blob: 5292a5fa1b161c4d9975a5d9d1e76b9a6e74221b [file] [log] [blame]
//! Defines database & queries for macro expansion.
use base_db::{salsa, CrateId, Edition, SourceDatabase};
use either::Either;
use limit::Limit;
use mbe::{syntax_node_to_token_tree, ValueResult};
use rustc_hash::FxHashSet;
use syntax::{
ast::{self, HasAttrs, HasDocComments},
AstNode, GreenNode, Parse, SyntaxError, SyntaxNode, SyntaxToken, T,
};
use triomphe::Arc;
use crate::{
ast_id_map::AstIdMap, builtin_attr_macro::pseudo_derive_attr_expansion,
builtin_fn_macro::EagerExpander, fixup, hygiene::HygieneFrame, tt, AstId, BuiltinAttrExpander,
BuiltinDeriveExpander, BuiltinFnLikeExpander, EagerCallInfo, ExpandError, ExpandResult,
ExpandTo, HirFileId, HirFileIdRepr, MacroCallId, MacroCallKind, MacroCallLoc, MacroDefId,
MacroDefKind, MacroFile, ProcMacroExpander,
};
/// Total limit on the number of tokens produced by any macro invocation.
///
/// If an invocation produces more tokens than this limit, it will not be stored in the database and
/// an error will be emitted.
///
/// Actual max for `analysis-stats .` at some point: 30672.
static TOKEN_LIMIT: Limit = Limit::new(1_048_576);
#[derive(Debug, Clone, Eq, PartialEq)]
/// Old-style `macro_rules` or the new macros 2.0
pub struct DeclarativeMacroExpander {
pub mac: mbe::DeclarativeMacro,
pub def_site_token_map: mbe::TokenMap,
}
impl DeclarativeMacroExpander {
pub fn expand(&self, tt: tt::Subtree) -> ExpandResult<tt::Subtree> {
match self.mac.err() {
Some(e) => ExpandResult::new(
tt::Subtree::empty(),
ExpandError::other(format!("invalid macro definition: {e}")),
),
None => self.mac.expand(tt).map_err(Into::into),
}
}
pub fn map_id_down(&self, token_id: tt::TokenId) -> tt::TokenId {
self.mac.map_id_down(token_id)
}
pub fn map_id_up(&self, token_id: tt::TokenId) -> (tt::TokenId, mbe::Origin) {
self.mac.map_id_up(token_id)
}
}
#[derive(Debug, Clone, Eq, PartialEq)]
pub enum TokenExpander {
DeclarativeMacro(Arc<DeclarativeMacroExpander>),
/// Stuff like `line!` and `file!`.
BuiltIn(BuiltinFnLikeExpander),
/// Built-in eagerly expanded fn-like macros (`include!`, `concat!`, etc.)
BuiltInEager(EagerExpander),
/// `global_allocator` and such.
BuiltInAttr(BuiltinAttrExpander),
/// `derive(Copy)` and such.
BuiltInDerive(BuiltinDeriveExpander),
/// The thing we love the most here in rust-analyzer -- procedural macros.
ProcMacro(ProcMacroExpander),
}
// FIXME: Get rid of these methods
impl TokenExpander {
pub(crate) fn map_id_down(&self, id: tt::TokenId) -> tt::TokenId {
match self {
TokenExpander::DeclarativeMacro(expander) => expander.map_id_down(id),
TokenExpander::BuiltIn(..)
| TokenExpander::BuiltInEager(..)
| TokenExpander::BuiltInAttr(..)
| TokenExpander::BuiltInDerive(..)
| TokenExpander::ProcMacro(..) => id,
}
}
pub(crate) fn map_id_up(&self, id: tt::TokenId) -> (tt::TokenId, mbe::Origin) {
match self {
TokenExpander::DeclarativeMacro(expander) => expander.map_id_up(id),
TokenExpander::BuiltIn(..)
| TokenExpander::BuiltInEager(..)
| TokenExpander::BuiltInAttr(..)
| TokenExpander::BuiltInDerive(..)
| TokenExpander::ProcMacro(..) => (id, mbe::Origin::Call),
}
}
}
#[salsa::query_group(ExpandDatabaseStorage)]
pub trait ExpandDatabase: SourceDatabase {
fn ast_id_map(&self, file_id: HirFileId) -> Arc<AstIdMap>;
/// Main public API -- parses a hir file, not caring whether it's a real
/// file or a macro expansion.
