct dp_req_rx_hw_stats_t *rx_hw_stats = cb_ctxt;
struct hal_reo_queue_status *queue_status = &reo_status->queue_status;
bool is_query_timeout;
qdf_spin_lock_bh(&soc->rx_hw_stats_lock);
is_query_timeout = rx_hw_stats->is_query_timeout;
/* free the cb_ctxt if all pending tid stats query is received */
if (qdf_atomic_dec_and_test(&rx_hw_stats->pending_tid_stats_cnt)) {
if (!is_query_timeout) {
qdf_event_set(&soc->rx_hw_stats_event);
soc->is_last_stats_ctx_init = false;
}
qdf_mem_free(rx_hw_stats);
}
if (queue_status->header.status != HAL_REO_CMD_SUCCESS) {
dp_info("REO stats failure %d",
queue_status->header.status);
qdf_spin_unlock_bh(&soc->rx_hw_stats_lock);
return;
}
if (!is_query_timeout) {
soc->ext_stats.rx_mpdu_received +=
queue_status->mpdu_frms_cnt;
soc->ext_stats.rx_mpdu_missed +=
queue_status->late_recv_mpdu_cnt;
}
qdf_spin_unlock_bh(&soc->rx_hw_stats_lock);
}
/**
* dp_request_rx_hw_stats - request rx hardware stats
* @soc_hdl: soc handle
* @pvdev: vdev handle
*
* Return: None
*/
static QDF_STATUS
dp_request_rx_hw_stats(struct cdp_soc_t *soc_hdl, uint8_t vdev_id)
{
struct dp_soc *soc = (struct dp_soc *)soc_hdl;
struct dp_vdev *vdev =
dp_get_vdev_from_soc_vdev_id_wifi3(soc, vdev_id);
struct dp_peer *peer;
uint8_t local_id = 0;
QDF_STATUS status;
struct dp_req_rx_hw_stats_t *rx_hw_stats;
int rx_stats_sent_cnt = 0;
if (!vdev) {
dp_err("vdev is null for vdev_id: %u", vdev_id);
return QDF_STATUS_E_INVAL;
}
peer = dp_peer_get_ref_find_by_addr((struct cdp_pdev *)vdev->pdev,
vdev->vap_bss_peer_mac_addr,
&local_id,
0);
if (!peer) {
dp_err("Peer is NULL");
return QDF_STATUS_E_INVAL;
}
rx_hw_stats = qdf_mem_malloc(sizeof(*rx_hw_stats));
if (!rx_hw_stats) {
dp_err("malloc failed for hw stats structure");
dp_peer_unref_delete(peer);
return QDF_STATUS_E_NOMEM;
}
qdf_event_reset(&soc->rx_hw_stats_event);
qdf_spin_lock_bh(&soc->rx_hw_stats_lock);
rx_stats_sent_cnt =
dp_peer_rxtid_stats(peer, dp_rx_hw_stats_cb, rx_hw_stats);
if (!rx_stats_sent_cnt) {
dp_err("no tid stats sent successfully");
qdf_mem_free(rx_hw_stats);
qdf_spin_unlock_bh(&soc->rx_hw_stats_lock);
dp_peer_unref_delete(peer);
return QDF_STATUS_E_INVAL;
}
qdf_atomic_set(&rx_hw_stats->pending_tid_stats_cnt,
rx_stats_sent_cnt);
rx_hw_stats->is_query_timeout = false;
soc->is_last_stats_ctx_init = true;
qdf_spin_unlock_bh(&soc->rx_hw_stats_lock);
status = qdf_wait_single_event(&soc->rx_hw_stats_event,
DP_REO_STATUS_STATS_TIMEOUT);
qdf_spin_lock_bh(&soc->rx_hw_stats_lock);
if (status != QDF_STATUS_SUCCESS) {
dp_info("rx hw stats event timeout");
if (soc->is_last_stats_ctx_init)
rx_hw_stats->is_query_timeout = true;
}
qdf_spin_unlock_bh(&soc->rx_hw_stats_lock);
dp_peer_unref_delete(peer);
return status;
}
#endif /* WLAN_FEATURE_STATS_EXT */
#ifndef CONFIG_WIN
static struct cdp_misc_ops dp_ops_misc = {
#ifdef FEATURE_WLAN_TDLS
.tx_non_std = dp_tx_non_std,
#endif /* FEATURE_WLAN_TDLS */
.get_opmode = dp_get_opmode,
#ifdef FEATURE_RUNTIME_PM
.runtime_suspend = dp_runtime_suspend,
.runtime_resume = dp_runtime_resume,
#endif /* FEATURE_RUNTIME_PM */
.pkt_log_init = dp_pkt_log_init,
.pkt_log_con_service = dp_pkt_log_con_service,
.get_num_rx_contexts = dp_get_num_rx_contexts,
.get_tx_ack_stats = dp_tx_get_success_ack_stats,
#ifdef WLAN_SUPPORT_DATA_STALL
.txrx_data_stall_cb_register = dp_register_data_stall_detect_cb,
