blob: dea01c63a05b9fb61052c4636d75235f7585c427 [file] [log] [blame]
use std::{iter, convert::TryInto};
use rustc::hir::def_id::DefId;
use rustc::mir;
use rustc::ty::layout::{Align, LayoutOf, Size};
use rustc_apfloat::Float;
use syntax::attr;
use syntax::symbol::sym;
use crate::*;
impl<'mir, 'tcx> EvalContextExt<'mir, 'tcx> for crate::MiriEvalContext<'mir, 'tcx> {}
pub trait EvalContextExt<'mir, 'tcx: 'mir>: crate::MiriEvalContextExt<'mir, 'tcx> {
/// Returns the minimum alignment for the target architecture for allocations of the given size.
fn min_align(&self, size: u64, kind: MiriMemoryKind) -> Align {
let this = self.eval_context_ref();
// List taken from `libstd/sys_common/alloc.rs`.
let min_align = match this.tcx.tcx.sess.target.target.arch.as_str() {
"x86" | "arm" | "mips" | "powerpc" | "powerpc64" | "asmjs" | "wasm32" => 8,
"x86_64" | "aarch64" | "mips64" | "s390x" | "sparc64" => 16,
arch => bug!("Unsupported target architecture: {}", arch),
};
// Windows always aligns, even small allocations.
// Source: <https://support.microsoft.com/en-us/help/286470/how-to-use-pageheap-exe-in-windows-xp-windows-2000-and-windows-server>
// But jemalloc does not, so for the C heap we only align if the allocation is sufficiently big.
if kind == MiriMemoryKind::WinHeap || size >= min_align {
return Align::from_bytes(min_align).unwrap();
}
// We have `size < min_align`. Round `size` *down* to the next power of two and use that.
fn prev_power_of_two(x: u64) -> u64 {
let next_pow2 = x.next_power_of_two();
if next_pow2 == x {
// x *is* a power of two, just use that.
x
} else {
// x is between two powers, so next = 2*prev.
next_pow2 / 2
}
}
Align::from_bytes(prev_power_of_two(size)).unwrap()
}
fn malloc(&mut self, size: u64, zero_init: bool, kind: MiriMemoryKind) -> Scalar<Tag> {
let this = self.eval_context_mut();
if size == 0 {
Scalar::from_int(0, this.pointer_size())
} else {
let align = this.min_align(size, kind);
let ptr = this
.memory
.allocate(Size::from_bytes(size), align, kind.into());
if zero_init {
// We just allocated this, the access is definitely in-bounds.
this.memory
.write_bytes(ptr.into(), iter::repeat(0u8).take(size as usize))
.unwrap();
}
Scalar::Ptr(ptr)
}
}
fn free(&mut self, ptr: Scalar<Tag>, kind: MiriMemoryKind) -> InterpResult<'tcx> {
let this = self.eval_context_mut();
if !this.is_null(ptr)? {
let ptr = this.force_ptr(ptr)?;
this.memory.deallocate(ptr, None, kind.into())?;
}
Ok(())
}
fn realloc(
&mut self,
old_ptr: Scalar<Tag>,
new_size: u64,
kind: MiriMemoryKind,
) -> InterpResult<'tcx, Scalar<Tag>> {
let this = self.eval_context_mut();
let new_align = this.min_align(new_size, kind);
if this.is_null(old_ptr)? {
if new_size == 0 {
Ok(Scalar::from_int(0, this.pointer_size()))
} else {
let new_ptr =
this.memory
.allocate(Size::from_bytes(new_size), new_align, kind.into());
Ok(Scalar::Ptr(new_ptr))
}
} else {
let old_ptr = this.force_ptr(old_ptr)?;
if new_size == 0 {
this.memory.deallocate(old_ptr, None, kind.into())?;
Ok(Scalar::from_int(0, this.pointer_size()))
} else {
let new_ptr = this.memory.reallocate(
old_ptr,
None,
Size::from_bytes(new_size),
new_align,
kind.into(),
)?;
Ok(Scalar::Ptr(new_ptr))
}
}
}
/// Emulates calling a foreign item, failing if the item is not supported.
