blob: a20f2e3580acc1679dbfcb6e45ebf6bd6cf26210 [file] [log] [blame]
/*
* Copyright (C) 2015 Benjamin Fry <benjaminfry@me.com>
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
//! NSEC record types
use std::fmt;
#[cfg(feature = "serde-config")]
use serde::{Deserialize, Serialize};
use crate::error::*;
use crate::rr::dnssec::Nsec3HashAlgorithm;
use crate::rr::type_bit_map::*;
use crate::rr::RecordType;
use crate::serialize::binary::*;
/// [RFC 5155](https://tools.ietf.org/html/rfc5155#section-3), NSEC3, March 2008
///
/// ```text
/// 3. The NSEC3 Resource Record
///
/// The NSEC3 Resource Record (RR) provides authenticated denial of
/// existence for DNS Resource Record Sets.
///
/// The NSEC3 RR lists RR types present at the original owner name of the
/// NSEC3 RR. It includes the next hashed owner name in the hash order
/// of the zone. The complete set of NSEC3 RRs in a zone indicates which
/// RRSets exist for the original owner name of the RR and form a chain
/// of hashed owner names in the zone. This information is used to
/// provide authenticated denial of existence for DNS data. To provide
/// protection against zone enumeration, the owner names used in the
/// NSEC3 RR are cryptographic hashes of the original owner name
/// prepended as a single label to the name of the zone. The NSEC3 RR
/// indicates which hash function is used to construct the hash, which
/// salt is used, and how many iterations of the hash function are
/// performed over the original owner name. The hashing technique is
/// described fully in Section 5.
///
/// Hashed owner names of unsigned delegations may be excluded from the
/// chain. An NSEC3 RR whose span covers the hash of an owner name or
/// "next closer" name of an unsigned delegation is referred to as an
/// Opt-Out NSEC3 RR and is indicated by the presence of a flag.
///
/// The owner name for the NSEC3 RR is the base32 encoding of the hashed
/// owner name prepended as a single label to the name of the zone.
///
/// The type value for the NSEC3 RR is 50.
///
/// The NSEC3 RR RDATA format is class independent and is described
/// below.
///
/// The class MUST be the same as the class of the original owner name.
///
/// The NSEC3 RR SHOULD have the same TTL value as the SOA minimum TTL
/// field. This is in the spirit of negative caching [RFC2308].
///
/// 3.2. NSEC3 RDATA Wire Format
///
/// The RDATA of the NSEC3 RR is as shown below:
///
/// 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
/// 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
/// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
/// | Hash Alg. | Flags | Iterations |
/// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
/// | Salt Length | Salt /
/// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
/// | Hash Length | Next Hashed Owner Name /
/// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
/// / Type Bit Maps /
/// +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
///
/// Hash Algorithm is a single octet.
///
/// Flags field is a single octet, the Opt-Out flag is the least
/// significant bit, as shown below:
///
/// 0 1 2 3 4 5 6 7
/// +-+-+-+-+-+-+-+-+
/// | |O|
/// +-+-+-+-+-+-+-+-+
///
/// Iterations is represented as a 16-bit unsigned integer, with the most
/// significant bit first.
///
/// Salt Length is represented as an unsigned octet. Salt Length
/// represents the length of the Salt field in octets. If the value is
/// zero, the following Salt field is omitted.
///
/// Salt, if present, is encoded as a sequence of binary octets. The
/// length of this field is determined by the preceding Salt Length
/// field.
///
/// Hash Length is represented as an unsigned octet. Hash Length
/// represents the length of the Next Hashed Owner Name field in octets.
///
/// The next hashed owner name is not base32 encoded, unlike the owner
/// name of the NSEC3 RR. It is the unmodified binary hash value. It
/// does not include the name of the containing zone. The length of this
/// field is determined by the preceding Hash Length field.