.txrx_data_stall_cb_deregister = dp_deregister_data_stall_detect_cb,
.txrx_post_data_stall_event = dp_txrx_post_data_stall_event,
#endif
#ifdef WLAN_FEATURE_STATS_EXT
.txrx_ext_stats_request = dp_txrx_ext_stats_request,
.request_rx_hw_stats = dp_request_rx_hw_stats,
#endif /* WLAN_FEATURE_STATS_EXT */
};
static struct cdp_flowctl_ops dp_ops_flowctl = {
/* WIFI 3.0 DP implement as required. */
#ifdef QCA_LL_TX_FLOW_CONTROL_V2
.flow_pool_map_handler = dp_tx_flow_pool_map,
.flow_pool_unmap_handler = dp_tx_flow_pool_unmap,
.register_pause_cb = dp_txrx_register_pause_cb,
.dump_flow_pool_info = dp_tx_dump_flow_pool_info,
.tx_desc_thresh_reached = dp_tx_desc_thresh_reached,
#endif /* QCA_LL_TX_FLOW_CONTROL_V2 */
};
static struct cdp_lflowctl_ops dp_ops_l_flowctl = {
/* WIFI 3.0 DP NOT IMPLEMENTED YET */
};
#ifdef IPA_OFFLOAD
static struct cdp_ipa_ops dp_ops_ipa = {
.ipa_get_resource = dp_ipa_get_resource,
.ipa_set_doorbell_paddr = dp_ipa_set_doorbell_paddr,
.ipa_op_response = dp_ipa_op_response,
.ipa_register_op_cb = dp_ipa_register_op_cb,
.ipa_get_stat = dp_ipa_get_stat,
.ipa_tx_data_frame = dp_tx_send_ipa_data_frame,
.ipa_enable_autonomy = dp_ipa_enable_autonomy,
.ipa_disable_autonomy = dp_ipa_disable_autonomy,
.ipa_setup = dp_ipa_setup,
.ipa_cleanup = dp_ipa_cleanup,
.ipa_setup_iface = dp_ipa_setup_iface,
.ipa_cleanup_iface = dp_ipa_cleanup_iface,
.ipa_enable_pipes = dp_ipa_enable_pipes,
.ipa_disable_pipes = dp_ipa_disable_pipes,
.ipa_set_perf_level = dp_ipa_set_perf_level,
.ipa_rx_intrabss_fwd = dp_ipa_rx_intrabss_fwd
};
#endif
static QDF_STATUS dp_bus_suspend(struct cdp_pdev *opaque_pdev)
{
struct dp_pdev *pdev = (struct dp_pdev *)opaque_pdev;
struct dp_soc *soc = pdev->soc;
int timeout = SUSPEND_DRAIN_WAIT;
int drain_wait_delay = 50; /* 50 ms */
/* Abort if there are any pending TX packets */
while (dp_get_tx_pending(opaque_pdev) > 0) {
qdf_sleep(drain_wait_delay);
if (timeout <= 0) {
dp_err("TX frames are pending, abort suspend");
return QDF_STATUS_E_TIMEOUT;
}
timeout = timeout - drain_wait_delay;
}
if (soc->intr_mode == DP_INTR_POLL)
qdf_timer_stop(&soc->int_timer);
/* Stop monitor reap timer and reap any pending frames in ring */
if (pdev->rx_pktlog_mode != DP_RX_PKTLOG_DISABLED &&
soc->reap_timer_init) {
qdf_timer_sync_cancel(&soc->mon_reap_timer);
dp_service_mon_rings(soc, DP_MON_REAP_BUDGET);
}
return QDF_STATUS_SUCCESS;
}
static QDF_STATUS dp_bus_resume(struct cdp_pdev *opaque_pdev)
{
struct dp_pdev *pdev = (struct dp_pdev *)opaque_pdev;
struct dp_soc *soc = pdev->soc;
if (soc->intr_mode == DP_INTR_POLL)
qdf_timer_mod(&soc->int_timer, DP_INTR_POLL_TIMER_MS);
/* Start monitor reap timer */
if (pdev->rx_pktlog_mode != DP_RX_PKTLOG_DISABLED &&
soc->reap_timer_init)
qdf_timer_mod(&soc->mon_reap_timer,
DP_INTR_POLL_TIMER_MS);
return QDF_STATUS_SUCCESS;
}
/**
* dp_process_wow_ack_rsp() - process wow ack response
* @soc_hdl: datapath soc handle
* @opaque_pdev: data path pdev handle
*
* Return: none
*/
static void dp_process_wow_ack_rsp(struct cdp_soc_t *soc_hdl,
struct cdp_pdev *opaque_pdev)
{
struct dp_soc *soc = (struct dp_soc *)soc_hdl;
struct dp_pdev *pdev = (struct dp_pdev *)opaque_pdev;
/*
* As part of wow enable FW disables the mon status ring and in wow ack
* response from FW reap mon status ring to make sure no packets pending
* in the ring.
