blob: bccc5210c8fedba3e7651832734de2397ba1f988 [file] [log] [blame]
//! Support for encoding signed integers
use super::{is_highest_bit_set, uint, value_cmp};
use crate::{
ord::OrdIsValueOrd, AnyRef, BytesRef, DecodeValue, EncodeValue, Error, ErrorKind, FixedTag,
Header, Length, Reader, Result, Tag, ValueOrd, Writer,
};
use core::cmp::Ordering;
#[cfg(feature = "alloc")]
pub use allocating::Int;
macro_rules! impl_encoding_traits {
($($int:ty => $uint:ty),+) => {
$(
impl<'a> DecodeValue<'a> for $int {
fn decode_value<R: Reader<'a>>(reader: &mut R, header: Header) -> Result<Self> {
let mut buf = [0u8; Self::BITS as usize / 8];
let max_length = u32::from(header.length) as usize;
if max_length > buf.len() {
return Err(Self::TAG.non_canonical_error());
}
let bytes = reader.read_into(&mut buf[..max_length])?;
let result = if is_highest_bit_set(bytes) {
<$uint>::from_be_bytes(decode_to_array(bytes)?) as $int
} else {
Self::from_be_bytes(uint::decode_to_array(bytes)?)
};
// Ensure we compute the same encoded length as the original any value
if header.length != result.value_len()? {
return Err(Self::TAG.non_canonical_error());
}
Ok(result)
}
}
impl EncodeValue for $int {
fn value_len(&self) -> Result<Length> {
if *self < 0 {
negative_encoded_len(&(*self as $uint).to_be_bytes())
} else {
uint::encoded_len(&self.to_be_bytes())
}
}
fn encode_value(&self, writer: &mut impl Writer) -> Result<()> {
if *self < 0 {
encode_bytes(writer, &(*self as $uint).to_be_bytes())
} else {
uint::encode_bytes(writer, &self.to_be_bytes())
}
}
}
impl FixedTag for $int {
const TAG: Tag = Tag::Integer;
}
impl ValueOrd for $int {
fn value_cmp(&self, other: &Self) -> Result<Ordering> {
value_cmp(*self, *other)
}
}
impl TryFrom<AnyRef<'_>> for $int {
type Error = Error;
fn try_from(any: AnyRef<'_>) -> Result<Self> {
any.decode_as()
}
}
)+
};
}
impl_encoding_traits!(i8 => u8, i16 => u16, i32 => u32, i64 => u64, i128 => u128);
/// Signed arbitrary precision ASN.1 `INTEGER` reference type.
///
/// Provides direct access to the underlying big endian bytes which comprise
/// an signed integer value.
///
/// Intended for use cases like very large integers that are used in
/// cryptographic applications (e.g. keys, signatures).
#[derive(Copy, Clone, Debug, Eq, PartialEq, PartialOrd, Ord)]
pub struct IntRef<'a> {
/// Inner value
inner: BytesRef<'a>,
}
impl<'a> IntRef<'a> {
/// Create a new [`IntRef`] from a byte slice.
pub fn new(bytes: &'a [u8]) -> Result<Self> {
let inner = BytesRef::new(strip_leading_ones(bytes))
.map_err(|_| ErrorKind::Length { tag: Self::TAG })?;
Ok(Self { inner })
}
/// Borrow the inner byte slice which contains the least significant bytes
/// of a big endian integer value with all leading ones stripped.
pub fn as_bytes(&self) -> &'a [u8] {
self.inner.as_slice()
}
/// Get the length of this [`IntRef`] in bytes.
pub fn len(&self) -> Length {
self.inner.len()
}
/// Is the inner byte slice empty?
pub fn is_empty(&self) -> bool {
self.inner.is_empty()
}
}
impl_any_conversions!(IntRef<'a>, 'a);
impl<'a> DecodeValue<'a> for IntRef<'a> {
fn decode_value<R: Reader<'a>>(reader: &mut R, header: Header) -> Result<Self> {
let bytes = BytesRef::decode_value(reader, header)?;
validate_canonical(bytes.as_slice())?;
let result = Self::new(bytes.as_slice())?;
// Ensure we compute the same encoded length as the original any value.
if result.value_len()? != header.length {
return Err(Self::TAG.non_canonical_error());
}
Ok(result)
}
}
impl<'a> EncodeValue for IntRef<'a> {
fn value_len(&self) -> Result<Length> {
// Signed integers always hold their full encoded form.