/// ```
#[cfg_attr(feature = "serde-config", derive(Deserialize, Serialize))]
#[derive(Debug, PartialEq, Eq, Hash, Clone)]
pub struct NSEC3 {
hash_algorithm: Nsec3HashAlgorithm,
opt_out: bool,
iterations: u16,
salt: Vec<u8>,
next_hashed_owner_name: Vec<u8>,
type_bit_maps: Vec<RecordType>,
}
impl NSEC3 {
/// Constructs a new NSEC3 record
pub fn new(
hash_algorithm: Nsec3HashAlgorithm,
opt_out: bool,
iterations: u16,
salt: Vec<u8>,
next_hashed_owner_name: Vec<u8>,
type_bit_maps: Vec<RecordType>,
) -> Self {
Self {
hash_algorithm,
opt_out,
iterations,
salt,
next_hashed_owner_name,
type_bit_maps,
}
}
/// [RFC 5155](https://tools.ietf.org/html/rfc5155#section-3.1.1), NSEC3, March 2008
///
/// ```text
/// 3.1.1. Hash Algorithm
///
/// The Hash Algorithm field identifies the cryptographic hash algorithm
/// used to construct the hash-value.
///
/// The values for this field are defined in the NSEC3 hash algorithm
/// registry defined in Section 11.
/// ```
pub fn hash_algorithm(&self) -> Nsec3HashAlgorithm {
self.hash_algorithm
}
/// [RFC 5155](https://tools.ietf.org/html/rfc5155#section-3.1.2), NSEC3, March 2008
///
/// ```text
/// 3.1.2. Flags
///
/// The Flags field contains 8 one-bit flags that can be used to indicate
/// different processing. All undefined flags must be zero. The only
/// flag defined by this specification is the Opt-Out flag.
///
/// 3.1.2.1. Opt-Out Flag
///
/// If the Opt-Out flag is set, the NSEC3 record covers zero or more
/// unsigned delegations.
///
/// If the Opt-Out flag is clear, the NSEC3 record covers zero unsigned
/// delegations.
///
/// The Opt-Out Flag indicates whether this NSEC3 RR may cover unsigned
/// delegations. It is the least significant bit in the Flags field.
/// See Section 6 for details about the use of this flag.
/// ```
pub fn opt_out(&self) -> bool {
self.opt_out
}
/// [RFC 5155](https://tools.ietf.org/html/rfc5155#section-3.1.3), NSEC3, March 2008
///
/// ```text
/// 3.1.3. Iterations
///
/// The Iterations field defines the number of additional times the hash
/// function has been performed. More iterations result in greater
/// resiliency of the hash value against dictionary attacks, but at a
/// higher computational cost for both the server and resolver. See
/// Section 5 for details of the use of this field, and Section 10.3 for
/// limitations on the value.
/// ```
pub fn iterations(&self) -> u16 {
self.iterations
}
/// [RFC 5155](https://tools.ietf.org/html/rfc5155#section-3.1.5), NSEC3, March 2008
///
/// ```text
/// 3.1.5. Salt
///
/// The Salt field is appended to the original owner name before hashing
/// in order to defend against pre-calculated dictionary attacks. See
/// Section 5 for details on how the salt is used.
/// ```
pub fn salt(&self) -> &[u8] {
&self.salt
}
/// [RFC 5155](https://tools.ietf.org/html/rfc5155#section-3.1.7), NSEC3, March 2008
///
/// ```text
/// 3.1.7. Next Hashed Owner Name
///
/// The Next Hashed Owner Name field contains the next hashed owner name
/// in hash order. This value is in binary format. Given the ordered
/// set of all hashed owner names, the Next Hashed Owner Name field
/// contains the hash of an owner name that immediately follows the owner
/// name of the given NSEC3 RR. The value of the Next Hashed Owner Name
/// field in the last NSEC3 RR in the zone is the same as the hashed
/// owner name of the first NSEC3 RR in the zone in hash order. Note
/// that, unlike the owner name of the NSEC3 RR, the value of this field
/// does not contain the appended zone name.
