blob: 3303561513779e5295151029f2328cd4206415ce [file] [log] [blame]
/*
* The following code is derived from `lib/src/checker.rs` in the
* regalloc.rs project
* (https://github.com/bytecodealliance/regalloc.rs). regalloc.rs is
* also licensed under Apache-2.0 with the LLVM exception, as the rest
* of regalloc2 is.
*/
//! Checker: verifies that spills/reloads/moves retain equivalent
//! dataflow to original, VReg-based code.
//!
//! The basic idea is that we track symbolic values as they flow
//! through spills and reloads. The symbolic values represent
//! particular virtual registers in the original function body
//! presented to the register allocator. Any instruction in the
//! original function body (i.e., not added by the allocator)
//! conceptually generates a symbolic value "Vn" when storing to (or
//! modifying) a virtual register.
//!
//! A symbolic value is logically a *set of virtual registers*,
//! representing all virtual registers equal to the value in the given
//! storage slot at a given program point. This representation (as
//! opposed to tracking just one virtual register) is necessary
//! because the regalloc may implement moves in the source program
//! (via move instructions or blockparam assignments on edges) in
//! "intelligent" ways, taking advantage of values that are already in
//! the right place, so we need to know *all* names for a value.
//!
//! These symbolic values are precise but partial: in other words, if
//! a physical register is described as containing a virtual register
//! at a program point, it must actually contain the value of this
//! register (modulo any analysis bugs); but it may describe fewer
//! virtual registers even in cases where one *could* statically prove
//! that it contains a certain register, because the analysis is not
//! perfectly path-sensitive or value-sensitive. However, all
//! assignments *produced by our register allocator* should be
//! analyzed fully precisely. (This last point is important and bears
//! repeating: we only need to verify the programs that we produce,
//! not arbitrary programs.)
//!
//! Operand constraints (fixed register, register, any) are also checked
//! at each operand.
//!
//! ## Formal Definition
//!
//! The analysis lattice consists of the elements of 𝒫(V), the
//! powerset (set of all subsets) of V (the set of all virtual
//! registers). The ⊤ (top) value in the lattice is V itself, and the
//! ⊥ (bottom) value in the lattice is ∅ (the empty set). The lattice
//! ordering relation is the subset relation: S ≤ U iff S ⊆ U. These
//! definitions imply that the lattice meet-function (greatest lower
//! bound) is set-intersection.
//!
//! (For efficiency, we represent ⊤ not by actually listing out all
//! virtual registers, but by representing a special "top" value, but
//! the semantics are the same.)
//!
//! The dataflow analysis state at each program point (each point
//! before or after an instruction) is:
//!
//! - map of: Allocation -> lattice value
//!
//! And the transfer functions for instructions are (where `A` is the
//! above map from allocated physical registers to lattice values):
//!
//! - `Edit::Move` inserted by RA: [ alloc_d := alloc_s ]
//!
//! A' = A[alloc_d → A[alloc_s]]
//!
//! - statement in pre-regalloc function [ V_i := op V_j, V_k, ... ]
//! with allocated form [ A_i := op A_j, A_k, ... ]
//!
//! A' = { A_k → A[A_k] \ { V_i } for k ≠ i } ∪
//! { A_i -> { V_i } }
//!
//! In other words, a statement, even after allocation, generates
//! a symbol that corresponds to its original virtual-register
//! def. Simultaneously, that same virtual register symbol is removed
//! from all other allocs: they no longer carry the current value.
//!
//! - Parallel moves or blockparam-assignments in original program
//! [ V_d1 := V_s1, V_d2 := V_s2, ... ]
//!
//! A' = { A_k → subst(A[A_k]) for all k }
//! where subst(S) removes symbols for overwritten virtual
//! registers (V_d1 .. V_dn) and then adds V_di whenever
//! V_si appeared prior to the removals.
//!
//! To check correctness, we first find the dataflow fixpoint with the
//! above lattice and transfer/meet functions. Then, at each op, we
//! examine the dataflow solution at the preceding program point, and
//! check that the allocation for each op arg (input/use) contains the
//! symbol corresponding to the original virtual register specified
//! for this arg.