#[salsa::transparent]
fn parse_or_expand(&self, file_id: HirFileId) -> SyntaxNode;
#[salsa::transparent]
fn parse_or_expand_with_err(&self, file_id: HirFileId) -> ExpandResult<Parse<SyntaxNode>>;
/// Implementation for the macro case.
// This query is LRU cached
fn parse_macro_expansion(
&self,
macro_file: MacroFile,
) -> ExpandResult<(Parse<SyntaxNode>, Arc<mbe::TokenMap>)>;
/// Macro ids. That's probably the tricksiest bit in rust-analyzer, and the
/// reason why we use salsa at all.
///
/// We encode macro definitions into ids of macro calls, this what allows us
/// to be incremental.
#[salsa::interned]
fn intern_macro_call(&self, macro_call: MacroCallLoc) -> MacroCallId;
/// Lowers syntactic macro call to a token tree representation.
#[salsa::transparent]
fn macro_arg(
&self,
id: MacroCallId,
) -> ValueResult<
Option<Arc<(tt::Subtree, mbe::TokenMap, fixup::SyntaxFixupUndoInfo)>>,
Arc<Box<[SyntaxError]>>,
>;
/// Extracts syntax node, corresponding to a macro call. That's a firewall
/// query, only typing in the macro call itself changes the returned
/// subtree.
fn macro_arg_node(
&self,
id: MacroCallId,
) -> ValueResult<Option<GreenNode>, Arc<Box<[SyntaxError]>>>;
/// Fetches the expander for this macro.
#[salsa::transparent]
fn macro_expander(&self, id: MacroDefId) -> TokenExpander;
/// Fetches (and compiles) the expander of this decl macro.
fn decl_macro_expander(
&self,
def_crate: CrateId,
id: AstId<ast::Macro>,
) -> Arc<DeclarativeMacroExpander>;
/// Expand macro call to a token tree.
// This query is LRU cached
fn macro_expand(&self, macro_call: MacroCallId) -> ExpandResult<Arc<tt::Subtree>>;
#[salsa::invoke(crate::builtin_fn_macro::include_arg_to_tt)]
fn include_expand(
&self,
arg_id: MacroCallId,
) -> Result<
(triomphe::Arc<(::tt::Subtree<::tt::TokenId>, mbe::TokenMap)>, base_db::FileId),
ExpandError,
>;
/// Special case of the previous query for procedural macros. We can't LRU
/// proc macros, since they are not deterministic in general, and
/// non-determinism breaks salsa in a very, very, very bad way.
/// @edwin0cheng heroically debugged this once! See #4315 for details
fn expand_proc_macro(&self, call: MacroCallId) -> ExpandResult<Arc<tt::Subtree>>;
/// Firewall query that returns the errors from the `parse_macro_expansion` query.
fn parse_macro_expansion_error(
&self,
macro_call: MacroCallId,
) -> ExpandResult<Box<[SyntaxError]>>;
fn hygiene_frame(&self, file_id: HirFileId) -> Arc<HygieneFrame>;
}
/// This expands the given macro call, but with different arguments. This is
/// used for completion, where we want to see what 'would happen' if we insert a
/// token. The `token_to_map` mapped down into the expansion, with the mapped
/// token returned.