/// ```
pub fn next_hashed_owner_name(&self) -> &[u8] {
&self.next_hashed_owner_name
}
/// [RFC 5155](https://tools.ietf.org/html/rfc5155#section-3.1.8), NSEC3, March 2008
///
/// ```text
/// 3.1.8. Type Bit Maps
///
/// The Type Bit Maps field identifies the RRSet types that exist at the
/// original owner name of the NSEC3 RR.
/// ```
pub fn type_bit_maps(&self) -> &[RecordType] {
&self.type_bit_maps
}
/// Flags for encoding
pub fn flags(&self) -> u8 {
let mut flags: u8 = 0;
if self.opt_out {
flags |= 0b0000_0001
};
flags
}
}
/// Read the RData from the given Decoder
pub fn read(decoder: &mut BinDecoder<'_>, rdata_length: Restrict<u16>) -> ProtoResult<NSEC3> {
let start_idx = decoder.index();
let hash_algorithm =
Nsec3HashAlgorithm::from_u8(decoder.read_u8()?.unverified(/*Algorithm verified as safe*/))?;
let flags: u8 = decoder
.read_u8()?
.verify_unwrap(|flags| flags & 0b1111_1110 == 0)
.map_err(|flags| ProtoError::from(ProtoErrorKind::UnrecognizedNsec3Flags(flags)))?;
let opt_out: bool = flags & 0b0000_0001 == 0b0000_0001;
let iterations: u16 = decoder.read_u16()?.unverified(/*valid as any u16*/);
// read the salt
let salt_len = decoder.read_u8()?.map(|u| u as usize);
let salt_len_max = rdata_length
.map(|u| u as usize)
.checked_sub(decoder.index() - start_idx)
.map_err(|_| "invalid rdata for salt_len_max")?;
let salt_len = salt_len
.verify_unwrap(|salt_len| {
*salt_len <= salt_len_max.unverified(/*safe in comparison usage*/)
})
.map_err(|_| ProtoError::from("salt_len exceeds buffer length"))?;
let salt: Vec<u8> =
decoder.read_vec(salt_len)?.unverified(/*salt is any valid array of bytes*/);
// read the hashed_owner_name
let hash_len = decoder.read_u8()?.map(|u| u as usize);
let hash_len_max = rdata_length
.map(|u| u as usize)
.checked_sub(decoder.index() - start_idx)
.map_err(|_| "invalid rdata for hash_len_max")?;
let hash_len = hash_len
.verify_unwrap(|hash_len| {
*hash_len <= hash_len_max.unverified(/*safe in comparison usage*/)
})
.map_err(|_| ProtoError::from("hash_len exceeds buffer length"))?;
let next_hashed_owner_name: Vec<u8> =
decoder.read_vec(hash_len)?.unverified(/*will fail in usage if invalid*/);
// read the bitmap
let bit_map_len = rdata_length
.map(|u| u as usize)
.checked_sub(decoder.index() - start_idx)
.map_err(|_| "invalid rdata length in NSEC3")?;
let record_types = decode_type_bit_maps(decoder, bit_map_len)?;
Ok(NSEC3::new(
hash_algorithm,
opt_out,
iterations,
salt,
next_hashed_owner_name,
record_types,
))
}
/// Write the RData from the given Decoder
pub fn emit(encoder: &mut BinEncoder<'_>, rdata: &NSEC3) -> ProtoResult<()> {
encoder.emit(rdata.hash_algorithm().into())?;
encoder.emit(rdata.flags())?;
encoder.emit_u16(rdata.iterations())?;
encoder.emit(rdata.salt().len() as u8)?;
encoder.emit_vec(rdata.salt())?;
encoder.emit(rdata.next_hashed_owner_name().len() as u8)?;
encoder.emit_vec(rdata.next_hashed_owner_name())?;
encode_type_bit_maps(encoder, rdata.type_bit_maps())?;
Ok(())
}
/// [RFC 5155](https://tools.ietf.org/html/rfc5155#section-3.3), NSEC3, March 2008
///
/// ```text
/// 3.3. Presentation Format
///
/// The presentation format of the RDATA portion is as follows:
///
/// o The Hash Algorithm field is represented as an unsigned decimal
/// integer. The value has a maximum of 255.