*/
if (pdev->rx_pktlog_mode != DP_RX_PKTLOG_DISABLED &&
soc->reap_timer_init) {
dp_service_mon_rings(soc, DP_MON_REAP_BUDGET);
}
}
/**
* dp_process_target_suspend_req() - process target suspend request
* @soc_hdl: datapath soc handle
* @pdev_id: data path pdev handle id
*
* Return: none
*/
static void dp_process_target_suspend_req(struct cdp_soc_t *soc_hdl,
struct cdp_pdev *opaque_pdev)
{
struct dp_soc *soc = (struct dp_soc *)soc_hdl;
struct dp_pdev *pdev = (struct dp_pdev *)opaque_pdev;
if (qdf_unlikely(!pdev)) {
dp_err("pdev is NULL");
return;
}
/* Stop monitor reap timer and reap any pending frames in ring */
if (pdev->rx_pktlog_mode != DP_RX_PKTLOG_DISABLED &&
soc->reap_timer_init) {
qdf_timer_sync_cancel(&soc->mon_reap_timer);
dp_service_mon_rings(soc, DP_MON_REAP_BUDGET);
}
}
static struct cdp_bus_ops dp_ops_bus = {
.bus_suspend = dp_bus_suspend,
.bus_resume = dp_bus_resume,
.process_wow_ack_rsp = dp_process_wow_ack_rsp,
.process_target_suspend_req = dp_process_target_suspend_req
};
static struct cdp_ocb_ops dp_ops_ocb = {
/* WIFI 3.0 DP NOT IMPLEMENTED YET */
};
static struct cdp_throttle_ops dp_ops_throttle = {
/* WIFI 3.0 DP NOT IMPLEMENTED YET */
};
static struct cdp_mob_stats_ops dp_ops_mob_stats = {
/* WIFI 3.0 DP NOT IMPLEMENTED YET */
};
static struct cdp_cfg_ops dp_ops_cfg = {
/* WIFI 3.0 DP NOT IMPLEMENTED YET */
};
/*
* dp_peer_release_ref - release peer ref count
* @peer: peer handle
* @debug_id: to track enum peer access
*
* Return: None
*/
static inline
void dp_peer_release_ref(void *peer, enum peer_debug_id_type debug_id)
{
dp_peer_unref_delete(peer);
}
static struct cdp_peer_ops dp_ops_peer = {
.register_peer = dp_register_peer,
.clear_peer = dp_clear_peer,
.find_peer_by_addr = dp_find_peer_by_addr,
.find_peer_by_addr_and_vdev = dp_find_peer_by_addr_and_vdev,
.peer_get_ref_by_addr = dp_peer_get_ref_find_by_addr,
.peer_release_ref = dp_peer_release_ref,
.local_peer_id = dp_local_peer_id,
.peer_find_by_local_id = dp_peer_find_by_local_id,
.peer_state_update = dp_peer_state_update,
.get_vdevid = dp_get_vdevid,
.get_vdev_by_sta_id = dp_get_vdev_by_sta_id,
.peer_get_peer_mac_addr = dp_peer_get_peer_mac_addr,
.get_vdev_for_peer = dp_get_vdev_for_peer,
.get_peer_state = dp_get_peer_state,
.peer_flush_frags = dp_peer_flush_frags,
};
#endif
static struct cdp_ops dp_txrx_ops = {
.cmn_drv_ops = &dp_ops_cmn,
.ctrl_ops = &dp_ops_ctrl,
.me_ops = &dp_ops_me,
.mon_ops = &dp_ops_mon,
.host_stats_ops = &dp_ops_host_stats,
.wds_ops = &dp_ops_wds,
.raw_ops = &dp_ops_raw,
#ifdef CONFIG_WIN
.pflow_ops = &dp_ops_pflow,
#endif /* CONFIG_WIN */
#ifndef CONFIG_WIN
.misc_ops = &dp_ops_misc,
.cfg_ops = &dp_ops_cfg,
.flowctl_ops = &dp_ops_flowctl,
.l_flowctl_ops = &dp_ops_l_flowctl,
#ifdef IPA_OFFLOAD
.ipa_ops = &dp_ops_ipa,
#endif
.bus_ops = &dp_ops_bus,
.ocb_ops = &dp_ops_ocb,
.peer_ops = &dp_ops_peer,
.throttle_ops = &dp_ops_throttle,
.mob_stats_ops = &dp_ops_mob_stats,
#endif
};
/*
* dp_soc_set_txrx_ring_map()
* @dp_soc: DP handler for soc
*
* Return: Void
*/
void dp_soc_set_txrx_ring_map(struct dp_soc *soc)
{
uint32_t i;
for (i = 0; i < WLAN_CFG_INT_NUM_CONTEXTS; i++) {
soc->tx_ring_map[i] = dp_cpu_ring_map[DP_NSS_DEFAULT_MAP][i];
}
}
#if defined(QCA_WIFI_QCA8074) || defined(QCA_WIFI_QCA6018)
