blob: 21eb64d2809acf655f04789871a88efb0dd242f5 [file] [log] [blame]
//! Routines for comparing and diffing output.
//!
//! # Patterns
//!
//! Many of these functions support special markup to assist with comparing
//! text that may vary or is otherwise uninteresting for the test at hand. The
//! supported patterns are:
//!
//! - `[..]` is a wildcard that matches 0 or more characters on the same line
//! (similar to `.*` in a regex). It is non-greedy.
//! - `[EXE]` optionally adds `.exe` on Windows (empty string on other
//! platforms).
//! - `[ROOT]` is the path to the test directory's root.
//! - `[CWD]` is the working directory of the process that was run.
//! - There is a wide range of substitutions (such as `[COMPILING]` or
//! `[WARNING]`) to match cargo's "status" output and allows you to ignore
//! the alignment. See the source of `substitute_macros` for a complete list
//! of substitutions.
//! - `[DIRTY-MSVC]` (only when the line starts with it) would be replaced by
//! `[DIRTY]` when `cfg(target_env = "msvc")` or the line will be ignored otherwise.
//! Tests that work around [issue 7358](https://github.com/rust-lang/cargo/issues/7358)
//! can use this to avoid duplicating the `with_stderr` call like:
//! `if cfg!(target_env = "msvc") {e.with_stderr("...[DIRTY]...");} else {e.with_stderr("...");}`.
//!
//! # Normalization
//!
//! In addition to the patterns described above, the strings are normalized
//! in such a way to avoid unwanted differences. The normalizations are:
//!
//! - Raw tab characters are converted to the string `<tab>`. This is helpful
//! so that raw tabs do not need to be written in the expected string, and
//! to avoid confusion of tabs vs spaces.
//! - Backslashes are converted to forward slashes to deal with Windows paths.
//! This helps so that all tests can be written assuming forward slashes.
//! Other heuristics are applied to try to ensure Windows-style paths aren't
//! a problem.
//! - Carriage returns are removed, which can help when running on Windows.
use crate::diff;
use crate::paths;
use anyhow::{bail, Context, Result};
use serde_json::Value;
use std::env;
use std::fmt;
use std::path::Path;
use std::str;
use url::Url;
/// Default `snapbox` Assertions
///
/// # Snapshots
///
/// Updating of snapshots is controlled with the `SNAPSHOTS` environment variable:
///
/// - `skip`: do not run the tests
/// - `ignore`: run the tests but ignore their failure
/// - `verify`: run the tests
/// - `overwrite`: update the snapshots based on the output of the tests
///
/// # Patterns
///
/// - `[..]` is a character wildcard, stopping at line breaks
/// - `\n...\n` is a multi-line wildcard
/// - `[EXE]` matches the exe suffix for the current platform
/// - `[ROOT]` matches [`paths::root()`][crate::paths::root]
/// - `[ROOTURL]` matches [`paths::root()`][crate::paths::root] as a URL
///
/// # Normalization
///
/// In addition to the patterns described above, text is normalized
/// in such a way to avoid unwanted differences. The normalizations are:
///
/// - Backslashes are converted to forward slashes to deal with Windows paths.
/// This helps so that all tests can be written assuming forward slashes.
/// Other heuristics are applied to try to ensure Windows-style paths aren't
/// a problem.
/// - Carriage returns are removed, which can help when running on Windows.
pub fn assert_ui() -> snapbox::Assert {
let root = paths::root();
// Use `from_file_path` instead of `from_dir_path` so the trailing slash is
// put in the users output, rather than hidden in the variable
let root_url = url::Url::from_file_path(&root).unwrap().to_string();
let root = root.display().to_string();
let mut subs = snapbox::Substitutions::new();
subs.extend([
(
"[EXE]",
std::borrow::Cow::Borrowed(std::env::consts::EXE_SUFFIX),
),
("[ROOT]", std::borrow::Cow::Owned(root)),
("[ROOTURL]", std::borrow::Cow::Owned(root_url)),
])
.unwrap();
snapbox::Assert::new()
.action_env(snapbox::DEFAULT_ACTION_ENV)
.substitutions(subs)
}
/// Normalizes the output so that it can be compared against the expected value.