/// This function will handle `goto_block` if needed.
fn emulate_foreign_item(
&mut self,
def_id: DefId,
args: &[OpTy<'tcx, Tag>],
dest: Option<PlaceTy<'tcx, Tag>>,
ret: Option<mir::BasicBlock>,
) -> InterpResult<'tcx> {
let this = self.eval_context_mut();
let attrs = this.tcx.get_attrs(def_id);
let link_name = match attr::first_attr_value_str_by_name(&attrs, sym::link_name) {
Some(name) => name.as_str(),
None => this.tcx.item_name(def_id).as_str(),
};
// Strip linker suffixes (seen on 32-bit macOS).
let link_name = link_name.trim_end_matches("$UNIX2003");
let tcx = &{ this.tcx.tcx };
// First: functions that diverge.
match link_name {
"__rust_start_panic" | "panic_impl" => {
throw_unsup_format!("the evaluated program panicked");
}
"exit" | "ExitProcess" => {
// it's really u32 for ExitProcess, but we have to put it into the `Exit` error variant anyway
let code = this.read_scalar(args[0])?.to_i32()?;
return Err(InterpError::Exit(code).into());
}
_ => {
if dest.is_none() {
throw_unsup_format!("can't call (diverging) foreign function: {}", link_name);
}
}
}
// Next: functions that assume a ret and dest.
let dest = dest.expect("we already checked for a dest");
let ret = ret.expect("dest is `Some` but ret is `None`");
match link_name {
"malloc" => {
let size = this.read_scalar(args[0])?.to_usize(this)?;
let res = this.malloc(size, /*zero_init:*/ false, MiriMemoryKind::C);
this.write_scalar(res, dest)?;
}
"calloc" => {
let items = this.read_scalar(args[0])?.to_usize(this)?;
let len = this.read_scalar(args[1])?.to_usize(this)?;
let size = items
.checked_mul(len)
.ok_or_else(|| err_panic!(Overflow(mir::BinOp::Mul)))?;
let res = this.malloc(size, /*zero_init:*/ true, MiriMemoryKind::C);
this.write_scalar(res, dest)?;
}
"posix_memalign" => {
let ret = this.deref_operand(args[0])?;
let align = this.read_scalar(args[1])?.to_usize(this)?;
let size = this.read_scalar(args[2])?.to_usize(this)?;
// Align must be power of 2, and also at least ptr-sized (POSIX rules).
if !align.is_power_of_two() {
throw_unsup!(HeapAllocNonPowerOfTwoAlignment(align));
}
if align < this.pointer_size().bytes() {
throw_ub_format!(
"posix_memalign: alignment must be at least the size of a pointer, but is {}",
align,
);
}
if size == 0 {
this.write_null(ret.into())?;
} else {
let ptr = this.memory.allocate(
Size::from_bytes(size),
Align::from_bytes(align).unwrap(),
MiriMemoryKind::C.into(),
);
this.write_scalar(Scalar::Ptr(ptr), ret.into())?;
}
this.write_null(dest)?;
}
"free" => {
let ptr = this.read_scalar(args[0])?.not_undef()?;
this.free(ptr, MiriMemoryKind::C)?;
}
"realloc" => {
let old_ptr = this.read_scalar(args[0])?.not_undef()?;
let new_size = this.read_scalar(args[1])?.to_usize(this)?;
let res = this.realloc(old_ptr, new_size, MiriMemoryKind::C)?;
this.write_scalar(res, dest)?;
}
"__rust_alloc" => {
let size = this.read_scalar(args[0])?.to_usize(this)?;
let align = this.read_scalar(args[1])?.to_usize(this)?;
if size == 0 {
throw_unsup!(HeapAllocZeroBytes);
}
if !align.is_power_of_two() {
throw_unsup!(HeapAllocNonPowerOfTwoAlignment(align));
}
let ptr = this.memory.allocate(
Size::from_bytes(size),
Align::from_bytes(align).unwrap(),
MiriMemoryKind::Rust.into(),
);
this.write_scalar(Scalar::Ptr(ptr), dest)?;
}
"__rust_alloc_zeroed" => {
let size = this.read_scalar(args[0])?.to_usize(this)?;
let align = this.read_scalar(args[1])?.to_usize(this)?;
if size == 0 {
throw_unsup!(HeapAllocZeroBytes);
}
if !align.is_power_of_two() {
throw_unsup!(HeapAllocNonPowerOfTwoAlignment(align));
}
let ptr = this.memory.allocate(
Size::from_bytes(size),
Align::from_bytes(align).unwrap(),
MiriMemoryKind::Rust.into(),
);
// We just allocated this, the access is definitely in-bounds.