#ifndef QCA_MEM_ATTACH_ON_WIFI3
/**
* dp_soc_attach_wifi3() - Attach txrx SOC
* @ctrl_psoc: Opaque SOC handle from control plane
* @htc_handle: Opaque HTC handle
* @hif_handle: Opaque HIF handle
* @qdf_osdev: QDF device
* @ol_ops: Offload Operations
* @device_id: Device ID
*
* Return: DP SOC handle on success, NULL on failure
*/
void *dp_soc_attach_wifi3(void *ctrl_psoc, void *hif_handle,
HTC_HANDLE htc_handle, qdf_device_t qdf_osdev,
struct ol_if_ops *ol_ops, uint16_t device_id)
{
struct dp_soc *dp_soc = NULL;
dp_soc = dp_soc_attach(ctrl_psoc, htc_handle, qdf_osdev,
ol_ops, device_id);
if (!dp_soc)
return NULL;
if (!dp_soc_init(dp_soc, htc_handle, hif_handle))
return NULL;
return (void *)dp_soc;
}
#else
/**
* dp_soc_attach_wifi3() - Attach txrx SOC
* @ctrl_psoc: Opaque SOC handle from control plane
* @htc_handle: Opaque HTC handle
* @hif_handle: Opaque HIF handle
* @qdf_osdev: QDF device
* @ol_ops: Offload Operations
* @device_id: Device ID
*
* Return: DP SOC handle on success, NULL on failure
*/
void *dp_soc_attach_wifi3(void *ctrl_psoc, void *hif_handle,
HTC_HANDLE htc_handle, qdf_device_t qdf_osdev,
struct ol_if_ops *ol_ops, uint16_t device_id)
{
struct dp_soc *dp_soc = NULL;
dp_soc = dp_soc_attach(ctrl_psoc, htc_handle, qdf_osdev,
ol_ops, device_id);
return (void *)dp_soc;
}
#endif
/**
* dp_soc_attach() - Attach txrx SOC
* @ctrl_psoc: Opaque SOC handle from control plane
* @htc_handle: Opaque HTC handle
* @qdf_osdev: QDF device
* @ol_ops: Offload Operations
* @device_id: Device ID
*
* Return: DP SOC handle on success, NULL on failure
*/
static struct dp_soc *
dp_soc_attach(void *ctrl_psoc, HTC_HANDLE htc_handle, qdf_device_t qdf_osdev,
struct ol_if_ops *ol_ops, uint16_t device_id)
{
int int_ctx;
struct dp_soc *soc = NULL;
struct htt_soc *htt_soc = NULL;
soc = qdf_mem_malloc(sizeof(*soc));
if (!soc) {
dp_err("DP SOC memory allocation failed");
goto fail0;
}
int_ctx = 0;
soc->device_id = device_id;
soc->cdp_soc.ops = &dp_txrx_ops;
soc->cdp_soc.ol_ops = ol_ops;
soc->ctrl_psoc = ctrl_psoc;
soc->osdev = qdf_osdev;
soc->num_hw_dscp_tid_map = HAL_MAX_HW_DSCP_TID_MAPS;
wlan_set_srng_cfg(&soc->wlan_srng_cfg);
soc->wlan_cfg_ctx = wlan_cfg_soc_attach(soc->ctrl_psoc);
if (!soc->wlan_cfg_ctx) {
dp_err("wlan_cfg_ctx failed\n");
goto fail1;
}
dp_soc_set_interrupt_mode(soc);
htt_soc = qdf_mem_malloc(sizeof(*htt_soc));
if (!htt_soc) {
dp_err("HTT attach failed");
goto fail1;
}
soc->htt_handle = htt_soc;
htt_soc->dp_soc = soc;
htt_soc->htc_soc = htc_handle;
if (htt_soc_htc_prealloc(htt_soc) != QDF_STATUS_SUCCESS)
goto fail2;
return (void *)soc;
fail2:
qdf_mem_free(htt_soc);
fail1:
qdf_mem_free(soc);
fail0:
return NULL;
}
/**
* dp_soc_init() - Initialize txrx SOC
* @dp_soc: Opaque DP SOC handle
* @htc_handle: Opaque HTC handle
* @hif_handle: Opaque HIF handle
*
* Return: DP SOC handle on success, NULL on failure
*/
void *dp_soc_init(void *dpsoc, HTC_HANDLE htc_handle, void *hif_handle)
{
int target_type;
struct dp_soc *soc = (struct dp_soc *)dpsoc;
struct htt_soc *htt_soc = (struct htt_soc *)soc->htt_handle;
htt_soc->htc_soc = htc_handle;
soc->hif_handle = hif_handle;
soc->hal_soc = hif_get_hal_handle(soc->hif_handle);
if (!soc->hal_soc)
return NULL;