pub fn expand_speculative(
db: &dyn ExpandDatabase,
actual_macro_call: MacroCallId,
speculative_args: &SyntaxNode,
token_to_map: SyntaxToken,
) -> Option<(SyntaxNode, SyntaxToken)> {
let loc = db.lookup_intern_macro_call(actual_macro_call);
let token_range = token_to_map.text_range();
// Build the subtree and token mapping for the speculative args
let censor = censor_for_macro_input(&loc, speculative_args);
let mut fixups = fixup::fixup_syntax(speculative_args);
fixups.replace.extend(censor.into_iter().map(|node| (node.into(), Vec::new())));
let (mut tt, spec_args_tmap, _) = mbe::syntax_node_to_token_tree_with_modifications(
speculative_args,
fixups.token_map,
fixups.next_id,
fixups.replace,
fixups.append,
);
let (attr_arg, token_id) = match loc.kind {
MacroCallKind::Attr { invoc_attr_index, .. } => {
let attr = if loc.def.is_attribute_derive() {
// for pseudo-derive expansion we actually pass the attribute itself only
ast::Attr::cast(speculative_args.clone())
} else {
// Attributes may have an input token tree, build the subtree and map for this as well
// then try finding a token id for our token if it is inside this input subtree.
let item = ast::Item::cast(speculative_args.clone())?;
item.doc_comments_and_attrs()
.nth(invoc_attr_index.ast_index())
.and_then(Either::left)
}?;
match attr.token_tree() {
Some(token_tree) => {
let (mut tree, map) = syntax_node_to_token_tree(attr.token_tree()?.syntax());
tree.delimiter = tt::Delimiter::unspecified();
let shift = mbe::Shift::new(&tt);
shift.shift_all(&mut tree);
let token_id = if token_tree.syntax().text_range().contains_range(token_range) {
let attr_input_start =
token_tree.left_delimiter_token()?.text_range().start();
let range = token_range.checked_sub(attr_input_start)?;
let token_id = shift.shift(map.token_by_range(range)?);
Some(token_id)
} else {
None
};
(Some(tree), token_id)
}
_ => (None, None),
}
}
_ => (None, None),
};
let token_id = match token_id {
Some(token_id) => token_id,
// token wasn't inside an attribute input so it has to be in the general macro input
None => {
let range = token_range.checked_sub(speculative_args.text_range().start())?;
let token_id = spec_args_tmap.token_by_range(range)?;
match loc.def.kind {
MacroDefKind::Declarative(it) => {
db.decl_macro_expander(loc.krate, it).map_id_down(token_id)
}
_ => token_id,
}
}
};
// Do the actual expansion, we need to directly expand the proc macro due to the attribute args
// Otherwise the expand query will fetch the non speculative attribute args and pass those instead.
let mut speculative_expansion = match loc.def.kind {
MacroDefKind::ProcMacro(expander, ..) => {
tt.delimiter = tt::Delimiter::unspecified();
expander.expand(db, loc.def.krate, loc.krate, &tt, attr_arg.as_ref())
}
MacroDefKind::BuiltInAttr(BuiltinAttrExpander::Derive, _) => {
pseudo_derive_attr_expansion(&tt, attr_arg.as_ref()?)
}
MacroDefKind::BuiltInDerive(expander, ..) => {
// this cast is a bit sus, can we avoid losing the typedness here?
let adt = ast::Adt::cast(speculative_args.clone()).unwrap();
expander.expand(db, actual_macro_call, &adt, &spec_args_tmap)
}
MacroDefKind::Declarative(it) => db.decl_macro_expander(loc.krate, it).expand(tt),
MacroDefKind::BuiltIn(it, _) => it.expand(db, actual_macro_call, &tt).map_err(Into::into),
MacroDefKind::BuiltInEager(it, _) => {
it.expand(db, actual_macro_call, &tt).map_err(Into::into)
}
MacroDefKind::BuiltInAttr(it, _) => it.expand(db, actual_macro_call, &tt),
};
let expand_to = macro_expand_to(db, actual_macro_call);
fixup::reverse_fixups(&mut speculative_expansion.value, &spec_args_tmap, &fixups.undo_info);
let (node, rev_tmap) = token_tree_to_syntax_node(&speculative_expansion.value, expand_to);
let syntax_node = node.syntax_node();
let token = rev_tmap