this.memory
.write_bytes(ptr.into(), iter::repeat(0u8).take(size as usize))
.unwrap();
this.write_scalar(Scalar::Ptr(ptr), dest)?;
}
"__rust_dealloc" => {
let ptr = this.read_scalar(args[0])?.not_undef()?;
let old_size = this.read_scalar(args[1])?.to_usize(this)?;
let align = this.read_scalar(args[2])?.to_usize(this)?;
if old_size == 0 {
throw_unsup!(HeapAllocZeroBytes);
}
if !align.is_power_of_two() {
throw_unsup!(HeapAllocNonPowerOfTwoAlignment(align));
}
let ptr = this.force_ptr(ptr)?;
this.memory.deallocate(
ptr,
Some((
Size::from_bytes(old_size),
Align::from_bytes(align).unwrap(),
)),
MiriMemoryKind::Rust.into(),
)?;
}
"__rust_realloc" => {
let ptr = this.read_scalar(args[0])?.to_ptr()?;
let old_size = this.read_scalar(args[1])?.to_usize(this)?;
let align = this.read_scalar(args[2])?.to_usize(this)?;
let new_size = this.read_scalar(args[3])?.to_usize(this)?;
if old_size == 0 || new_size == 0 {
throw_unsup!(HeapAllocZeroBytes);
}
if !align.is_power_of_two() {
throw_unsup!(HeapAllocNonPowerOfTwoAlignment(align));
}
let align = Align::from_bytes(align).unwrap();
let new_ptr = this.memory.reallocate(
ptr,
Some((Size::from_bytes(old_size), align)),
Size::from_bytes(new_size),
align,
MiriMemoryKind::Rust.into(),
)?;
this.write_scalar(Scalar::Ptr(new_ptr), dest)?;
}
"syscall" => {
let sys_getrandom = this
.eval_path_scalar(&["libc", "SYS_getrandom"])?
.expect("Failed to get libc::SYS_getrandom")
.to_usize(this)?;
// `libc::syscall(NR_GETRANDOM, buf.as_mut_ptr(), buf.len(), GRND_NONBLOCK)`
// is called if a `HashMap` is created the regular way (e.g. HashMap<K, V>).
match this.read_scalar(args[0])?.to_usize(this)? {
id if id == sys_getrandom => {
// The first argument is the syscall id,
// so skip over it.
linux_getrandom(this, &args[1..], dest)?;
}
id => throw_unsup_format!("miri does not support syscall ID {}", id),
}
}
"getrandom" => {
linux_getrandom(this, args, dest)?;
}
"dlsym" => {
let _handle = this.read_scalar(args[0])?;
let symbol = this.read_scalar(args[1])?.not_undef()?;
let symbol_name = this.memory.read_c_str(symbol)?;
let err = format!("bad c unicode symbol: {:?}", symbol_name);
let symbol_name = ::std::str::from_utf8(symbol_name).unwrap_or(&err);
if let Some(dlsym) = Dlsym::from_str(symbol_name)? {
let ptr = this.memory.create_fn_alloc(FnVal::Other(dlsym));
this.write_scalar(Scalar::from(ptr), dest)?;
} else {
this.write_null(dest)?;
}
}
"__rust_maybe_catch_panic" => {
// fn __rust_maybe_catch_panic(
// f: fn(*mut u8),
// data: *mut u8,
// data_ptr: *mut usize,
// vtable_ptr: *mut usize,
// ) -> u32
// We abort on panic, so not much is going on here, but we still have to call the closure.
let f = this.read_scalar(args[0])?.not_undef()?;
let data = this.read_scalar(args[1])?.not_undef()?;
let f_instance = this.memory.get_fn(f)?.as_instance()?;
this.write_null(dest)?;
trace!("__rust_maybe_catch_panic: {:?}", f_instance);
// Now we make a function call.
// TODO: consider making this reusable? `InterpCx::step` does something similar
// for the TLS destructors, and of course `eval_main`.
let mir = this.load_mir(f_instance.def, None)?;
let ret_place =
MPlaceTy::dangling(this.layout_of(tcx.mk_unit())?, this).into();
this.push_stack_frame(
f_instance,
mir.span,
mir,
Some(ret_place),
// Directly return to caller.