htt_soc_initialize(soc->htt_handle, soc->ctrl_psoc, htt_soc->htc_soc,
soc->hal_soc, soc->osdev);
target_type = hal_get_target_type(soc->hal_soc);
switch (target_type) {
case TARGET_TYPE_QCA6290:
wlan_cfg_set_reo_dst_ring_size(soc->wlan_cfg_ctx,
REO_DST_RING_SIZE_QCA6290);
soc->ast_override_support = 1;
soc->da_war_enabled = false;
break;
#ifdef QCA_WIFI_QCA6390
case TARGET_TYPE_QCA6390:
wlan_cfg_set_reo_dst_ring_size(soc->wlan_cfg_ctx,
REO_DST_RING_SIZE_QCA6290);
wlan_cfg_set_raw_mode_war(soc->wlan_cfg_ctx, true);
soc->ast_override_support = 1;
if (soc->cdp_soc.ol_ops->get_con_mode &&
soc->cdp_soc.ol_ops->get_con_mode() ==
QDF_GLOBAL_MONITOR_MODE) {
int int_ctx;
for (int_ctx = 0; int_ctx < WLAN_CFG_INT_NUM_CONTEXTS; int_ctx++) {
soc->wlan_cfg_ctx->int_rx_ring_mask[int_ctx] = 0;
soc->wlan_cfg_ctx->int_rxdma2host_ring_mask[int_ctx] = 0;
}
}
soc->wlan_cfg_ctx->rxdma1_enable = 0;
break;
#endif
case TARGET_TYPE_QCA8074:
wlan_cfg_set_reo_dst_ring_size(soc->wlan_cfg_ctx,
REO_DST_RING_SIZE_QCA8074);
wlan_cfg_set_raw_mode_war(soc->wlan_cfg_ctx, true);
soc->hw_nac_monitor_support = 1;
soc->da_war_enabled = true;
break;
case TARGET_TYPE_QCA8074V2:
case TARGET_TYPE_QCA6018:
wlan_cfg_set_reo_dst_ring_size(soc->wlan_cfg_ctx,
REO_DST_RING_SIZE_QCA8074);
wlan_cfg_set_raw_mode_war(soc->wlan_cfg_ctx, false);
soc->hw_nac_monitor_support = 1;
soc->ast_override_support = 1;
soc->per_tid_basize_max_tid = 8;
soc->num_hw_dscp_tid_map = HAL_MAX_HW_DSCP_TID_V2_MAPS;
soc->da_war_enabled = false;
break;
default:
qdf_print("%s: Unknown tgt type %d\n", __func__, target_type);
qdf_assert_always(0);
break;
}
wlan_cfg_set_rx_hash(soc->wlan_cfg_ctx,
cfg_get(soc->ctrl_psoc, CFG_DP_RX_HASH));
soc->cce_disable = false;
if (soc->cdp_soc.ol_ops->get_dp_cfg_param) {
int ret = soc->cdp_soc.ol_ops->get_dp_cfg_param(soc->ctrl_psoc,
CDP_CFG_MAX_PEER_ID);
if (ret != -EINVAL) {
wlan_cfg_set_max_peer_id(soc->wlan_cfg_ctx, ret);
}
ret = soc->cdp_soc.ol_ops->get_dp_cfg_param(soc->ctrl_psoc,
CDP_CFG_CCE_DISABLE);
if (ret == 1)
soc->cce_disable = true;
}
qdf_spinlock_create(&soc->peer_ref_mutex);
qdf_spinlock_create(&soc->ast_lock);
qdf_spinlock_create(&soc->reo_desc_freelist_lock);
qdf_list_create(&soc->reo_desc_freelist, REO_DESC_FREELIST_SIZE);
INIT_RX_HW_STATS_LOCK(soc);
/* fill the tx/rx cpu ring map*/
dp_soc_set_txrx_ring_map(soc);
qdf_spinlock_create(&soc->htt_stats.lock);
/* initialize work queue for stats processing */
qdf_create_work(0, &soc->htt_stats.work, htt_t2h_stats_handler, soc);
return soc;
}
/**
* dp_soc_init_wifi3() - Initialize txrx SOC
* @dp_soc: Opaque DP SOC handle
* @ctrl_psoc: Opaque SOC handle from control plane(Unused)
* @hif_handle: Opaque HIF handle
* @htc_handle: Opaque HTC handle
* @qdf_osdev: QDF device (Unused)
* @ol_ops: Offload Operations (Unused)
* @device_id: Device ID (Unused)
*
* Return: DP SOC handle on success, NULL on failure
*/
void *dp_soc_init_wifi3(void *dpsoc, void *ctrl_psoc, void *hif_handle,
HTC_HANDLE htc_handle, qdf_device_t qdf_osdev,
struct ol_if_ops *ol_ops, uint16_t device_id)
{
return dp_soc_init(dpsoc, htc_handle, hif_handle);
}
#endif
/*
* dp_get_pdev_for_mac_id() - Return pdev for mac_id
*
* @soc: handle to DP soc
* @mac_id: MAC id
*