Ok(self.inner.len())
}
fn encode_value(&self, writer: &mut impl Writer) -> Result<()> {
writer.write(self.as_bytes())
}
}
impl<'a> From<&IntRef<'a>> for IntRef<'a> {
fn from(value: &IntRef<'a>) -> IntRef<'a> {
*value
}
}
impl<'a> FixedTag for IntRef<'a> {
const TAG: Tag = Tag::Integer;
}
impl<'a> OrdIsValueOrd for IntRef<'a> {}
#[cfg(feature = "alloc")]
mod allocating {
use super::{strip_leading_ones, validate_canonical, IntRef};
use crate::{
asn1::Uint,
ord::OrdIsValueOrd,
referenced::{OwnedToRef, RefToOwned},
BytesOwned, DecodeValue, EncodeValue, ErrorKind, FixedTag, Header, Length, Reader, Result,
Tag, Writer,
};
use alloc::vec::Vec;
/// Signed arbitrary precision ASN.1 `INTEGER` type.
///
/// Provides heap-allocated storage for big endian bytes which comprise an
/// signed integer value.
///
/// Intended for use cases like very large integers that are used in
/// cryptographic applications (e.g. keys, signatures).
#[derive(Clone, Debug, Eq, PartialEq, PartialOrd, Ord)]
pub struct Int {
/// Inner value
inner: BytesOwned,
}
impl Int {
/// Create a new [`Int`] from a byte slice.
pub fn new(bytes: &[u8]) -> Result<Self> {
let inner = BytesOwned::new(strip_leading_ones(bytes))
.map_err(|_| ErrorKind::Length { tag: Self::TAG })?;
Ok(Self { inner })
}
/// Borrow the inner byte slice which contains the least significant bytes
/// of a big endian integer value with all leading ones stripped.
pub fn as_bytes(&self) -> &[u8] {
self.inner.as_slice()
}
/// Get the length of this [`Int`] in bytes.
pub fn len(&self) -> Length {
self.inner.len()
}
/// Is the inner byte slice empty?
pub fn is_empty(&self) -> bool {
self.inner.is_empty()
}
}
impl_any_conversions!(Int);
impl<'a> DecodeValue<'a> for Int {
fn decode_value<R: Reader<'a>>(reader: &mut R, header: Header) -> Result<Self> {
let bytes = BytesOwned::decode_value(reader, header)?;
validate_canonical(bytes.as_slice())?;
let result = Self::new(bytes.as_slice())?;
// Ensure we compute the same encoded length as the original any value.
if result.value_len()? != header.length {
return Err(Self::TAG.non_canonical_error());
}
Ok(result)
}
}
impl EncodeValue for Int {
fn value_len(&self) -> Result<Length> {
// Signed integers always hold their full encoded form.
Ok(self.inner.len())
}
fn encode_value(&self, writer: &mut impl Writer) -> Result<()> {
writer.write(self.as_bytes())
}
}
impl<'a> From<&IntRef<'a>> for Int {
fn from(value: &IntRef<'a>) -> Int {
let inner = BytesOwned::new(value.as_bytes()).expect("Invalid Int");
Int { inner }
}
}
impl From<Uint> for Int {
fn from(value: Uint) -> Self {
let mut inner: Vec<u8> = Vec::new();
// Add leading `0x00` byte if required
if value.value_len().expect("invalid Uint") > value.len() {
inner.push(0x00);
}
inner.extend_from_slice(value.as_bytes());
let inner = BytesOwned::new(inner).expect("invalid Uint");
Int { inner }
}
}
impl FixedTag for Int {
const TAG: Tag = Tag::Integer;
}
impl OrdIsValueOrd for Int {}
impl<'a> RefToOwned<'a> for IntRef<'a> {
type Owned = Int;
fn ref_to_owned(&self) -> Self::Owned {
let inner = self.inner.ref_to_owned();
Int { inner }
}
}
impl OwnedToRef for Int {
type Borrowed<'a> = IntRef<'a>;
fn owned_to_ref(&self) -> Self::Borrowed<'_> {
let inner = self.inner.owned_to_ref();
IntRef { inner }
}
}
}
/// Ensure `INTEGER` is canonically encoded.
fn validate_canonical(bytes: &[u8]) -> Result<()> {
// The `INTEGER` type always encodes a signed value and we're decoding
// as signed here, so we allow a zero extension or sign extension byte,
// but only as permitted under DER canonicalization.
match bytes {
[] => Err(Tag::Integer.non_canonical_error()),
[0x00, byte, ..] if *byte < 0x80 => Err(Tag::Integer.non_canonical_error()),
[0xFF, byte, ..] if *byte >= 0x80 => Err(Tag::Integer.non_canonical_error()),
_ => Ok(()),
}
}
/// Decode an signed integer of the specified size.