StackPopCleanup::Goto(Some(ret)),
)?;
let mut args = this.frame().body.args_iter();
let arg_local = args
.next()
.expect("Argument to __rust_maybe_catch_panic does not take enough arguments.");
let arg_dest = this.local_place(arg_local)?;
this.write_scalar(data, arg_dest)?;
args.next().expect_none("__rust_maybe_catch_panic argument has more arguments than expected");
// We ourselves will return `0`, eventually (because we will not return if we paniced).
this.write_null(dest)?;
// Don't fall through, we do *not* want to `goto_block`!
return Ok(());
}
"memcmp" => {
let left = this.read_scalar(args[0])?.not_undef()?;
let right = this.read_scalar(args[1])?.not_undef()?;
let n = Size::from_bytes(this.read_scalar(args[2])?.to_usize(this)?);
let result = {
let left_bytes = this.memory.read_bytes(left, n)?;
let right_bytes = this.memory.read_bytes(right, n)?;
use std::cmp::Ordering::*;
match left_bytes.cmp(right_bytes) {
Less => -1i32,
Equal => 0,
Greater => 1,
}
};
this.write_scalar(Scalar::from_int(result, Size::from_bits(32)), dest)?;
}
"memrchr" => {
let ptr = this.read_scalar(args[0])?.not_undef()?;
let val = this.read_scalar(args[1])?.to_i32()? as u8;
let num = this.read_scalar(args[2])?.to_usize(this)?;
if let Some(idx) = this
.memory
.read_bytes(ptr, Size::from_bytes(num))?
.iter()
.rev()
.position(|&c| c == val)
{
let new_ptr = ptr.ptr_offset(Size::from_bytes(num - idx as u64 - 1), this)?;
this.write_scalar(new_ptr, dest)?;
} else {
this.write_null(dest)?;
}
}
"memchr" => {
let ptr = this.read_scalar(args[0])?.not_undef()?;
let val = this.read_scalar(args[1])?.to_i32()? as u8;
let num = this.read_scalar(args[2])?.to_usize(this)?;
let idx = this
.memory
.read_bytes(ptr, Size::from_bytes(num))?
.iter()
.position(|&c| c == val);
if let Some(idx) = idx {
let new_ptr = ptr.ptr_offset(Size::from_bytes(idx as u64), this)?;
this.write_scalar(new_ptr, dest)?;
} else {
this.write_null(dest)?;
}
}
"__errno_location" | "__error" => {
let errno_place = this.machine.last_error.unwrap();
this.write_scalar(errno_place.to_ref().to_scalar()?, dest)?;
}
"getenv" => {
let result = this.getenv(args[0])?;
this.write_scalar(result, dest)?;
}
"unsetenv" => {
let result = this.unsetenv(args[0])?;
this.write_scalar(Scalar::from_int(result, dest.layout.size), dest)?;
}
"setenv" => {
let result = this.setenv(args[0], args[1])?;
this.write_scalar(Scalar::from_int(result, dest.layout.size), dest)?;
}
"getcwd" => {
let result = this.getcwd(args[0], args[1])?;
this.write_scalar(result, dest)?;
}
"chdir" => {
let result = this.chdir(args[0])?;
this.write_scalar(Scalar::from_int(result, dest.layout.size), dest)?;
}
"open" | "open64" => {
let result = this.open(args[0], args[1])?;
this.write_scalar(Scalar::from_int(result, dest.layout.size), dest)?;
}
"fcntl" => {
let result = this.fcntl(args[0], args[1], args.get(2).cloned())?;
this.write_scalar(Scalar::from_int(result, dest.layout.size), dest)?;
}
"close" | "close$NOCANCEL" => {
let result = this.close(args[0])?;
this.write_scalar(Scalar::from_int(result, dest.layout.size), dest)?;
}
"read" => {
let result = this.read(args[0], args[1], args[2])?;
this.write_scalar(Scalar::from_int(result, dest.layout.size), dest)?;
}
"write" => {
let fd = this.read_scalar(args[0])?.to_i32()?;
let buf = this.read_scalar(args[1])?.not_undef()?;
let n = this.read_scalar(args[2])?.to_usize(tcx)?;
trace!("Called write({:?}, {:?}, {:?})", fd, buf, n);
let result = if fd == 1 || fd == 2 {
// stdout/stderr
use std::io::{self, Write};
let buf_cont = this.memory.read_bytes(buf, Size::from_bytes(n))?;
// We need to flush to make sure this actually appears on the screen
let res = if fd == 1 {
// Stdout is buffered, flush to make sure it appears on the screen.
// This is the write() syscall of the interpreted program, we want it
// to correspond to a write() syscall on the host -- there is no good
// in adding extra buffering here.
let res = io::stdout().write(buf_cont);
io::stdout().flush().unwrap();
res
} else {
// No need to flush, stderr is not buffered.
io::stderr().write(buf_cont)
};
match res {
Ok(n) => n as i64,
Err(_) => -1,
}
} else {
this.write(args[0], args[1], args[2])?