.ranges_by_token(token_id, token_to_map.kind())
.filter_map(|range| syntax_node.covering_element(range).into_token())
.min_by_key(|t| {
// prefer tokens of the same kind and text
// Note the inversion of the score here, as we want to prefer the first token in case
// of all tokens having the same score
(t.kind() != token_to_map.kind()) as u8 + (t.text() != token_to_map.text()) as u8
})?;
Some((node.syntax_node(), token))
}
fn ast_id_map(db: &dyn ExpandDatabase, file_id: HirFileId) -> Arc<AstIdMap> {
Arc::new(AstIdMap::from_source(&db.parse_or_expand(file_id)))
}
fn parse_or_expand(db: &dyn ExpandDatabase, file_id: HirFileId) -> SyntaxNode {
match file_id.repr() {
HirFileIdRepr::FileId(file_id) => db.parse(file_id).tree().syntax().clone(),
HirFileIdRepr::MacroFile(macro_file) => {
db.parse_macro_expansion(macro_file).value.0.syntax_node()
}
}
}
fn parse_or_expand_with_err(
db: &dyn ExpandDatabase,
file_id: HirFileId,
) -> ExpandResult<Parse<SyntaxNode>> {
match file_id.repr() {
HirFileIdRepr::FileId(file_id) => ExpandResult::ok(db.parse(file_id).to_syntax()),
HirFileIdRepr::MacroFile(macro_file) => {
db.parse_macro_expansion(macro_file).map(|(it, _)| it)
}
}
}
fn parse_macro_expansion(
db: &dyn ExpandDatabase,
macro_file: MacroFile,
) -> ExpandResult<(Parse<SyntaxNode>, Arc<mbe::TokenMap>)> {
let _p = profile::span("parse_macro_expansion");
let mbe::ValueResult { value: tt, err } = db.macro_expand(macro_file.macro_call_id);
let expand_to = macro_expand_to(db, macro_file.macro_call_id);
tracing::debug!("expanded = {}", tt.as_debug_string());
tracing::debug!("kind = {:?}", expand_to);
let (parse, rev_token_map) = token_tree_to_syntax_node(&tt, expand_to);
ExpandResult { value: (parse, Arc::new(rev_token_map)), err }
}
fn parse_macro_expansion_error(
db: &dyn ExpandDatabase,
macro_call_id: MacroCallId,
) -> ExpandResult<Box<[SyntaxError]>> {
db.parse_macro_expansion(MacroFile { macro_call_id })
.map(|it| it.0.errors().to_vec().into_boxed_slice())
}
fn macro_arg(
db: &dyn ExpandDatabase,
id: MacroCallId,
) -> ValueResult<
Option<Arc<(tt::Subtree, mbe::TokenMap, fixup::SyntaxFixupUndoInfo)>>,
Arc<Box<[SyntaxError]>>,
> {
let loc = db.lookup_intern_macro_call(id);
if let Some(EagerCallInfo { arg, arg_id: _, error: _ }) = loc.eager.as_deref() {
return ValueResult::ok(Some(Arc::new((arg.0.clone(), arg.1.clone(), Default::default()))));
}
let ValueResult { value, err } = db.macro_arg_node(id);
let Some(arg) = value else {
return ValueResult { value: None, err };
};
let node = SyntaxNode::new_root(arg);
let censor = censor_for_macro_input(&loc, &node);
let mut fixups = fixup::fixup_syntax(&node);
fixups.replace.extend(censor.into_iter().map(|node| (node.into(), Vec::new())));
let (mut tt, tmap, _) = mbe::syntax_node_to_token_tree_with_modifications(
&node,
fixups.token_map,
fixups.next_id,
fixups.replace,
fixups.append,
);
if loc.def.is_proc_macro() {
// proc macros expect their inputs without parentheses, MBEs expect it with them included
tt.delimiter = tt::Delimiter::unspecified();
}
let val = Some(Arc::new((tt, tmap, fixups.undo_info)));
match err {
Some(err) => ValueResult::new(val, err),
None => ValueResult::ok(val),
}
}
/// Certain macro calls expect some nodes in the input to be preprocessed away, namely:
/// - derives expect all `#[derive(..)]` invocations up to the currently invoked one to be stripped
/// - attributes expect the invoking attribute to be stripped
fn censor_for_macro_input(loc: &MacroCallLoc, node: &SyntaxNode) -> FxHashSet<SyntaxNode> {
// FIXME: handle `cfg_attr`
(|| {
let censor = match loc.kind {
MacroCallKind::FnLike { .. } => return None,
MacroCallKind::Derive { derive_attr_index, .. } => {
cov_mark::hit!(derive_censoring);
ast::Item::cast(node.clone())?
