blob: 47cc0377e474221ef9fc0a6d50e440585c598285 [file] [log] [blame]
use std::io::{self, ErrorKind};
use std::iter;
use std::num::ParseIntError;
use std::str::{self, FromStr};
use super::rule::TransitionRule;
use super::timezone::{LeapSecond, LocalTimeType, TimeZone, Transition};
use super::Error;
pub(super) fn parse(bytes: &[u8]) -> Result<TimeZone, Error> {
let mut cursor = Cursor::new(bytes);
let state = State::new(&mut cursor, true)?;
let (state, footer) = match state.header.version {
Version::V1 => match cursor.is_empty() {
true => (state, None),
false => {
return Err(Error::InvalidTzFile("remaining data after end of TZif v1 data block"))
}
},
Version::V2 | Version::V3 => {
let state = State::new(&mut cursor, false)?;
(state, Some(cursor.remaining()))
}
};
let mut transitions = Vec::with_capacity(state.header.transition_count);
for (arr_time, &local_time_type_index) in
state.transition_times.chunks_exact(state.time_size).zip(state.transition_types)
{
let unix_leap_time =
state.parse_time(&arr_time[0..state.time_size], state.header.version)?;
let local_time_type_index = local_time_type_index as usize;
transitions.push(Transition::new(unix_leap_time, local_time_type_index));
}
let mut local_time_types = Vec::with_capacity(state.header.type_count);
for arr in state.local_time_types.chunks_exact(6) {
let ut_offset = read_be_i32(&arr[..4])?;
let is_dst = match arr[4] {
0 => false,
1 => true,
_ => return Err(Error::InvalidTzFile("invalid DST indicator")),
};
let char_index = arr[5] as usize;
if char_index >= state.header.char_count {
return Err(Error::InvalidTzFile("invalid time zone name char index"));
}
let position = match state.names[char_index..].iter().position(|&c| c == b'\0') {
Some(position) => position,
None => return Err(Error::InvalidTzFile("invalid time zone name char index")),
};
let name = &state.names[char_index..char_index + position];
let name = if !name.is_empty() { Some(name) } else { None };
local_time_types.push(LocalTimeType::new(ut_offset, is_dst, name)?);
}
let mut leap_seconds = Vec::with_capacity(state.header.leap_count);
for arr in state.leap_seconds.chunks_exact(state.time_size + 4) {
let unix_leap_time = state.parse_time(&arr[0..state.time_size], state.header.version)?;
let correction = read_be_i32(&arr[state.time_size..state.time_size + 4])?;
leap_seconds.push(LeapSecond::new(unix_leap_time, correction));
}
let std_walls_iter = state.std_walls.iter().copied().chain(iter::repeat(0));
let ut_locals_iter = state.ut_locals.iter().copied().chain(iter::repeat(0));
if std_walls_iter.zip(ut_locals_iter).take(state.header.type_count).any(|pair| pair == (0, 1)) {
return Err(Error::InvalidTzFile(
"invalid couple of standard/wall and UT/local indicators",
));
}
let extra_rule = match footer {
Some(footer) => {
let footer = str::from_utf8(footer)?;
if !(footer.starts_with('\n') && footer.ends_with('\n')) {
return Err(Error::InvalidTzFile("invalid footer"));
}
let tz_string = footer.trim_matches(|c: char| c.is_ascii_whitespace());
if tz_string.starts_with(':') || tz_string.contains('\0') {
return Err(Error::InvalidTzFile("invalid footer"));
}
match tz_string.is_empty() {
true => None,
false => Some(TransitionRule::from_tz_string(
tz_string.as_bytes(),
state.header.version == Version::V3,
)?),
}
}
None => None,
};
TimeZone::new(transitions, local_time_types, leap_seconds, extra_rule)
}
/// TZif data blocks
struct State<'a> {
header: Header,
/// Time size in bytes
time_size: usize,
/// Transition times data block
transition_times: &'a [u8],
/// Transition types data block
transition_types: &'a [u8],
/// Local time types data block
local_time_types: &'a [u8],
/// Time zone names data block
names: &'a [u8],
/// Leap seconds data block
leap_seconds: &'a [u8],
/// UT/local indicators data block
std_walls: &'a [u8],
/// Standard/wall indicators data block
ut_locals: &'a [u8],
}
impl<'a> State<'a> {
/// Read TZif data blocks
fn new(cursor: &mut Cursor<'a>, first: bool) -> Result<Self, Error> {
let header = Header::new(cursor)?;
let time_size = match first {
true => 4, // We always parse V1 first
false => 8,
};
Ok(Self {
time_size,
transition_times: cursor.read_exact(header.transition_count * time_size)?,
transition_types: cursor.read_exact(header.transition_count)?,
local_time_types: cursor.read_exact(header.type_count * 6)?,
names: cursor.read_exact(header.char_count)?,
leap_seconds: cursor.read_exact(header.leap_count * (time_size + 4))?,
std_walls: cursor.read_exact(header.std_wall_count)?,
ut_locals: cursor.read_exact(header.ut_local_count)?,
header,
})
}
/// Parse time values
fn parse_time(&self, arr: &[u8], version: Version) -> Result<i64, Error> {
match version {
Version::V1 => Ok(read_be_i32(&arr[..4])?.into()),