};
// Now, `result` is the value we return back to the program.
this.write_scalar(Scalar::from_int(result, dest.layout.size), dest)?;
}
"unlink" => {
let result = this.unlink(args[0])?;
this.write_scalar(Scalar::from_int(result, dest.layout.size), dest)?;
}
"clock_gettime" => {
let result = this.clock_gettime(args[0], args[1])?;
this.write_scalar(Scalar::from_int(result, dest.layout.size), dest)?;
}
"gettimeofday" => {
let result = this.gettimeofday(args[0], args[1])?;
this.write_scalar(Scalar::from_int(result, dest.layout.size), dest)?;
}
"strlen" => {
let ptr = this.read_scalar(args[0])?.not_undef()?;
let n = this.memory.read_c_str(ptr)?.len();
this.write_scalar(Scalar::from_uint(n as u64, dest.layout.size), dest)?;
}
// math functions
"cbrtf" | "coshf" | "sinhf" | "tanf" => {
// FIXME: Using host floats.
let f = f32::from_bits(this.read_scalar(args[0])?.to_u32()?);
let f = match link_name {
"cbrtf" => f.cbrt(),
"coshf" => f.cosh(),
"sinhf" => f.sinh(),
"tanf" => f.tan(),
_ => bug!(),
};
this.write_scalar(Scalar::from_u32(f.to_bits()), dest)?;
}
// underscore case for windows
"_hypotf" | "hypotf" | "atan2f" => {
// FIXME: Using host floats.
let f1 = f32::from_bits(this.read_scalar(args[0])?.to_u32()?);
let f2 = f32::from_bits(this.read_scalar(args[1])?.to_u32()?);
let n = match link_name {
"_hypotf" | "hypotf" => f1.hypot(f2),
"atan2f" => f1.atan2(f2),
_ => bug!(),
};
this.write_scalar(Scalar::from_u32(n.to_bits()), dest)?;
}
"cbrt" | "cosh" | "sinh" | "tan" => {
// FIXME: Using host floats.
let f = f64::from_bits(this.read_scalar(args[0])?.to_u64()?);
let f = match link_name {
"cbrt" => f.cbrt(),
"cosh" => f.cosh(),
"sinh" => f.sinh(),
"tan" => f.tan(),
_ => bug!(),
};
this.write_scalar(Scalar::from_u64(f.to_bits()), dest)?;
}
// underscore case for windows, here and below
// (see https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/floating-point-primitives?view=vs-2019)
"_hypot" | "hypot" | "atan2" => {
// FIXME: Using host floats.
let f1 = f64::from_bits(this.read_scalar(args[0])?.to_u64()?);
let f2 = f64::from_bits(this.read_scalar(args[1])?.to_u64()?);
let n = match link_name {
"_hypot" | "hypot" => f1.hypot(f2),
"atan2" => f1.atan2(f2),
_ => bug!(),
};
this.write_scalar(Scalar::from_u64(n.to_bits()), dest)?;
}
// For radix-2 (binary) systems, `ldexp` and `scalbn` are the same.
"_ldexp" | "ldexp" | "scalbn" => {
let x = this.read_scalar(args[0])?.to_f64()?;
let exp = this.read_scalar(args[1])?.to_i32()?;
// Saturating cast to i16. Even those are outside the valid exponent range to
// `scalbn` below will do its over/underflow handling.
let exp = if exp > i16::max_value() as i32 {
i16::max_value()
} else if exp < i16::min_value() as i32 {
i16::min_value()
} else {
exp.try_into().unwrap()
};
let res = x.scalbn(exp);
this.write_scalar(Scalar::from_f64(res), dest)?;
}
// Some things needed for `sys::thread` initialization to go through.
"signal" | "sigaction" | "sigaltstack" => {
this.write_scalar(Scalar::from_int(0, dest.layout.size), dest)?;
}
"sysconf" => {
let name = this.read_scalar(args[0])?.to_i32()?;
trace!("sysconf() called with name {}", name);
// TODO: Cache the sysconf integers via Miri's global cache.