#![allow(dead_code)]
use crate::{
Allocation, AllocationKind, Block, Edit, Function, FxHashMap, FxHashSet, Inst, InstOrEdit,
InstPosition, MachineEnv, Operand, OperandConstraint, OperandKind, OperandPos, Output, PReg,
PRegSet, VReg,
};
use alloc::vec::Vec;
use alloc::{format, vec};
use core::default::Default;
use core::hash::Hash;
use core::result::Result;
use smallvec::{smallvec, SmallVec};
/// A set of errors detected by the regalloc checker.
#[derive(Clone, Debug)]
pub struct CheckerErrors {
errors: Vec<CheckerError>,
}
/// A single error detected by the regalloc checker.
#[derive(Clone, Debug)]
pub enum CheckerError {
MissingAllocation {
inst: Inst,
op: Operand,
},
UnknownValueInAllocation {
inst: Inst,
op: Operand,
alloc: Allocation,
},
ConflictedValueInAllocation {
inst: Inst,
op: Operand,
alloc: Allocation,
},
IncorrectValuesInAllocation {
inst: Inst,
op: Operand,
alloc: Allocation,
actual: FxHashSet<VReg>,
},
ConstraintViolated {
inst: Inst,
op: Operand,
alloc: Allocation,
},
AllocationIsNotReg {
inst: Inst,
op: Operand,
alloc: Allocation,
},
AllocationIsNotFixedReg {
inst: Inst,
op: Operand,
alloc: Allocation,
},
AllocationIsNotReuse {
inst: Inst,
op: Operand,
alloc: Allocation,
expected_alloc: Allocation,
},
AllocationIsNotStack {
inst: Inst,
op: Operand,
alloc: Allocation,
},
ConflictedValueInStackmap {
inst: Inst,
alloc: Allocation,
},
NonRefValuesInStackmap {
inst: Inst,
alloc: Allocation,
vregs: FxHashSet<VReg>,
},
StackToStackMove {
into: Allocation,
from: Allocation,
},
}
/// Abstract state for an allocation.
///
/// Equivalent to a set of virtual register names, with the
/// universe-set as top and empty set as bottom lattice element. The
/// meet-function is thus set intersection.
#[derive(Clone, Debug, PartialEq, Eq)]
enum CheckerValue {
/// The lattice top-value: this value could be equivalent to any
/// vreg (i.e., the universe set).
Universe,
/// The set of VRegs that this value is equal to.
VRegs(FxHashSet<VReg>),
}
impl CheckerValue {
fn vregs(&self) -> Option<&FxHashSet<VReg>> {
match self {
CheckerValue::Universe => None,
CheckerValue::VRegs(vregs) => Some(vregs),
}
}
fn vregs_mut(&mut self) -> Option<&mut FxHashSet<VReg>> {
match self {
CheckerValue::Universe => None,
CheckerValue::VRegs(vregs) => Some(vregs),
}
}
}
impl Default for CheckerValue {
fn default() -> CheckerValue {
CheckerValue::Universe
}
}
impl CheckerValue {
/// Meet function of the abstract-interpretation value
/// lattice. Returns a boolean value indicating whether `self` was
/// changed.
fn meet_with(&mut self, other: &CheckerValue) {
match (self, other) {
(_, CheckerValue::Universe) => {
// Nothing.
}
(this @ CheckerValue::Universe, _) => {
*this = other.clone();
}
(CheckerValue::VRegs(my_vregs), CheckerValue::VRegs(other_vregs)) => {
my_vregs.retain(|vreg| other_vregs.contains(vreg));
}
}
}
fn from_reg(reg: VReg) -> CheckerValue {
CheckerValue::VRegs(core::iter::once(reg).collect())
}
fn remove_vreg(&mut self, reg: VReg) {
match self {
CheckerValue::Universe => {
panic!("Cannot remove VReg from Universe set (we do not have the full list of vregs available");
}
CheckerValue::VRegs(vregs) => {
vregs.remove(&reg);
}
}
}
fn copy_vreg(&mut self, src: VReg, dst: VReg) {
match self {
CheckerValue::Universe => {
// Nothing.