.attrs()
.take(derive_attr_index.ast_index() + 1)
// FIXME, this resolution should not be done syntactically
// derive is a proper macro now, no longer builtin
// But we do not have resolution at this stage, this means
// we need to know about all macro calls for the given ast item here
// so we require some kind of mapping...
.filter(|attr| attr.simple_name().as_deref() == Some("derive"))
.map(|it| it.syntax().clone())
.collect()
}
MacroCallKind::Attr { .. } if loc.def.is_attribute_derive() => return None,
MacroCallKind::Attr { invoc_attr_index, .. } => {
cov_mark::hit!(attribute_macro_attr_censoring);
ast::Item::cast(node.clone())?
.doc_comments_and_attrs()
.nth(invoc_attr_index.ast_index())
.and_then(Either::left)
.map(|attr| attr.syntax().clone())
.into_iter()
.collect()
}
};
Some(censor)
})()
.unwrap_or_default()
}
fn macro_arg_node(
db: &dyn ExpandDatabase,
id: MacroCallId,
) -> ValueResult<Option<GreenNode>, Arc<Box<[SyntaxError]>>> {
let err = || -> Arc<Box<[_]>> {
Arc::new(Box::new([SyntaxError::new_at_offset(
"invalid macro call".to_owned(),
syntax::TextSize::from(0),
)]))
};
let loc = db.lookup_intern_macro_call(id);
let arg = if let MacroDefKind::BuiltInEager(..) = loc.def.kind {
let res = if let Some(EagerCallInfo { arg, .. }) = loc.eager.as_deref() {
Some(mbe::token_tree_to_syntax_node(&arg.0, mbe::TopEntryPoint::MacroEagerInput).0)
} else {
loc.kind
.arg(db)
.and_then(|arg| ast::TokenTree::cast(arg.value))
.map(|tt| tt.reparse_as_comma_separated_expr().to_syntax())
};
match res {
Some(res) if res.errors().is_empty() => res.syntax_node(),
Some(res) => {
return ValueResult::new(
Some(res.syntax_node().green().into()),
// Box::<[_]>::from(res.errors()), not stable yet
Arc::new(res.errors().to_vec().into_boxed_slice()),
);
}
None => return ValueResult::only_err(err()),
}
} else {
match loc.kind.arg(db) {
Some(res) => res.value,
None => return ValueResult::only_err(err()),
}
};
if matches!(loc.kind, MacroCallKind::FnLike { .. }) {
let first = arg.first_child_or_token().map_or(T![.], |it| it.kind());
let last = arg.last_child_or_token().map_or(T![.], |it| it.kind());
let well_formed_tt =
matches!((first, last), (T!['('], T![')']) | (T!['['], T![']']) | (T!['{'], T!['}']));
if !well_formed_tt {
// Don't expand malformed (unbalanced) macro invocations. This is
// less than ideal, but trying to expand unbalanced macro calls
// sometimes produces pathological, deeply nested code which breaks
// all kinds of things.
//
// Some day, we'll have explicit recursion counters for all
// recursive things, at which point this code might be removed.