let paths = &[
(
&["libc", "_SC_PAGESIZE"],
Scalar::from_int(PAGE_SIZE, dest.layout.size),
),
(
&["libc", "_SC_GETPW_R_SIZE_MAX"],
Scalar::from_int(-1, dest.layout.size),
),
(
&["libc", "_SC_NPROCESSORS_ONLN"],
Scalar::from_int(NUM_CPUS, dest.layout.size),
),
];
let mut result = None;
for &(path, path_value) in paths {
if let Some(val) = this.eval_path_scalar(path)? {
let val = val.to_i32()?;
if val == name {
result = Some(path_value);
break;
}
}
}
if let Some(result) = result {
this.write_scalar(result, dest)?;
} else {
throw_unsup_format!("Unimplemented sysconf name: {}", name)
}
}
"sched_getaffinity" => {
// Return an error; `num_cpus` then falls back to `sysconf`.
this.write_scalar(Scalar::from_int(-1, dest.layout.size), dest)?;
}
"isatty" => {
this.write_null(dest)?;
}
// Hook pthread calls that go to the thread-local storage memory subsystem.
"pthread_key_create" => {
let key_place = this.deref_operand(args[0])?;
// Extract the function type out of the signature (that seems easier than constructing it ourselves).
let dtor = match this.test_null(this.read_scalar(args[1])?.not_undef()?)? {
Some(dtor_ptr) => Some(this.memory.get_fn(dtor_ptr)?.as_instance()?),
None => None,
};
// Figure out how large a pthread TLS key actually is.
// This is `libc::pthread_key_t`.
let key_type = args[0].layout.ty
.builtin_deref(true)
.ok_or_else(|| err_ub_format!(
"wrong signature used for `pthread_key_create`: first argument must be a raw pointer."
))?
.ty;
let key_layout = this.layout_of(key_type)?;
// Create key and write it into the memory where `key_ptr` wants it.
let key = this.machine.tls.create_tls_key(dtor) as u128;
if key_layout.size.bits() < 128 && key >= (1u128 << key_layout.size.bits() as u128)
{
throw_unsup!(OutOfTls);
}
this.write_scalar(Scalar::from_uint(key, key_layout.size), key_place.into())?;
// Return success (`0`).
this.write_null(dest)?;
}
"pthread_key_delete" => {
let key = this.read_scalar(args[0])?.to_bits(args[0].layout.size)?;
this.machine.tls.delete_tls_key(key)?;
// Return success (0)
this.write_null(dest)?;
}
"pthread_getspecific" => {
let key = this.read_scalar(args[0])?.to_bits(args[0].layout.size)?;
let ptr = this.machine.tls.load_tls(key, tcx)?;
this.write_scalar(ptr, dest)?;
}
"pthread_setspecific" => {
let key = this.read_scalar(args[0])?.to_bits(args[0].layout.size)?;
let new_ptr = this.read_scalar(args[1])?.not_undef()?;
this.machine.tls.store_tls(key, this.test_null(new_ptr)?)?;
// Return success (`0`).
this.write_null(dest)?;
}
// Stack size/address stuff.
"pthread_attr_init"
| "pthread_attr_destroy"
| "pthread_self"
| "pthread_attr_setstacksize" => {
this.write_null(dest)?;
}
"pthread_attr_getstack" => {
let addr_place = this.deref_operand(args[1])?;
let size_place = this.deref_operand(args[2])?;
this.write_scalar(
Scalar::from_uint(STACK_ADDR, addr_place.layout.size),
addr_place.into(),
)?;
this.write_scalar(
Scalar::from_uint(STACK_SIZE, size_place.layout.size),
size_place.into(),
)?;
// Return success (`0`).
this.write_null(dest)?;
}
// We don't support threading. (Also for Windows.)
"pthread_create" | "CreateThread" => {
throw_unsup_format!("Miri does not support threading");
}
// Stub out calls for condvar, mutex and rwlock, to just return `0`.
"pthread_mutexattr_init"
| "pthread_mutexattr_settype"
| "pthread_mutex_init"
| "pthread_mutexattr_destroy"
| "pthread_mutex_lock"
| "pthread_mutex_unlock"
| "pthread_mutex_destroy"
| "pthread_rwlock_rdlock"
| "pthread_rwlock_unlock"
| "pthread_rwlock_wrlock"
| "pthread_rwlock_destroy"
| "pthread_condattr_init"
| "pthread_condattr_setclock"
| "pthread_cond_init"
| "pthread_condattr_destroy"
| "pthread_cond_destroy" => {
this.write_null(dest)?;
}
// We don't support fork so we don't have to do anything for atfork.
"pthread_atfork" => {
this.write_null(dest)?;
}
"mmap" => {
// This is a horrible hack, but since the guard page mechanism calls mmap and expects a particular return value, we just give it that value.
let addr = this.read_scalar(args[0])?.not_undef()?;
this.write_scalar(addr, dest)?;
}
"mprotect" => {
this.write_null(dest)?;
}
// macOS API stubs.