* Return: Return pdev corresponding to MAC
*/
void *dp_get_pdev_for_mac_id(struct dp_soc *soc, uint32_t mac_id)
{
if (wlan_cfg_per_pdev_lmac_ring(soc->wlan_cfg_ctx))
return soc->pdev_list[mac_id];
/* Typically for MCL as there only 1 PDEV*/
return soc->pdev_list[0];
}
/*
* dp_is_hw_dbs_enable() - Procedure to check if DBS is supported
* @soc: DP SoC context
* @max_mac_rings: No of MAC rings
*
* Return: None
*/
static
void dp_is_hw_dbs_enable(struct dp_soc *soc,
int *max_mac_rings)
{
bool dbs_enable = false;
if (soc->cdp_soc.ol_ops->is_hw_dbs_2x2_capable)
dbs_enable = soc->cdp_soc.ol_ops->
is_hw_dbs_2x2_capable(soc->ctrl_psoc);
*max_mac_rings = (dbs_enable)?(*max_mac_rings):1;
}
/*
* dp_is_soc_reinit() - Check if soc reinit is true
* @soc: DP SoC context
*
* Return: true or false
*/
bool dp_is_soc_reinit(struct dp_soc *soc)
{
return soc->dp_soc_reinit;
}
/*
* dp_set_pktlog_wifi3() - attach txrx vdev
* @pdev: Datapath PDEV handle
* @event: which event's notifications are being subscribed to
* @enable: WDI event subscribe or not. (True or False)
*
* Return: Success, NULL on failure
*/
#ifdef WDI_EVENT_ENABLE
int dp_set_pktlog_wifi3(struct dp_pdev *pdev, uint32_t event,
bool enable)
{
struct dp_soc *soc = NULL;
struct htt_rx_ring_tlv_filter htt_tlv_filter = {0};
int max_mac_rings = wlan_cfg_get_num_mac_rings
(pdev->wlan_cfg_ctx);
uint8_t mac_id = 0;
soc = pdev->soc;
dp_is_hw_dbs_enable(soc, &max_mac_rings);
QDF_TRACE(QDF_MODULE_ID_TXRX, QDF_TRACE_LEVEL_DEBUG,
FL("Max_mac_rings %d "),
max_mac_rings);
if (enable) {
switch (event) {
case WDI_EVENT_RX_DESC:
if (pdev->monitor_vdev) {
/* Nothing needs to be done if monitor mode is
* enabled
*/
return 0;
}
if (pdev->rx_pktlog_mode != DP_RX_PKTLOG_FULL) {
pdev->rx_pktlog_mode = DP_RX_PKTLOG_FULL;
htt_tlv_filter.mpdu_start = 1;
htt_tlv_filter.msdu_start = 1;
htt_tlv_filter.msdu_end = 1;
htt_tlv_filter.mpdu_end = 1;
htt_tlv_filter.packet_header = 1;
htt_tlv_filter.attention = 1;
htt_tlv_filter.ppdu_start = 1;
htt_tlv_filter.ppdu_end = 1;
htt_tlv_filter.ppdu_end_user_stats = 1;
htt_tlv_filter.ppdu_end_user_stats_ext = 1;
htt_tlv_filter.ppdu_end_status_done = 1;
htt_tlv_filter.enable_fp = 1;
htt_tlv_filter.fp_mgmt_filter = FILTER_MGMT_ALL;
htt_tlv_filter.fp_ctrl_filter = FILTER_CTRL_ALL;
htt_tlv_filter.fp_data_filter = FILTER_DATA_ALL;
htt_tlv_filter.mo_mgmt_filter = FILTER_MGMT_ALL;
htt_tlv_filter.mo_ctrl_filter = FILTER_CTRL_ALL;
htt_tlv_filter.mo_data_filter = FILTER_DATA_ALL;
htt_tlv_filter.offset_valid = false;
for (mac_id = 0; mac_id < max_mac_rings;
mac_id++) {
int mac_for_pdev =
dp_get_mac_id_for_pdev(mac_id,
pdev->pdev_id);
htt_h2t_rx_ring_cfg(soc->htt_handle,
mac_for_pdev,
pdev->rxdma_mon_status_ring[mac_id]
.hal_srng,
RXDMA_MONITOR_STATUS,
RX_BUFFER_SIZE,
&htt_tlv_filter);
}
if (soc->reap_timer_init)
qdf_timer_mod(&soc->mon_reap_timer,
DP_INTR_POLL_TIMER_MS);
}
break;
case WDI_EVENT_LITE_RX:
if (pdev->monitor_vdev) {
/* Nothing needs to be done if monitor mode is
* enabled
*/
return 0;
}
if (pdev->rx_pktlog_mode != DP_RX_PKTLOG_LITE) {
pdev->rx_pktlog_mode = DP_RX_PKTLOG_LITE;
htt_tlv_filter.ppdu_start = 1;
htt_tlv_filter.ppdu_end = 1;
htt_tlv_filter.ppdu_end_user_stats = 1;
htt_tlv_filter.ppdu_end_user_stats_ext = 1;
htt_tlv_filter.ppdu_end_status_done = 1;