fn normalize_actual(actual: &str, cwd: Option<&Path>) -> String {
// It's easier to read tabs in outputs if they don't show up as literal
// hidden characters
let actual = actual.replace('\t', "<tab>");
if cfg!(windows) {
// Let's not deal with \r\n vs \n on windows...
let actual = actual.replace('\r', "");
normalize_windows(&actual, cwd)
} else {
actual
}
}
/// Normalizes the expected string so that it can be compared against the actual output.
fn normalize_expected(expected: &str, cwd: Option<&Path>) -> String {
let expected = replace_dirty_msvc(expected);
let expected = substitute_macros(&expected);
if cfg!(windows) {
normalize_windows(&expected, cwd)
} else {
let expected = match cwd {
None => expected,
Some(cwd) => expected.replace("[CWD]", &cwd.display().to_string()),
};
let expected = expected.replace("[ROOT]", &paths::root().display().to_string());
expected
}
}
fn replace_dirty_msvc_impl(s: &str, is_msvc: bool) -> String {
if is_msvc {
s.replace("[DIRTY-MSVC]", "[DIRTY]")
} else {
use itertools::Itertools;
let mut new = s
.lines()
.filter(|it| !it.starts_with("[DIRTY-MSVC]"))
.join("\n");
if s.ends_with("\n") {
new.push_str("\n");
}
new
}
}
fn replace_dirty_msvc(s: &str) -> String {
replace_dirty_msvc_impl(s, cfg!(target_env = "msvc"))
}
/// Normalizes text for both actual and expected strings on Windows.
fn normalize_windows(text: &str, cwd: Option<&Path>) -> String {
// Let's not deal with / vs \ (windows...)
let text = text.replace('\\', "/");
// Weirdness for paths on Windows extends beyond `/` vs `\` apparently.
// Namely paths like `c:\` and `C:\` are equivalent and that can cause
// issues. The return value of `env::current_dir()` may return a
// lowercase drive name, but we round-trip a lot of values through `Url`
// which will auto-uppercase the drive name. To just ignore this
// distinction we try to canonicalize as much as possible, taking all
// forms of a path and canonicalizing them to one.
let replace_path = |s: &str, path: &Path, with: &str| {
let path_through_url = Url::from_file_path(path).unwrap().to_file_path().unwrap();
let path1 = path.display().to_string().replace('\\', "/");
let path2 = path_through_url.display().to_string().replace('\\', "/");
s.replace(&path1, with)
.replace(&path2, with)
.replace(with, &path1)
};
let text = match cwd {
None => text,
Some(p) => replace_path(&text, p, "[CWD]"),
};
// Similar to cwd above, perform similar treatment to the root path
// which in theory all of our paths should otherwise get rooted at.
let root = paths::root();
let text = replace_path(&text, &root, "[ROOT]");
text
}
fn substitute_macros(input: &str) -> String {
let macros = [
("[RUNNING]", " Running"),
("[COMPILING]", " Compiling"),
("[CHECKING]", " Checking"),
("[COMPLETED]", " Completed"),
("[CREATED]", " Created"),
("[CREDENTIAL]", " Credential"),
("[DOWNGRADING]", " Downgrading"),
("[FINISHED]", " Finished"),
("[ERROR]", "error:"),
("[WARNING]", "warning:"),
("[NOTE]", "note:"),
("[HELP]", "help:"),
("[DOCUMENTING]", " Documenting"),
("[SCRAPING]", " Scraping"),
("[FRESH]", " Fresh"),
("[DIRTY]", " Dirty"),
("[UPDATING]", " Updating"),
("[ADDING]", " Adding"),
("[REMOVING]", " Removing"),
("[DOCTEST]", " Doc-tests"),
("[PACKAGING]", " Packaging"),
("[PACKAGED]", " Packaged"),
("[DOWNLOADING]", " Downloading"),
("[DOWNLOADED]", " Downloaded"),
("[UPLOADING]", " Uploading"),
("[UPLOADED]", " Uploaded"),
("[VERIFYING]", " Verifying"),
("[ARCHIVING]", " Archiving"),
("[INSTALLING]", " Installing"),
("[REPLACING]", " Replacing"),
("[UNPACKING]", " Unpacking"),
("[SUMMARY]", " Summary"),
("[FIXED]", " Fixed"),
("[FIXING]", " Fixing"),
("[EXE]", env::consts::EXE_SUFFIX),
("[IGNORED]", " Ignored"),
("[INSTALLED]", " Installed"),
("[REPLACED]", " Replaced"),
("[BUILDING]", " Building"),
("[LOGIN]", " Login"),
("[LOGOUT]", " Logout"),
("[YANK]", " Yank"),
("[OWNER]", " Owner"),
("[MIGRATING]", " Migrating"),
("[EXECUTABLE]", " Executable"),
("[SKIPPING]", " Skipping"),
("[WAITING]", " Waiting"),
("[PUBLISHED]", " Published"),
];
let mut result = input.to_owned();
for &(pat, subst) in &macros {
result = result.replace(pat, subst)
}
result
}
/// Compares one string against another, checking that they both match.