"pthread_attr_get_np" | "pthread_getattr_np" => {
this.write_null(dest)?;
}
"pthread_get_stackaddr_np" => {
let stack_addr = Scalar::from_uint(STACK_ADDR, dest.layout.size);
this.write_scalar(stack_addr, dest)?;
}
"pthread_get_stacksize_np" => {
let stack_size = Scalar::from_uint(STACK_SIZE, dest.layout.size);
this.write_scalar(stack_size, dest)?;
}
"_tlv_atexit" => {
// FIXME: register the destructor.
}
"_NSGetArgc" => {
this.write_scalar(Scalar::Ptr(this.machine.argc.unwrap()), dest)?;
}
"_NSGetArgv" => {
this.write_scalar(Scalar::Ptr(this.machine.argv.unwrap()), dest)?;
}
"SecRandomCopyBytes" => {
let len = this.read_scalar(args[1])?.to_usize(this)?;
let ptr = this.read_scalar(args[2])?.not_undef()?;
this.gen_random(ptr, len as usize)?;
this.write_null(dest)?;
}
// Windows API stubs.
// HANDLE = isize
// DWORD = ULONG = u32
// BOOL = i32
"GetProcessHeap" => {
// Just fake a HANDLE
this.write_scalar(Scalar::from_int(1, this.pointer_size()), dest)?;
}
"HeapAlloc" => {
let _handle = this.read_scalar(args[0])?.to_isize(this)?;
let flags = this.read_scalar(args[1])?.to_u32()?;
let size = this.read_scalar(args[2])?.to_usize(this)?;
let zero_init = (flags & 0x00000008) != 0; // HEAP_ZERO_MEMORY
let res = this.malloc(size, zero_init, MiriMemoryKind::WinHeap);
this.write_scalar(res, dest)?;
}
"HeapFree" => {
let _handle = this.read_scalar(args[0])?.to_isize(this)?;
let _flags = this.read_scalar(args[1])?.to_u32()?;
let ptr = this.read_scalar(args[2])?.not_undef()?;
this.free(ptr, MiriMemoryKind::WinHeap)?;
this.write_scalar(Scalar::from_int(1, Size::from_bytes(4)), dest)?;
}
"HeapReAlloc" => {
let _handle = this.read_scalar(args[0])?.to_isize(this)?;
let _flags = this.read_scalar(args[1])?.to_u32()?;
let ptr = this.read_scalar(args[2])?.not_undef()?;
let size = this.read_scalar(args[3])?.to_usize(this)?;
let res = this.realloc(ptr, size, MiriMemoryKind::WinHeap)?;
this.write_scalar(res, dest)?;
}
"SetLastError" => {
this.set_last_error(this.read_scalar(args[0])?.not_undef()?)?;
}
"GetLastError" => {
let last_error = this.get_last_error()?;
this.write_scalar(last_error, dest)?;
}
"AddVectoredExceptionHandler" => {
// Any non zero value works for the stdlib. This is just used for stack overflows anyway.
this.write_scalar(Scalar::from_int(1, dest.layout.size), dest)?;
}
"InitializeCriticalSection"
| "EnterCriticalSection"
| "LeaveCriticalSection"
| "DeleteCriticalSection" => {
// Nothing to do, not even a return value.
}
"GetModuleHandleW"
| "GetProcAddress"
| "TryEnterCriticalSection"
| "GetConsoleScreenBufferInfo"
| "SetConsoleTextAttribute" => {
// Pretend these do not exist / nothing happened, by returning zero.
this.write_null(dest)?;
}
"GetSystemInfo" => {
let system_info = this.deref_operand(args[0])?;
// Initialize with `0`.
this.memory
.write_bytes(system_info.ptr, iter::repeat(0u8).take(system_info.layout.size.bytes() as usize))?;
// Set number of processors.
let dword_size = Size::from_bytes(4);
let num_cpus = this.mplace_field(system_info, 6)?;
this.write_scalar(
Scalar::from_int(NUM_CPUS, dword_size),
num_cpus.into(),
)?;
}
"TlsAlloc" => {
// This just creates a key; Windows does not natively support TLS destructors.