}
CheckerValue::VRegs(vregs) => {
if vregs.contains(&src) {
vregs.insert(dst);
}
}
}
}
fn empty() -> CheckerValue {
CheckerValue::VRegs(FxHashSet::default())
}
}
fn visit_all_vregs<F: Function, V: FnMut(VReg)>(f: &F, mut v: V) {
for block in 0..f.num_blocks() {
let block = Block::new(block);
for inst in f.block_insns(block).iter() {
for op in f.inst_operands(inst) {
v(op.vreg());
}
if f.is_branch(inst) {
for succ_idx in 0..f.block_succs(block).len() {
for &param in f.branch_blockparams(block, inst, succ_idx) {
v(param);
}
}
}
}
for &vreg in f.block_params(block) {
v(vreg);
}
}
}
/// State that steps through program points as we scan over the instruction stream.
#[derive(Clone, Debug, PartialEq, Eq)]
enum CheckerState {
Top,
Allocations(FxHashMap<Allocation, CheckerValue>),
}
impl CheckerState {
fn get_value(&self, alloc: &Allocation) -> Option<&CheckerValue> {
match self {
CheckerState::Top => None,
CheckerState::Allocations(allocs) => allocs.get(alloc),
}
}
fn get_values_mut(&mut self) -> impl Iterator<Item = &mut CheckerValue> {
match self {
CheckerState::Top => panic!("Cannot get mutable values iterator on Top state"),
CheckerState::Allocations(allocs) => allocs.values_mut(),
}
}
fn get_mappings(&self) -> impl Iterator<Item = (&Allocation, &CheckerValue)> {
match self {
CheckerState::Top => panic!("Cannot get mappings iterator on Top state"),
CheckerState::Allocations(allocs) => allocs.iter(),
}
}
fn get_mappings_mut(&mut self) -> impl Iterator<Item = (&Allocation, &mut CheckerValue)> {
match self {
CheckerState::Top => panic!("Cannot get mutable mappings iterator on Top state"),
CheckerState::Allocations(allocs) => allocs.iter_mut(),
}
}
/// Transition from a "top" (undefined/unanalyzed) state to an empty set of allocations.
fn become_defined(&mut self) {
match self {
CheckerState::Top => *self = CheckerState::Allocations(FxHashMap::default()),
_ => {}
}
}
fn set_value(&mut self, alloc: Allocation, value: CheckerValue) {
match self {
CheckerState::Top => {
panic!("Cannot set value on Top state");
}
CheckerState::Allocations(allocs) => {
allocs.insert(alloc, value);
}
}
}
fn copy_vreg(&mut self, src: VReg, dst: VReg) {
match self {
CheckerState::Top => {
// Nothing.
}
CheckerState::Allocations(allocs) => {
for value in allocs.values_mut() {
value.copy_vreg(src, dst);
}
}
}
}
fn remove_value(&mut self, alloc: &Allocation) {
match self {
CheckerState::Top => {
panic!("Cannot remove value on Top state");
}
CheckerState::Allocations(allocs) => {
allocs.remove(alloc);
}
}
}
fn initial() -> Self {
CheckerState::Allocations(FxHashMap::default())
}
}
impl Default for CheckerState {
fn default() -> CheckerState {
CheckerState::Top
}
}
impl core::fmt::Display for CheckerValue {
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
match self {
CheckerValue::Universe => {
write!(f, "top")
}
CheckerValue::VRegs(vregs) => {
write!(f, "{{ ")?;
for vreg in vregs {
write!(f, "{} ", vreg)?;
}
write!(f, "}}")?;
Ok(())
}
}
}
}
/// Meet function for analysis value: meet individual values at
/// matching allocations, and intersect keys (remove key-value pairs
/// only on one side). Returns boolean flag indicating whether `into`
/// changed.
fn merge_map<K: Copy + Clone + PartialEq + Eq + Hash>(
into: &mut FxHashMap<K, CheckerValue>,
from: &FxHashMap<K, CheckerValue>,
) {
into.retain(|k, _| from.contains_key(k));
for (k, into_v) in into.iter_mut() {
let from_v = from.get(k).unwrap();
into_v.meet_with(from_v);
}
}
impl CheckerState {
/// Create a new checker state.
fn new() -> CheckerState {
Default::default()
}
/// Merge this checker state with another at a CFG join-point.
fn meet_with(&mut self, other: &CheckerState) {
match (self, other) {
(_, CheckerState::Top) => {
// Nothing.