///
/// See [Patterns](index.html#patterns) for more information on pattern matching.
///
/// - `description` explains where the output is from (usually "stdout" or "stderr").
/// - `other_output` is other output to display in the error (usually stdout or stderr).
pub fn match_exact(
expected: &str,
actual: &str,
description: &str,
other_output: &str,
cwd: Option<&Path>,
) -> Result<()> {
let expected = normalize_expected(expected, cwd);
let actual = normalize_actual(actual, cwd);
let e: Vec<_> = expected.lines().map(WildStr::new).collect();
let a: Vec<_> = actual.lines().map(WildStr::new).collect();
if e == a {
return Ok(());
}
let diff = diff::colored_diff(&e, &a);
bail!(
"{} did not match:\n\
{}\n\n\
other output:\n\
{}\n",
description,
diff,
other_output,
);
}
/// Convenience wrapper around [`match_exact`] which will panic on error.
#[track_caller]
pub fn assert_match_exact(expected: &str, actual: &str) {
if let Err(e) = match_exact(expected, actual, "", "", None) {
crate::panic_error("", e);
}
}
/// Checks that the given string contains the given lines, ignoring the order
/// of the lines.
///
/// See [Patterns](index.html#patterns) for more information on pattern matching.
pub fn match_unordered(expected: &str, actual: &str, cwd: Option<&Path>) -> Result<()> {
let expected = normalize_expected(expected, cwd);
let actual = normalize_actual(actual, cwd);
let e: Vec<_> = expected.lines().map(|line| WildStr::new(line)).collect();
let mut a: Vec<_> = actual.lines().map(|line| WildStr::new(line)).collect();
// match more-constrained lines first, although in theory we'll
// need some sort of recursive match here. This handles the case
// that you expect "a\n[..]b" and two lines are printed out,
// "ab\n"a", where technically we do match unordered but a naive
// search fails to find this. This simple sort at least gets the
// test suite to pass for now, but we may need to get more fancy
// if tests start failing again.
a.sort_by_key(|s| s.line.len());
let mut changes = Vec::new();
let mut a_index = 0;
let mut failure = false;
use crate::diff::Change;
for (e_i, e_line) in e.into_iter().enumerate() {
match a.iter().position(|a_line| e_line == *a_line) {
Some(index) => {
let a_line = a.remove(index);
changes.push(Change::Keep(e_i, index, a_line));
a_index += 1;
}
None => {
failure = true;
changes.push(Change::Remove(e_i, e_line));
}
}
}
for unmatched in a {
failure = true;
changes.push(Change::Add(a_index, unmatched));
a_index += 1;
}
if failure {
bail!(
"Expected lines did not match (ignoring order):\n{}\n",
diff::render_colored_changes(&changes)
);
} else {
Ok(())
}
}
/// Checks that the given string contains the given contiguous lines
/// somewhere.
///
/// See [Patterns](index.html#patterns) for more information on pattern matching.
pub fn match_contains(expected: &str, actual: &str, cwd: Option<&Path>) -> Result<()> {
let expected = normalize_expected(expected, cwd);
let actual = normalize_actual(actual, cwd);
let e: Vec<_> = expected.lines().map(|line| WildStr::new(line)).collect();
let a: Vec<_> = actual.lines().map(|line| WildStr::new(line)).collect();
if e.len() == 0 {
bail!("expected length must not be zero");
}
for window in a.windows(e.len()) {
if window == e {
return Ok(());
}
}
bail!(
"expected to find:\n\
{}\n\n\
did not find in output:\n\
{}",
expected,
actual
);
}
/// Checks that the given string does not contain the given contiguous lines
/// anywhere.