htt_tlv_filter.mpdu_start = 1;
htt_tlv_filter.enable_fp = 1;
htt_tlv_filter.fp_mgmt_filter = FILTER_MGMT_ALL;
htt_tlv_filter.fp_ctrl_filter = FILTER_CTRL_ALL;
htt_tlv_filter.fp_data_filter = FILTER_DATA_ALL;
htt_tlv_filter.mo_mgmt_filter = FILTER_MGMT_ALL;
htt_tlv_filter.mo_ctrl_filter = FILTER_CTRL_ALL;
htt_tlv_filter.mo_data_filter = FILTER_DATA_ALL;
htt_tlv_filter.offset_valid = false;
for (mac_id = 0; mac_id < max_mac_rings;
mac_id++) {
int mac_for_pdev =
dp_get_mac_id_for_pdev(mac_id,
pdev->pdev_id);
htt_h2t_rx_ring_cfg(soc->htt_handle,
mac_for_pdev,
pdev->rxdma_mon_status_ring[mac_id]
.hal_srng,
RXDMA_MONITOR_STATUS,
RX_BUFFER_SIZE_PKTLOG_LITE,
&htt_tlv_filter);
}
if (soc->reap_timer_init)
qdf_timer_mod(&soc->mon_reap_timer,
DP_INTR_POLL_TIMER_MS);
}
break;
case WDI_EVENT_LITE_T2H:
if (pdev->monitor_vdev) {
/* Nothing needs to be done if monitor mode is
* enabled
*/
return 0;
}
for (mac_id = 0; mac_id < max_mac_rings; mac_id++) {
int mac_for_pdev = dp_get_mac_id_for_pdev(
mac_id, pdev->pdev_id);
pdev->pktlog_ppdu_stats = true;
dp_h2t_cfg_stats_msg_send(pdev,
DP_PPDU_TXLITE_STATS_BITMASK_CFG,
mac_for_pdev);
}
break;
default:
/* Nothing needs to be done for other pktlog types */
break;
}
} else {
switch (event) {
case WDI_EVENT_RX_DESC:
case WDI_EVENT_LITE_RX:
if (pdev->monitor_vdev) {
/* Nothing needs to be done if monitor mode is
* enabled
*/
return 0;
}
if (pdev->rx_pktlog_mode != DP_RX_PKTLOG_DISABLED) {
pdev->rx_pktlog_mode = DP_RX_PKTLOG_DISABLED;
for (mac_id = 0; mac_id < max_mac_rings;
mac_id++) {
int mac_for_pdev =
dp_get_mac_id_for_pdev(mac_id,
pdev->pdev_id);
htt_h2t_rx_ring_cfg(soc->htt_handle,
mac_for_pdev,
pdev->rxdma_mon_status_ring[mac_id]
.hal_srng,
RXDMA_MONITOR_STATUS,
RX_BUFFER_SIZE,
&htt_tlv_filter);
}
if (soc->reap_timer_init)
qdf_timer_stop(&soc->mon_reap_timer);
}
break;
case WDI_EVENT_LITE_T2H:
if (pdev->monitor_vdev) {
/* Nothing needs to be done if monitor mode is
* enabled
*/
return 0;
}
/* To disable HTT_H2T_MSG_TYPE_PPDU_STATS_CFG in FW
* passing value 0. Once these macros will define in htt
* header file will use proper macros
*/
for (mac_id = 0; mac_id < max_mac_rings; mac_id++) {
int mac_for_pdev =
dp_get_mac_id_for_pdev(mac_id,
pdev->pdev_id);
pdev->pktlog_ppdu_stats = false;
if (!pdev->enhanced_stats_en && !pdev->tx_sniffer_enable && !pdev->mcopy_mode) {
dp_h2t_cfg_stats_msg_send(pdev, 0,
mac_for_pdev);
} else if (pdev->tx_sniffer_enable || pdev->mcopy_mode) {
dp_h2t_cfg_stats_msg_send(pdev, DP_PPDU_STATS_CFG_SNIFFER,
mac_for_pdev);
} else if (pdev->enhanced_stats_en) {
dp_h2t_cfg_stats_msg_send(pdev, DP_PPDU_STATS_CFG_ENH_STATS,
mac_for_pdev);
}
}
break;
default:
/* Nothing needs to be done for other pktlog types */
break;
}
}
return 0;
}
#endif
/**
* dp_bucket_index() - Return index from array
*
* @delay: delay measured
* @array: array used to index corresponding delay
*
* Return: index
*/
static uint8_t dp_bucket_index(uint32_t delay, uint16_t *array)
{
uint8_t i = CDP_DELAY_BUCKET_0;
for (; i < CDP_DELAY_BUCKET_MAX; i++) {
if (delay >= array[i] && delay <= array[i + 1])
return i;
}
return (CDP_DELAY_BUCKET_MAX - 1);
}
/**
* dp_fill_delay_buckets() - Fill delay statistics bucket for each
* type of delay