}
(this @ CheckerState::Top, _) => {
*this = other.clone();
}
(
CheckerState::Allocations(my_allocations),
CheckerState::Allocations(other_allocations),
) => {
merge_map(my_allocations, other_allocations);
}
}
}
fn check_val<'a, F: Function>(
&self,
inst: Inst,
op: Operand,
alloc: Allocation,
val: &CheckerValue,
allocs: &[Allocation],
checker: &Checker<'a, F>,
) -> Result<(), CheckerError> {
if alloc == Allocation::none() {
return Err(CheckerError::MissingAllocation { inst, op });
}
if op.kind() == OperandKind::Use && op.as_fixed_nonallocatable().is_none() {
match val {
CheckerValue::Universe => {
return Err(CheckerError::UnknownValueInAllocation { inst, op, alloc });
}
CheckerValue::VRegs(vregs) if !vregs.contains(&op.vreg()) => {
return Err(CheckerError::IncorrectValuesInAllocation {
inst,
op,
alloc,
actual: vregs.clone(),
});
}
_ => {}
}
}
self.check_constraint(inst, op, alloc, allocs, checker)?;
Ok(())
}
/// Check an instruction against this state. This must be called
/// twice: once with `InstPosition::Before`, and once with
/// `InstPosition::After` (after updating state with defs).
fn check<'a, F: Function>(
&self,
pos: InstPosition,
checkinst: &CheckerInst,
checker: &Checker<'a, F>,
) -> Result<(), CheckerError> {
let default_val = Default::default();
match checkinst {
&CheckerInst::Op {
inst,
ref operands,
ref allocs,
..
} => {
// Skip Use-checks at the After point if there are any
// reused inputs: the Def which reuses the input
// happens early.
let has_reused_input = operands
.iter()
.any(|op| matches!(op.constraint(), OperandConstraint::Reuse(_)));
if has_reused_input && pos == InstPosition::After {
return Ok(());
}
// For each operand, check (i) that the allocation
// contains the expected vreg, and (ii) that it meets
// the requirements of the OperandConstraint.
for (op, alloc) in operands.iter().zip(allocs.iter()) {
let is_here = match (op.pos(), pos) {
(OperandPos::Early, InstPosition::Before) => true,
(OperandPos::Late, InstPosition::After) => true,
_ => false,
};
if !is_here {
continue;
}
let val = self.get_value(alloc).unwrap_or(&default_val);
trace!(
"checker: checkinst {:?}: op {:?}, alloc {:?}, checker value {:?}",
checkinst,
op,
alloc,
val
);
self.check_val(inst, *op, *alloc, val, allocs, checker)?;
}
}
&CheckerInst::Safepoint { inst, ref allocs } => {
for &alloc in allocs {
let val = self.get_value(&alloc).unwrap_or(&default_val);
trace!(
"checker: checkinst {:?}: safepoint slot {}, checker value {:?}",
checkinst,
alloc,
val
);
let reffy = val
.vregs()
.expect("checker value should not be Universe set")
.iter()
.any(|vreg| checker.reftyped_vregs.contains(vreg));
if !reffy {
return Err(CheckerError::NonRefValuesInStackmap {
inst,
alloc,
vregs: val.vregs().unwrap().clone(),
});
}
}
}
&CheckerInst::Move { into, from } => {
// Ensure that the allocator never returns stack-to-stack moves.
let is_stack = |alloc: Allocation| {
if let Some(reg) = alloc.as_reg() {
checker.stack_pregs.contains(reg)
} else {
alloc.is_stack()
}
};
if is_stack(into) && is_stack(from) {
return Err(CheckerError::StackToStackMove { into, from });
}
}
&CheckerInst::ParallelMove { .. } => {
// This doesn't need verification; we just update
// according to the move semantics in the step
// function below.