///
/// See [Patterns](index.html#patterns) for more information on pattern matching.
pub fn match_does_not_contain(expected: &str, actual: &str, cwd: Option<&Path>) -> Result<()> {
if match_contains(expected, actual, cwd).is_ok() {
bail!(
"expected not to find:\n\
{}\n\n\
but found in output:\n\
{}",
expected,
actual
);
} else {
Ok(())
}
}
/// Checks that the given string contains the given contiguous lines
/// somewhere, and should be repeated `number` times.
///
/// See [Patterns](index.html#patterns) for more information on pattern matching.
pub fn match_contains_n(
expected: &str,
number: usize,
actual: &str,
cwd: Option<&Path>,
) -> Result<()> {
let expected = normalize_expected(expected, cwd);
let actual = normalize_actual(actual, cwd);
let e: Vec<_> = expected.lines().map(|line| WildStr::new(line)).collect();
let a: Vec<_> = actual.lines().map(|line| WildStr::new(line)).collect();
if e.len() == 0 {
bail!("expected length must not be zero");
}
let matches = a.windows(e.len()).filter(|window| *window == e).count();
if matches == number {
Ok(())
} else {
bail!(
"expected to find {} occurrences of:\n\
{}\n\n\
but found {} matches in the output:\n\
{}",
number,
expected,
matches,
actual
)
}
}
/// Checks that the given string has a line that contains the given patterns,
/// and that line also does not contain the `without` patterns.
///
/// See [Patterns](index.html#patterns) for more information on pattern matching.
///
/// See [`crate::Execs::with_stderr_line_without`] for an example and cautions
/// against using.
pub fn match_with_without(
actual: &str,
with: &[String],
without: &[String],
cwd: Option<&Path>,
) -> Result<()> {
let actual = normalize_actual(actual, cwd);
let norm = |s: &String| format!("[..]{}[..]", normalize_expected(s, cwd));
let with: Vec<_> = with.iter().map(norm).collect();
let without: Vec<_> = without.iter().map(norm).collect();
let with_wild: Vec<_> = with.iter().map(|w| WildStr::new(w)).collect();
let without_wild: Vec<_> = without.iter().map(|w| WildStr::new(w)).collect();
let matches: Vec<_> = actual
.lines()
.map(WildStr::new)
.filter(|line| with_wild.iter().all(|with| with == line))
.filter(|line| !without_wild.iter().any(|without| without == line))
.collect();
match matches.len() {
0 => bail!(
"Could not find expected line in output.\n\
With contents: {:?}\n\
Without contents: {:?}\n\
Actual stderr:\n\
{}\n",
with,
without,
actual
),
1 => Ok(()),
_ => bail!(
"Found multiple matching lines, but only expected one.\n\
With contents: {:?}\n\
Without contents: {:?}\n\
Matching lines:\n\
{}\n",
with,
without,
itertools::join(matches, "\n")
),
}
}
/// Checks that the given string of JSON objects match the given set of
/// expected JSON objects.
///
/// See [`crate::Execs::with_json`] for more details.
pub fn match_json(expected: &str, actual: &str, cwd: Option<&Path>) -> Result<()> {
let (exp_objs, act_objs) = collect_json_objects(expected, actual)?;
if exp_objs.len() != act_objs.len() {
bail!(
"expected {} json lines, got {}, stdout:\n{}",
exp_objs.len(),
act_objs.len(),
actual
);
}
for (exp_obj, act_obj) in exp_objs.iter().zip(act_objs) {
find_json_mismatch(exp_obj, &act_obj, cwd)?;
}
Ok(())
}
/// Checks that the given string of JSON objects match the given set of
/// expected JSON objects, ignoring their order.