///
/// Returns a byte array of the requested size containing a big endian integer.
fn decode_to_array<const N: usize>(bytes: &[u8]) -> Result<[u8; N]> {
match N.checked_sub(bytes.len()) {
Some(offset) => {
let mut output = [0xFFu8; N];
output[offset..].copy_from_slice(bytes);
Ok(output)
}
None => {
let expected_len = Length::try_from(N)?;
let actual_len = Length::try_from(bytes.len())?;
Err(ErrorKind::Incomplete {
expected_len,
actual_len,
}
.into())
}
}
}
/// Encode the given big endian bytes representing an integer as ASN.1 DER.
fn encode_bytes<W>(writer: &mut W, bytes: &[u8]) -> Result<()>
where
W: Writer + ?Sized,
{
writer.write(strip_leading_ones(bytes))
}
/// Get the encoded length for the given **negative** integer serialized as bytes.
#[inline]
fn negative_encoded_len(bytes: &[u8]) -> Result<Length> {
Length::try_from(strip_leading_ones(bytes).len())
}
/// Strip the leading all-ones bytes from the given byte slice.
pub(crate) fn strip_leading_ones(mut bytes: &[u8]) -> &[u8] {
while let Some((byte, rest)) = bytes.split_first() {
if *byte == 0xFF && is_highest_bit_set(rest) {
bytes = rest;
continue;
}
break;
}
bytes
}
#[cfg(test)]
mod tests {
use super::{validate_canonical, IntRef};
use crate::{asn1::integer::tests::*, Decode, Encode, SliceWriter};
#[test]
fn validate_canonical_ok() {
assert_eq!(validate_canonical(&[0x00]), Ok(()));
assert_eq!(validate_canonical(&[0x01]), Ok(()));
assert_eq!(validate_canonical(&[0x00, 0x80]), Ok(()));
assert_eq!(validate_canonical(&[0xFF, 0x00]), Ok(()));
}
#[test]
fn validate_canonical_err() {
// Empty integers are always non-canonical.
assert!(validate_canonical(&[]).is_err());
// Positives with excessive zero extension are non-canonical.
assert!(validate_canonical(&[0x00, 0x00]).is_err());
// Negatives with excessive sign extension are non-canonical.
assert!(validate_canonical(&[0xFF, 0x80]).is_err());
}
#[test]
fn decode_intref() {
// Positive numbers decode, but have zero extensions as necessary
// (to distinguish them from negative representations).
assert_eq!(&[0], IntRef::from_der(I0_BYTES).unwrap().as_bytes());
assert_eq!(&[127], IntRef::from_der(I127_BYTES).unwrap().as_bytes());
assert_eq!(&[0, 128], IntRef::from_der(I128_BYTES).unwrap().as_bytes());
assert_eq!(&[0, 255], IntRef::from_der(I255_BYTES).unwrap().as_bytes());
assert_eq!(
&[0x01, 0x00],
IntRef::from_der(I256_BYTES).unwrap().as_bytes()
);
assert_eq!(
&[0x7F, 0xFF],
IntRef::from_der(I32767_BYTES).unwrap().as_bytes()
);
// Negative integers decode.
assert_eq!(&[128], IntRef::from_der(INEG128_BYTES).unwrap().as_bytes());
assert_eq!(
&[255, 127],
IntRef::from_der(INEG129_BYTES).unwrap().as_bytes()
);
assert_eq!(
&[128, 0],
IntRef::from_der(INEG32768_BYTES).unwrap().as_bytes()
);
}
#[test]
fn encode_intref() {
for &example in &[
I0_BYTES,
I127_BYTES,
I128_BYTES,
I255_BYTES,
I256_BYTES,
I32767_BYTES,
] {
let uint = IntRef::from_der(example).unwrap();
let mut buf = [0u8; 128];
let mut encoder = SliceWriter::new(&mut buf);
uint.encode(&mut encoder).unwrap();
let result = encoder.finish().unwrap();
assert_eq!(example, result);
}
for &example in &[INEG128_BYTES, INEG129_BYTES, INEG32768_BYTES] {
let uint = IntRef::from_der(example).unwrap();
let mut buf = [0u8; 128];
let mut encoder = SliceWriter::new(&mut buf);
uint.encode(&mut encoder).unwrap();
let result = encoder.finish().unwrap();
assert_eq!(example, result);
}
}
}