}
}
Ok(())
}
/// Update according to instruction.
fn update<'a, F: Function>(&mut self, checkinst: &CheckerInst, checker: &Checker<'a, F>) {
self.become_defined();
match checkinst {
&CheckerInst::Move { into, from } => {
// Value may not be present if this move is part of
// the parallel move resolver's fallback sequence that
// saves a victim register elsewhere. (In other words,
// that sequence saves an undefined value and restores
// it, so has no effect.) The checker needs to avoid
// putting Universe lattice values into the map.
if let Some(val) = self.get_value(&from).cloned() {
trace!(
"checker: checkinst {:?} updating: move {:?} -> {:?} val {:?}",
checkinst,
from,
into,
val
);
self.set_value(into, val);
}
}
&CheckerInst::ParallelMove { ref moves } => {
// First, build map of actions for each vreg in an
// alloc. If an alloc has a reg V_i before a parallel
// move, then for each use of V_i as a source (V_i ->
// V_j), we might add a new V_j wherever V_i appears;
// and if V_i is used as a dest (at most once), then
// it must be removed first from allocs' vreg sets.
let mut additions: FxHashMap<VReg, SmallVec<[VReg; 2]>> = FxHashMap::default();
let mut deletions: FxHashSet<VReg> = FxHashSet::default();
for &(dest, src) in moves {
deletions.insert(dest);
additions
.entry(src)
.or_insert_with(|| smallvec![])
.push(dest);
}
// Now process each allocation's set of vreg labels,
// first deleting those labels that were updated by
// this parallel move, then adding back labels
// redefined by the move.
for value in self.get_values_mut() {
if let Some(vregs) = value.vregs_mut() {
let mut insertions: SmallVec<[VReg; 2]> = smallvec![];
for &vreg in vregs.iter() {
if let Some(additions) = additions.get(&vreg) {
insertions.extend(additions.iter().cloned());
}
}
for &d in &deletions {
vregs.remove(&d);
}
vregs.extend(insertions);
}
}
}
&CheckerInst::Op {
ref operands,
ref allocs,
ref clobbers,
..
} => {
// For each def, (i) update alloc to reflect defined
// vreg (and only that vreg), and (ii) update all
// other allocs in the checker state by removing this
// vreg, if defined (other defs are now stale).
for (op, alloc) in operands.iter().zip(allocs.iter()) {
if op.kind() != OperandKind::Def {
continue;
}
self.remove_vreg(op.vreg());
self.set_value(*alloc, CheckerValue::from_reg(op.vreg()));
}
for clobber in clobbers {
self.remove_value(&Allocation::reg(*clobber));
}
}
&CheckerInst::Safepoint { ref allocs, .. } => {
for (alloc, value) in self.get_mappings_mut() {
if alloc.is_reg() {
continue;
}
if !allocs.contains(&alloc) {
// Remove all reftyped vregs as labels.
let new_vregs = value
.vregs()
.unwrap()
.difference(&checker.reftyped_vregs)
.cloned()
.collect();
*value = CheckerValue::VRegs(new_vregs);
}
}
}
}
}
fn remove_vreg(&mut self, vreg: VReg) {
for (_, value) in self.get_mappings_mut() {
value.remove_vreg(vreg);
}
}
fn check_constraint<'a, F: Function>(
&self,
inst: Inst,
op: Operand,
alloc: Allocation,
allocs: &[Allocation],
checker: &Checker<'a, F>,
) -> Result<(), CheckerError> {
match op.constraint() {
OperandConstraint::Any => {}
OperandConstraint::Reg => {
if let Some(preg) = alloc.as_reg() {
// Reject pregs that represent a fixed stack slot.