///
/// o The Flags field is represented as an unsigned decimal integer.
/// The value has a maximum of 255.
///
/// o The Iterations field is represented as an unsigned decimal
/// integer. The value is between 0 and 65535, inclusive.
///
/// o The Salt Length field is not represented.
///
/// o The Salt field is represented as a sequence of case-insensitive
/// hexadecimal digits. Whitespace is not allowed within the
/// sequence. The Salt field is represented as "-" (without the
/// quotes) when the Salt Length field has a value of 0.
///
/// o The Hash Length field is not represented.
///
/// o The Next Hashed Owner Name field is represented as an unpadded
/// sequence of case-insensitive base32 digits, without whitespace.
///
/// o The Type Bit Maps field is represented as a sequence of RR type
/// mnemonics. When the mnemonic is not known, the TYPE
/// representation as described in Section 5 of [RFC3597] MUST be
/// used.
/// ```
impl fmt::Display for NSEC3 {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> {
let salt = if self.salt.is_empty() {
"-".to_string()
} else {
data_encoding::HEXUPPER_PERMISSIVE.encode(&self.salt)
};
write!(
f,
"{alg} {flags} {iterations} {salt} {owner}",
alg = u8::from(self.hash_algorithm),
flags = self.flags(),
iterations = self.iterations,
salt = salt,
owner = data_encoding::BASE32_NOPAD.encode(&self.next_hashed_owner_name)
)?;
for ty in &self.type_bit_maps {
write!(f, " {}", ty)?;
}
Ok(())
}
}
#[cfg(test)]
mod tests {
#![allow(clippy::dbg_macro, clippy::print_stdout)]
use super::*;
#[test]
fn test() {
use crate::rr::dnssec::rdata::RecordType;
let rdata = NSEC3::new(
Nsec3HashAlgorithm::SHA1,
true,
2,
vec![1, 2, 3, 4, 5],
vec![6, 7, 8, 9, 0],
vec![
RecordType::A,
RecordType::AAAA,
RecordType::DS,
RecordType::RRSIG,
],
);
let mut bytes = Vec::new();
let mut encoder: BinEncoder<'_> = BinEncoder::new(&mut bytes);
assert!(emit(&mut encoder, &rdata).is_ok());
let bytes = encoder.into_bytes();
println!("bytes: {:?}", bytes);
let mut decoder: BinDecoder<'_> = BinDecoder::new(bytes);
let restrict = Restrict::new(bytes.len() as u16);
let read_rdata = read(&mut decoder, restrict).expect("Decoding error");
assert_eq!(rdata, read_rdata);
}
#[test]
fn test_dups() {
use crate::rr::dnssec::rdata::RecordType;
let rdata_with_dups = NSEC3::new(
Nsec3HashAlgorithm::SHA1,
true,
2,
vec![1, 2, 3, 4, 5],
vec![6, 7, 8, 9, 0],
vec![
RecordType::A,
RecordType::AAAA,
RecordType::DS,
RecordType::AAAA,
RecordType::RRSIG,
],
);
let rdata_wo = NSEC3::new(
Nsec3HashAlgorithm::SHA1,
true,
2,
vec![1, 2, 3, 4, 5],
vec![6, 7, 8, 9, 0],
vec![
RecordType::A,
RecordType::AAAA,
RecordType::DS,
RecordType::RRSIG,
],
);
let mut bytes = Vec::new();
let mut encoder: BinEncoder<'_> = BinEncoder::new(&mut bytes);
assert!(emit(&mut encoder, &rdata_with_dups).is_ok());
let bytes = encoder.into_bytes();
println!("bytes: {:?}", bytes);
let mut decoder: BinDecoder<'_> = BinDecoder::new(bytes);
let restrict = Restrict::new(bytes.len() as u16);
let read_rdata = read(&mut decoder, restrict).expect("Decoding error");
assert_eq!(rdata_wo, read_rdata);
}
}