*
* @pdev: pdev handle
* @delay: delay in ms
* @tid: tid value
* @mode: type of tx delay mode
* @ring_id: ring number
* Return: pointer to cdp_delay_stats structure
*/
static struct cdp_delay_stats *
dp_fill_delay_buckets(struct dp_pdev *pdev, uint32_t delay,
uint8_t tid, uint8_t mode, uint8_t ring_id)
{
uint8_t delay_index = 0;
struct cdp_tid_tx_stats *tstats =
&pdev->stats.tid_stats.tid_tx_stats[ring_id][tid];
struct cdp_tid_rx_stats *rstats =
&pdev->stats.tid_stats.tid_rx_stats[ring_id][tid];
/*
* cdp_fw_to_hw_delay_range
* Fw to hw delay ranges in milliseconds
*/
uint16_t cdp_fw_to_hw_delay[CDP_DELAY_BUCKET_MAX] = {
0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 250, 500};
/*
* cdp_sw_enq_delay_range
* Software enqueue delay ranges in milliseconds
*/
uint16_t cdp_sw_enq_delay[CDP_DELAY_BUCKET_MAX] = {
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12};
/*
* cdp_intfrm_delay_range
* Interframe delay ranges in milliseconds
*/
uint16_t cdp_intfrm_delay[CDP_DELAY_BUCKET_MAX] = {
0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60};
/*
* Update delay stats in proper bucket
*/
switch (mode) {
/* Software Enqueue delay ranges */
case CDP_DELAY_STATS_SW_ENQ:
delay_index = dp_bucket_index(delay, cdp_sw_enq_delay);
tstats->swq_delay.delay_bucket[delay_index]++;
return &tstats->swq_delay;
/* Tx Completion delay ranges */
case CDP_DELAY_STATS_FW_HW_TRANSMIT:
delay_index = dp_bucket_index(delay, cdp_fw_to_hw_delay);
tstats->hwtx_delay.delay_bucket[delay_index]++;
return &tstats->hwtx_delay;
/* Interframe tx delay ranges */
case CDP_DELAY_STATS_TX_INTERFRAME:
delay_index = dp_bucket_index(delay, cdp_intfrm_delay);
tstats->intfrm_delay.delay_bucket[delay_index]++;
return &tstats->intfrm_delay;
/* Interframe rx delay ranges */
case CDP_DELAY_STATS_RX_INTERFRAME:
delay_index = dp_bucket_index(delay, cdp_intfrm_delay);
rstats->intfrm_delay.delay_bucket[delay_index]++;
return &rstats->intfrm_delay;
/* Ring reap to indication to network stack */
case CDP_DELAY_STATS_REAP_STACK:
delay_index = dp_bucket_index(delay, cdp_intfrm_delay);
rstats->to_stack_delay.delay_bucket[delay_index]++;
return &rstats->to_stack_delay;
default:
QDF_TRACE(QDF_MODULE_ID_DP, QDF_TRACE_LEVEL_DEBUG,
"%s Incorrect delay mode: %d", __func__, mode);
}
return NULL;
}
/**
* dp_update_delay_stats() - Update delay statistics in structure
* and fill min, max and avg delay
*
* @pdev: pdev handle
* @delay: delay in ms
* @tid: tid value
* @mode: type of tx delay mode
* @ring id: ring number
* Return: none
*/
void dp_update_delay_stats(struct dp_pdev *pdev, uint32_t delay,
uint8_t tid, uint8_t mode, uint8_t ring_id)
{
struct cdp_delay_stats *dstats = NULL;
/*
* Delay ranges are different for different delay modes
* Get the correct index to update delay bucket
*/
dstats = dp_fill_delay_buckets(pdev, delay, tid, mode, ring_id);
if (qdf_unlikely(!dstats))
return;
if (delay != 0) {
/*
* Compute minimum,average and maximum
* delay
*/
if (delay < dstats->min_delay)
dstats->min_delay = delay;
if (delay > dstats->max_delay)
dstats->max_delay = delay;
/*
* Average over delay measured till now
*/
if (!dstats->avg_delay)
dstats->avg_delay = delay;
else
dstats->avg_delay = ((delay + dstats->avg_delay) / 2);
}
}