if !checker.machine_env.fixed_stack_slots.contains(&preg) {
return Ok(());
}
}
return Err(CheckerError::AllocationIsNotReg { inst, op, alloc });
}
OperandConstraint::Stack => {
if alloc.kind() != AllocationKind::Stack {
// Accept pregs that represent a fixed stack slot.
if let Some(preg) = alloc.as_reg() {
if checker.machine_env.fixed_stack_slots.contains(&preg) {
return Ok(());
}
}
return Err(CheckerError::AllocationIsNotStack { inst, op, alloc });
}
}
OperandConstraint::FixedReg(preg) => {
if alloc != Allocation::reg(preg) {
return Err(CheckerError::AllocationIsNotFixedReg { inst, op, alloc });
}
}
OperandConstraint::Reuse(idx) => {
if alloc.kind() != AllocationKind::Reg {
return Err(CheckerError::AllocationIsNotReg { inst, op, alloc });
}
if alloc != allocs[idx] {
return Err(CheckerError::AllocationIsNotReuse {
inst,
op,
alloc,
expected_alloc: allocs[idx],
});
}
}
}
Ok(())
}
}
/// An instruction representation in the checker's BB summary.
#[derive(Clone, Debug)]
pub(crate) enum CheckerInst {
/// A move between allocations (these could be registers or
/// spillslots).
Move { into: Allocation, from: Allocation },
/// A parallel move in the original program. Simultaneously moves
/// from all source vregs to all corresponding dest vregs,
/// permitting overlap in the src and dest sets and doing all
/// reads before any writes.
ParallelMove {
/// Vector of (dest, src) moves.
moves: Vec<(VReg, VReg)>,
},
/// A regular instruction with fixed use and def slots. Contains
/// both the original operands (as given to the regalloc) and the
/// allocation results.
Op {
inst: Inst,
operands: Vec<Operand>,
allocs: Vec<Allocation>,
clobbers: Vec<PReg>,
},
/// A safepoint, with the given Allocations specified as containing
/// reftyped values. All other reftyped values become invalid.
Safepoint { inst: Inst, allocs: Vec<Allocation> },
}
#[derive(Debug)]
pub struct Checker<'a, F: Function> {
f: &'a F,
bb_in: FxHashMap<Block, CheckerState>,
bb_insts: FxHashMap<Block, Vec<CheckerInst>>,
edge_insts: FxHashMap<(Block, Block), Vec<CheckerInst>>,
reftyped_vregs: FxHashSet<VReg>,
machine_env: &'a MachineEnv,
stack_pregs: PRegSet,
}
impl<'a, F: Function> Checker<'a, F> {
/// Create a new checker for the given function, initializing CFG
/// info immediately. The client should call the `add_*()`
/// methods to add abstract instructions to each BB before
/// invoking `run()` to check for errors.
pub fn new(f: &'a F, machine_env: &'a MachineEnv) -> Checker<'a, F> {
let mut bb_in = FxHashMap::default();
let mut bb_insts = FxHashMap::default();
let mut edge_insts = FxHashMap::default();
let mut reftyped_vregs = FxHashSet::default();
for block in 0..f.num_blocks() {
let block = Block::new(block);
bb_in.insert(block, Default::default());
bb_insts.insert(block, vec![]);
for &succ in f.block_succs(block) {
edge_insts.insert((block, succ), vec![]);
}
}
for &vreg in f.reftype_vregs() {
reftyped_vregs.insert(vreg);
}
bb_in.insert(f.entry_block(), CheckerState::default());
let mut stack_pregs = PRegSet::empty();
for &preg in &machine_env.fixed_stack_slots {
stack_pregs.add(preg);
}
Checker {
f,
bb_in,
bb_insts,
edge_insts,
reftyped_vregs,
machine_env,
stack_pregs,
}
}
/// Build the list of checker instructions based on the given func
/// and allocation results.
pub fn prepare(&mut self, out: &Output) {
trace!("checker: out = {:?}", out);
// Preprocess safepoint stack-maps into per-inst vecs.