Version::V2 | Version::V3 => read_be_i64(arr),
}
}
}
/// TZif header
#[derive(Debug)]
struct Header {
/// TZif version
version: Version,
/// Number of UT/local indicators
ut_local_count: usize,
/// Number of standard/wall indicators
std_wall_count: usize,
/// Number of leap-second records
leap_count: usize,
/// Number of transition times
transition_count: usize,
/// Number of local time type records
type_count: usize,
/// Number of time zone names bytes
char_count: usize,
}
impl Header {
fn new(cursor: &mut Cursor) -> Result<Self, Error> {
let magic = cursor.read_exact(4)?;
if magic != *b"TZif" {
return Err(Error::InvalidTzFile("invalid magic number"));
}
let version = match cursor.read_exact(1)? {
[0x00] => Version::V1,
[0x32] => Version::V2,
[0x33] => Version::V3,
_ => return Err(Error::UnsupportedTzFile("unsupported TZif version")),
};
cursor.read_exact(15)?;
let ut_local_count = cursor.read_be_u32()?;
let std_wall_count = cursor.read_be_u32()?;
let leap_count = cursor.read_be_u32()?;
let transition_count = cursor.read_be_u32()?;
let type_count = cursor.read_be_u32()?;
let char_count = cursor.read_be_u32()?;
if !(type_count != 0
&& char_count != 0
&& (ut_local_count == 0 || ut_local_count == type_count)
&& (std_wall_count == 0 || std_wall_count == type_count))
{
return Err(Error::InvalidTzFile("invalid header"));
}
Ok(Self {
version,
ut_local_count: ut_local_count as usize,
std_wall_count: std_wall_count as usize,
leap_count: leap_count as usize,
transition_count: transition_count as usize,
type_count: type_count as usize,
char_count: char_count as usize,
})
}
}
/// A `Cursor` contains a slice of a buffer and a read count.
#[derive(Debug, Eq, PartialEq)]
pub(crate) struct Cursor<'a> {
/// Slice representing the remaining data to be read
remaining: &'a [u8],
/// Number of already read bytes
read_count: usize,
}
impl<'a> Cursor<'a> {
/// Construct a new `Cursor` from remaining data
pub(crate) const fn new(remaining: &'a [u8]) -> Self {
Self { remaining, read_count: 0 }
}
pub(crate) fn peek(&self) -> Option<&u8> {
self.remaining().first()
}
/// Returns remaining data
pub(crate) const fn remaining(&self) -> &'a [u8] {
self.remaining
}
/// Returns `true` if data is remaining
pub(crate) const fn is_empty(&self) -> bool {
self.remaining.is_empty()
}
pub(crate) fn read_be_u32(&mut self) -> Result<u32, Error> {
let mut buf = [0; 4];
buf.copy_from_slice(self.read_exact(4)?);
Ok(u32::from_be_bytes(buf))
}
/// Read exactly `count` bytes, reducing remaining data and incrementing read count
pub(crate) fn read_exact(&mut self, count: usize) -> Result<&'a [u8], io::Error> {
match (self.remaining.get(..count), self.remaining.get(count..)) {
(Some(result), Some(remaining)) => {
self.remaining = remaining;
self.read_count += count;
Ok(result)
}
_ => Err(io::Error::from(ErrorKind::UnexpectedEof)),
}
}
/// Read bytes and compare them to the provided tag
pub(crate) fn read_tag(&mut self, tag: &[u8]) -> Result<(), io::Error> {
if self.read_exact(tag.len())? == tag {
Ok(())
} else {
Err(io::Error::from(ErrorKind::InvalidData))
}
}
/// Read bytes if the remaining data is prefixed by the provided tag
pub(crate) fn read_optional_tag(&mut self, tag: &[u8]) -> Result<bool, io::Error> {
if self.remaining.starts_with(tag) {
self.read_exact(tag.len())?;
Ok(true)
} else {
Ok(false)
}
}
/// Read bytes as long as the provided predicate is true
pub(crate) fn read_while<F: Fn(&u8) -> bool>(&mut self, f: F) -> Result<&'a [u8], io::Error> {
match self.remaining.iter().position(|x| !f(x)) {
None => self.read_exact(self.remaining.len()),
Some(position) => self.read_exact(position),
}
}
// Parse an integer out of the ASCII digits
pub(crate) fn read_int<T: FromStr<Err = ParseIntError>>(&mut self) -> Result<T, Error> {
let bytes = self.read_while(u8::is_ascii_digit)?;
Ok(str::from_utf8(bytes)?.parse()?)
}
/// Read bytes until the provided predicate is true
pub(crate) fn read_until<F: Fn(&u8) -> bool>(&mut self, f: F) -> Result<&'a [u8], io::Error> {
match self.remaining.iter().position(f) {
None => self.read_exact(self.remaining.len()),
Some(position) => self.read_exact(position),
}
}
}
pub(crate) fn read_be_i32(bytes: &[u8]) -> Result<i32, Error> {
if bytes.len() != 4 {
return Err(Error::InvalidSlice("too short for i32"));
}
let mut buf = [0; 4];
buf.copy_from_slice(bytes);
Ok(i32::from_be_bytes(buf))
}
pub(crate) fn read_be_i64(bytes: &[u8]) -> Result<i64, Error> {
if bytes.len() != 8 {
return Err(Error::InvalidSlice("too short for i64"));
}
let mut buf = [0; 8];
buf.copy_from_slice(bytes);
Ok(i64::from_be_bytes(buf))
}
/// TZif version
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
enum Version {
/// Version 1
V1,
/// Version 2
V2,
/// Version 3
V3,
}