cov_mark::hit!(issue9358_bad_macro_stack_overflow);
return ValueResult::only_err(Arc::new(Box::new([SyntaxError::new(
"unbalanced token tree".to_owned(),
arg.text_range(),
)])));
}
}
ValueResult::ok(Some(arg.green().into()))
}
fn decl_macro_expander(
db: &dyn ExpandDatabase,
def_crate: CrateId,
id: AstId<ast::Macro>,
) -> Arc<DeclarativeMacroExpander> {
let is_2021 = db.crate_graph()[def_crate].edition >= Edition::Edition2021;
let (mac, def_site_token_map) = match id.to_node(db) {
ast::Macro::MacroRules(macro_rules) => match macro_rules.token_tree() {
Some(arg) => {
let (tt, def_site_token_map) = mbe::syntax_node_to_token_tree(arg.syntax());
let mac = mbe::DeclarativeMacro::parse_macro_rules(&tt, is_2021);
(mac, def_site_token_map)
}
None => (
mbe::DeclarativeMacro::from_err(
mbe::ParseError::Expected("expected a token tree".into()),
is_2021,
),
Default::default(),
),
},
ast::Macro::MacroDef(macro_def) => match macro_def.body() {
Some(arg) => {
let (tt, def_site_token_map) = mbe::syntax_node_to_token_tree(arg.syntax());
let mac = mbe::DeclarativeMacro::parse_macro2(&tt, is_2021);
(mac, def_site_token_map)
}
None => (
mbe::DeclarativeMacro::from_err(
mbe::ParseError::Expected("expected a token tree".into()),
is_2021,
),
Default::default(),
),
},
};
Arc::new(DeclarativeMacroExpander { mac, def_site_token_map })
}
fn macro_expander(db: &dyn ExpandDatabase, id: MacroDefId) -> TokenExpander {
match id.kind {
MacroDefKind::Declarative(ast_id) => {
TokenExpander::DeclarativeMacro(db.decl_macro_expander(id.krate, ast_id))
}
MacroDefKind::BuiltIn(expander, _) => TokenExpander::BuiltIn(expander),
MacroDefKind::BuiltInAttr(expander, _) => TokenExpander::BuiltInAttr(expander),
MacroDefKind::BuiltInDerive(expander, _) => TokenExpander::BuiltInDerive(expander),
MacroDefKind::BuiltInEager(expander, ..) => TokenExpander::BuiltInEager(expander),
MacroDefKind::ProcMacro(expander, ..) => TokenExpander::ProcMacro(expander),
}
}
fn macro_expand(db: &dyn ExpandDatabase, id: MacroCallId) -> ExpandResult<Arc<tt::Subtree>> {
let _p = profile::span("macro_expand");
let loc = db.lookup_intern_macro_call(id);
let ExpandResult { value: tt, mut err } = match loc.def.kind {
MacroDefKind::ProcMacro(..) => return db.expand_proc_macro(id),
MacroDefKind::BuiltInDerive(expander, ..) => {
let arg = db.macro_arg_node(id).value.unwrap();
let node = SyntaxNode::new_root(arg);
let censor = censor_for_macro_input(&loc, &node);
let mut fixups = fixup::fixup_syntax(&node);
fixups.replace.extend(censor.into_iter().map(|node| (node.into(), Vec::new())));
let (tmap, _) = mbe::syntax_node_to_token_map_with_modifications(
&node,
fixups.token_map,
fixups.next_id,
fixups.replace,
fixups.append,
);
// this cast is a bit sus, can we avoid losing the typedness here?
let adt = ast::Adt::cast(node).unwrap();
let mut res = expander.expand(db, id, &adt, &tmap);
fixup::reverse_fixups(&mut res.value, &tmap, &fixups.undo_info);
res
}
_ => {
let ValueResult { value, err } = db.macro_arg(id);
let Some(macro_arg) = value else {
return ExpandResult {
value: Arc::new(tt::Subtree {
delimiter: tt::Delimiter::UNSPECIFIED,
token_trees: Vec::new(),
}),
// FIXME: We should make sure to enforce an invariant that invalid macro
// calls do not reach this call path!
err: Some(ExpandError::other("invalid token tree")),
};
};
let (arg, arg_tm, undo_info) = &*macro_arg;
let mut res = match loc.def.kind {
MacroDefKind::Declarative(id) => {
db.decl_macro_expander(loc.def.krate, id).expand(arg.clone())
}
MacroDefKind::BuiltIn(it, _) => it.expand(db, id, &arg).map_err(Into::into),
// This might look a bit odd, but we do not expand the inputs to eager macros here.
// Eager macros inputs are expanded, well, eagerly when we collect the macro calls.
// That kind of expansion uses the ast id map of an eager macros input though which goes through
// the HirFileId machinery. As eager macro inputs are assigned a macro file id that query
// will end up going through here again, whereas we want to just want to inspect the raw input.
// As such we just return the input subtree here.