let mut safepoint_slots: FxHashMap<Inst, Vec<Allocation>> = FxHashMap::default();
for &(progpoint, slot) in &out.safepoint_slots {
safepoint_slots
.entry(progpoint.inst())
.or_insert_with(|| vec![])
.push(slot);
}
let mut last_inst = None;
for block in 0..self.f.num_blocks() {
let block = Block::new(block);
for inst_or_edit in out.block_insts_and_edits(self.f, block) {
match inst_or_edit {
InstOrEdit::Inst(inst) => {
debug_assert!(last_inst.is_none() || inst > last_inst.unwrap());
last_inst = Some(inst);
self.handle_inst(block, inst, &mut safepoint_slots, out);
}
InstOrEdit::Edit(edit) => self.handle_edit(block, edit),
}
}
}
}
/// For each original instruction, create an `Op`.
fn handle_inst(
&mut self,
block: Block,
inst: Inst,
safepoint_slots: &mut FxHashMap<Inst, Vec<Allocation>>,
out: &Output,
) {
// If this is a safepoint, then check the spillslots at this point.
if self.f.requires_refs_on_stack(inst) {
let allocs = safepoint_slots.remove(&inst).unwrap_or_else(|| vec![]);
let checkinst = CheckerInst::Safepoint { inst, allocs };
self.bb_insts.get_mut(&block).unwrap().push(checkinst);
}
// Skip normal checks if this is a branch: the blockparams do
// not exist in post-regalloc code, and the edge-moves have to
// be inserted before the branch rather than after.
if !self.f.is_branch(inst) {
let operands: Vec<_> = self.f.inst_operands(inst).iter().cloned().collect();
let allocs: Vec<_> = out.inst_allocs(inst).iter().cloned().collect();
let clobbers: Vec<_> = self.f.inst_clobbers(inst).into_iter().collect();
let checkinst = CheckerInst::Op {
inst,
operands,
allocs,
clobbers,
};
trace!("checker: adding inst {:?}", checkinst);
self.bb_insts.get_mut(&block).unwrap().push(checkinst);
}
// Instead, if this is a branch, emit a ParallelMove on each
// outgoing edge as necessary to handle blockparams.
else {
for (i, &succ) in self.f.block_succs(block).iter().enumerate() {
let args = self.f.branch_blockparams(block, inst, i);
let params = self.f.block_params(succ);
assert_eq!(
args.len(),
params.len(),
"block{} has succ block{}; gave {} args for {} params",
block.index(),
succ.index(),
args.len(),
params.len()
);
if args.len() > 0 {
let moves = params.iter().cloned().zip(args.iter().cloned()).collect();
self.edge_insts
.get_mut(&(block, succ))
.unwrap()
.push(CheckerInst::ParallelMove { moves });
}
}
}
}
fn handle_edit(&mut self, block: Block, edit: &Edit) {
trace!("checker: adding edit {:?}", edit);
match edit {
&Edit::Move { from, to } => {
self.bb_insts
.get_mut(&block)
.unwrap()
.push(CheckerInst::Move { into: to, from });
}
}
}
/// Perform the dataflow analysis to compute checker state at each BB entry.
fn analyze(&mut self) {
let mut queue = Vec::new();
let mut queue_set = FxHashSet::default();
// Put every block in the queue to start with, to ensure
// everything is visited even if the initial state remains
// `Top` after preds update it.
//
// We add blocks in reverse order so that when we process
// back-to-front below, we do our initial pass in input block
// order, which is (usually) RPO order or at least a
// reasonable visit order.