// Create key and return it.
let key = this.machine.tls.create_tls_key(None) as u128;
// Figure out how large a TLS key actually is. This is `c::DWORD`.
if dest.layout.size.bits() < 128
&& key >= (1u128 << dest.layout.size.bits() as u128)
{
throw_unsup!(OutOfTls);
}
this.write_scalar(Scalar::from_uint(key, dest.layout.size), dest)?;
}
"TlsGetValue" => {
let key = this.read_scalar(args[0])?.to_u32()? as u128;
let ptr = this.machine.tls.load_tls(key, tcx)?;
this.write_scalar(ptr, dest)?;
}
"TlsSetValue" => {
let key = this.read_scalar(args[0])?.to_u32()? as u128;
let new_ptr = this.read_scalar(args[1])?.not_undef()?;
this.machine.tls.store_tls(key, this.test_null(new_ptr)?)?;
// Return success (`1`).
this.write_scalar(Scalar::from_int(1, dest.layout.size), dest)?;
}
"GetStdHandle" => {
let which = this.read_scalar(args[0])?.to_i32()?;
// We just make this the identity function, so we know later in `WriteFile`
// which one it is.
this.write_scalar(Scalar::from_int(which, this.pointer_size()), dest)?;
}
"WriteFile" => {
let handle = this.read_scalar(args[0])?.to_isize(this)?;
let buf = this.read_scalar(args[1])?.not_undef()?;
let n = this.read_scalar(args[2])?.to_u32()?;
let written_place = this.deref_operand(args[3])?;
// Spec says to always write `0` first.
this.write_null(written_place.into())?;
let written = if handle == -11 || handle == -12 {
// stdout/stderr
use std::io::{self, Write};
let buf_cont = this
.memory
.read_bytes(buf, Size::from_bytes(u64::from(n)))?;
let res = if handle == -11 {
io::stdout().write(buf_cont)
} else {
io::stderr().write(buf_cont)
};
res.ok().map(|n| n as u32)
} else {
eprintln!("Miri: Ignored output to handle {}", handle);
// Pretend it all went well.
Some(n)
};
// If there was no error, write back how much was written.
if let Some(n) = written {
this.write_scalar(Scalar::from_u32(n), written_place.into())?;
}
// Return whether this was a success.
this.write_scalar(
Scalar::from_int(if written.is_some() { 1 } else { 0 }, dest.layout.size),
dest,
)?;
}
"GetConsoleMode" => {
// Everything is a pipe.
this.write_null(dest)?;
}
"GetEnvironmentVariableW" => {
// This is not the env var you are looking for.
this.set_last_error(Scalar::from_u32(203))?; // ERROR_ENVVAR_NOT_FOUND
this.write_null(dest)?;
}
"GetCommandLineW" => {
this.write_scalar(Scalar::Ptr(this.machine.cmd_line.unwrap()), dest)?;
}
// The actual name of 'RtlGenRandom'
"SystemFunction036" => {
let ptr = this.read_scalar(args[0])?.not_undef()?;
let len = this.read_scalar(args[1])?.to_u32()?;
this.gen_random(ptr, len as usize)?;
this.write_scalar(Scalar::from_bool(true), dest)?;
}
// We can't execute anything else.
_ => throw_unsup_format!("can't call foreign function: {}", link_name),
}
this.goto_block(Some(ret))?;
this.dump_place(*dest);
Ok(())
}
/// Evaluates the scalar at the specified path. Returns Some(val)
/// if the path could be resolved, and None otherwise
fn eval_path_scalar(
&mut self,
path: &[&str],
) -> InterpResult<'tcx, Option<ScalarMaybeUndef<Tag>>> {
let this = self.eval_context_mut();
if let Ok(instance) = this.resolve_path(path) {
let cid = GlobalId {
instance,
promoted: None,
};
let const_val = this.const_eval_raw(cid)?;
let const_val = this.read_scalar(const_val.into())?;
return Ok(Some(const_val));
}
return Ok(None);
}
}
// Shims the linux 'getrandom()' syscall.
fn linux_getrandom<'tcx>(
this: &mut MiriEvalContext<'_, 'tcx>,
args: &[OpTy<'tcx, Tag>],
dest: PlaceTy<'tcx, Tag>,
) -> InterpResult<'tcx> {
let ptr = this.read_scalar(args[0])?.not_undef()?;
let len = this.read_scalar(args[1])?.to_usize(this)?;
// The only supported flags are GRND_RANDOM and GRND_NONBLOCK,
// neither of which have any effect on our current PRNG.
let _flags = this.read_scalar(args[2])?.to_i32()?;
this.gen_random(ptr, len as usize)?;
this.write_scalar(Scalar::from_uint(len, dest.layout.size), dest)?;
Ok(())
}