MacroDefKind::BuiltInEager(..) if loc.eager.is_none() => {
let mut arg = arg.clone();
fixup::reverse_fixups(&mut arg, arg_tm, undo_info);
return ExpandResult {
value: Arc::new(arg),
err: err.map(|err| {
let mut buf = String::new();
for err in &**err {
use std::fmt::Write;
_ = write!(buf, "{}, ", err);
}
buf.pop();
buf.pop();
ExpandError::other(buf)
}),
};
}
MacroDefKind::BuiltInEager(it, _) => it.expand(db, id, &arg).map_err(Into::into),
MacroDefKind::BuiltInAttr(it, _) => it.expand(db, id, &arg),
_ => unreachable!(),
};
fixup::reverse_fixups(&mut res.value, arg_tm, undo_info);
res
}
};
if let Some(EagerCallInfo { error, .. }) = loc.eager.as_deref() {
// FIXME: We should report both errors!
err = error.clone().or(err);
}
// Set a hard limit for the expanded tt
if let Err(value) = check_tt_count(&tt) {
return value;
}
ExpandResult { value: Arc::new(tt), err }
}
fn expand_proc_macro(db: &dyn ExpandDatabase, id: MacroCallId) -> ExpandResult<Arc<tt::Subtree>> {
let loc = db.lookup_intern_macro_call(id);
let Some(macro_arg) = db.macro_arg(id).value else {
return ExpandResult {
value: Arc::new(tt::Subtree {
delimiter: tt::Delimiter::UNSPECIFIED,
token_trees: Vec::new(),
}),
// FIXME: We should make sure to enforce an invariant that invalid macro
// calls do not reach this call path!
err: Some(ExpandError::other("invalid token tree")),
};
};
let (arg_tt, arg_tm, undo_info) = &*macro_arg;
let expander = match loc.def.kind {
MacroDefKind::ProcMacro(expander, ..) => expander,
_ => unreachable!(),
};
let attr_arg = match &loc.kind {
MacroCallKind::Attr { attr_args, .. } => {
let mut attr_args = attr_args.0.clone();
mbe::Shift::new(arg_tt).shift_all(&mut attr_args);
Some(attr_args)
}
_ => None,
};
let ExpandResult { value: mut tt, err } =
expander.expand(db, loc.def.krate, loc.krate, arg_tt, attr_arg.as_ref());
// Set a hard limit for the expanded tt
if let Err(value) = check_tt_count(&tt) {
return value;
}
fixup::reverse_fixups(&mut tt, arg_tm, undo_info);
ExpandResult { value: Arc::new(tt), err }
}
fn hygiene_frame(db: &dyn ExpandDatabase, file_id: HirFileId) -> Arc<HygieneFrame> {
Arc::new(HygieneFrame::new(db, file_id))
}
fn macro_expand_to(db: &dyn ExpandDatabase, id: MacroCallId) -> ExpandTo {
db.lookup_intern_macro_call(id).expand_to()
}
fn token_tree_to_syntax_node(
tt: &tt::Subtree,
expand_to: ExpandTo,
) -> (Parse<SyntaxNode>, mbe::TokenMap) {
let entry_point = match expand_to {
ExpandTo::Statements => mbe::TopEntryPoint::MacroStmts,
ExpandTo::Items => mbe::TopEntryPoint::MacroItems,
ExpandTo::Pattern => mbe::TopEntryPoint::Pattern,
ExpandTo::Type => mbe::TopEntryPoint::Type,
ExpandTo::Expr => mbe::TopEntryPoint::Expr,
};
mbe::token_tree_to_syntax_node(tt, entry_point)
}
fn check_tt_count(tt: &tt::Subtree) -> Result<(), ExpandResult<Arc<tt::Subtree>>> {
let count = tt.count();
if TOKEN_LIMIT.check(count).is_err() {
Err(ExpandResult {
value: Arc::new(tt::Subtree {
delimiter: tt::Delimiter::UNSPECIFIED,
token_trees: vec![],
}),
err: Some(ExpandError::other(format!(
"macro invocation exceeds token limit: produced {} tokens, limit is {}",
count,
TOKEN_LIMIT.inner(),
))),
})
} else {
Ok(())
}
}