for block in (0..self.f.num_blocks()).rev() {
let block = Block::new(block);
queue.push(block);
queue_set.insert(block);
}
while let Some(block) = queue.pop() {
queue_set.remove(&block);
let mut state = self.bb_in.get(&block).cloned().unwrap();
trace!("analyze: block {} has state {:?}", block.index(), state);
for inst in self.bb_insts.get(&block).unwrap() {
state.update(inst, self);
trace!("analyze: inst {:?} -> state {:?}", inst, state);
}
for &succ in self.f.block_succs(block) {
let mut new_state = state.clone();
for edge_inst in self.edge_insts.get(&(block, succ)).unwrap() {
new_state.update(edge_inst, self);
trace!(
"analyze: succ {:?}: inst {:?} -> state {:?}",
succ,
edge_inst,
new_state
);
}
let cur_succ_in = self.bb_in.get(&succ).unwrap();
trace!(
"meeting state {:?} for block {} with state {:?} for block {}",
new_state,
block.index(),
cur_succ_in,
succ.index()
);
new_state.meet_with(cur_succ_in);
let changed = &new_state != cur_succ_in;
trace!(" -> {:?}, changed {}", new_state, changed);
if changed {
trace!(
"analyze: block {} state changed from {:?} to {:?}; pushing onto queue",
succ.index(),
cur_succ_in,
new_state
);
self.bb_in.insert(succ, new_state);
if queue_set.insert(succ) {
queue.push(succ);
}
}
}
}
}
/// Using BB-start state computed by `analyze()`, step the checker state
/// through each BB and check each instruction's register allocations
/// for errors.
fn find_errors(&self) -> Result<(), CheckerErrors> {
let mut errors = vec![];
for (block, input) in &self.bb_in {
let mut state = input.clone();
for inst in self.bb_insts.get(block).unwrap() {
if let Err(e) = state.check(InstPosition::Before, inst, self) {
trace!("Checker error: {:?}", e);
errors.push(e);
}
state.update(inst, self);
if let Err(e) = state.check(InstPosition::After, inst, self) {
trace!("Checker error: {:?}", e);
errors.push(e);
}
}
}
if errors.is_empty() {
Ok(())
} else {
Err(CheckerErrors { errors })
}
}
/// Find any errors, returning `Err(CheckerErrors)` with all errors found
/// or `Ok(())` otherwise.
pub fn run(mut self) -> Result<(), CheckerErrors> {
self.analyze();
let result = self.find_errors();
trace!("=== CHECKER RESULT ===");
fn print_state(state: &CheckerState) {
if !trace_enabled!() {
return;
}
if let CheckerState::Allocations(allocs) = state {
let mut s = vec![];
for (alloc, state) in allocs {
s.push(format!("{} := {}", alloc, state));
}
trace!(" {{ {} }}", s.join(", "))
}
}
for vreg in self.f.reftype_vregs() {
trace!(" REF: {}", vreg);
}
for bb in 0..self.f.num_blocks() {
let bb = Block::new(bb);
trace!("block{}:", bb.index());
let insts = self.bb_insts.get(&bb).unwrap();
let mut state = self.bb_in.get(&bb).unwrap().clone();
print_state(&state);
for inst in insts {
match inst {
&CheckerInst::Op {
inst,
ref operands,
ref allocs,
ref clobbers,
} => {
trace!(
" inst{}: {:?} ({:?}) clobbers:{:?}",
inst.index(),
operands,
allocs,
clobbers
);
}
&CheckerInst::Move { from, into } => {
trace!(" {} -> {}", from, into);
}
&CheckerInst::Safepoint { ref allocs, .. } => {
let mut slotargs = vec![];
for &slot in allocs {
slotargs.push(format!("{}", slot));
}
trace!(" safepoint: {}", slotargs.join(", "));
}
&CheckerInst::ParallelMove { .. } => {
panic!("unexpected parallel_move in body (non-edge)")
}
}
state.update(inst, &self);
print_state(&state);
}
for &succ in self.f.block_succs(bb) {
trace!(" succ {:?}:", succ);
let mut state = state.clone();
for edge_inst in self.edge_insts.get(&(bb, succ)).unwrap() {
match edge_inst {
&CheckerInst::ParallelMove { ref moves } => {
let moves = moves
.iter()
.map(|(dest, src)| format!("{} -> {}", src, dest))
.collect::<Vec<_>>();
trace!(" parallel_move {}", moves.join(", "));
}
_ => panic!("unexpected edge_inst: not a parallel move"),
}
state.update(edge_inst, &self);
print_state(&state);
}
}
}
result
}
}