///
/// See [`crate::Execs::with_json_contains_unordered`] for more details and
/// cautions when using.
pub fn match_json_contains_unordered(
expected: &str,
actual: &str,
cwd: Option<&Path>,
) -> Result<()> {
let (exp_objs, mut act_objs) = collect_json_objects(expected, actual)?;
for exp_obj in exp_objs {
match act_objs
.iter()
.position(|act_obj| find_json_mismatch(&exp_obj, act_obj, cwd).is_ok())
{
Some(index) => act_objs.remove(index),
None => {
bail!(
"Did not find expected JSON:\n\
{}\n\
Remaining available output:\n\
{}\n",
serde_json::to_string_pretty(&exp_obj).unwrap(),
itertools::join(
act_objs.iter().map(|o| serde_json::to_string(o).unwrap()),
"\n"
)
);
}
};
}
Ok(())
}
fn collect_json_objects(
expected: &str,
actual: &str,
) -> Result<(Vec<serde_json::Value>, Vec<serde_json::Value>)> {
let expected_objs: Vec<_> = expected
.split("\n\n")
.map(|expect| {
expect
.parse()
.with_context(|| format!("failed to parse expected JSON object:\n{}", expect))
})
.collect::<Result<_>>()?;
let actual_objs: Vec<_> = actual
.lines()
.filter(|line| line.starts_with('{'))
.map(|line| {
line.parse()
.with_context(|| format!("failed to parse JSON object:\n{}", line))
})
.collect::<Result<_>>()?;
Ok((expected_objs, actual_objs))
}
/// Compares JSON object for approximate equality.
/// You can use `[..]` wildcard in strings (useful for OS-dependent things such
/// as paths). You can use a `"{...}"` string literal as a wildcard for
/// arbitrary nested JSON (useful for parts of object emitted by other programs
/// (e.g., rustc) rather than Cargo itself).
pub fn find_json_mismatch(expected: &Value, actual: &Value, cwd: Option<&Path>) -> Result<()> {
match find_json_mismatch_r(expected, actual, cwd) {
Some((expected_part, actual_part)) => bail!(
"JSON mismatch\nExpected:\n{}\nWas:\n{}\nExpected part:\n{}\nActual part:\n{}\n",
serde_json::to_string_pretty(expected).unwrap(),
serde_json::to_string_pretty(&actual).unwrap(),
serde_json::to_string_pretty(expected_part).unwrap(),
serde_json::to_string_pretty(actual_part).unwrap(),
),
None => Ok(()),
}
}
fn find_json_mismatch_r<'a>(
expected: &'a Value,
actual: &'a Value,
cwd: Option<&Path>,
) -> Option<(&'a Value, &'a Value)> {
use serde_json::Value::*;
match (expected, actual) {
(&Number(ref l), &Number(ref r)) if l == r => None,
(&Bool(l), &Bool(r)) if l == r => None,
(&String(ref l), _) if l == "{...}" => None,
(&String(ref l), &String(ref r)) => {
if match_exact(l, r, "", "", cwd).is_err() {
Some((expected, actual))
} else {
None
}
}
(&Array(ref l), &Array(ref r)) => {
if l.len() != r.len() {
return Some((expected, actual));
}
l.iter()
.zip(r.iter())
.filter_map(|(l, r)| find_json_mismatch_r(l, r, cwd))
.next()
}
(&Object(ref l), &Object(ref r)) => {
let same_keys = l.len() == r.len() && l.keys().all(|k| r.contains_key(k));
if !same_keys {
return Some((expected, actual));
}
l.values()
.zip(r.values())
.filter_map(|(l, r)| find_json_mismatch_r(l, r, cwd))
.next()
}
(&Null, &Null) => None,
// Magic string literal `"{...}"` acts as wildcard for any sub-JSON.
_ => Some((expected, actual)),
}
}
/// A single line string that supports `[..]` wildcard matching.
pub struct WildStr<'a> {
has_meta: bool,
line: &'a str,
}
impl<'a> WildStr<'a> {
pub fn new(line: &'a str) -> WildStr<'a> {
WildStr {
has_meta: line.contains("[..]"),
line,
}
}
}
impl<'a> PartialEq for WildStr<'a> {
fn eq(&self, other: &Self) -> bool {
match (self.has_meta, other.has_meta) {
(false, false) => self.line == other.line,
(true, false) => meta_cmp(self.line, other.line),
(false, true) => meta_cmp(other.line, self.line),
(true, true) => panic!("both lines cannot have [..]"),
}
}
}
fn meta_cmp(a: &str, mut b: &str) -> bool {
for (i, part) in a.split("[..]").enumerate() {
match b.find(part) {
Some(j) => {
if i == 0 && j != 0 {
return false;
}
b = &b[j + part.len()..];
}
None => return false,
}
}
b.is_empty() || a.ends_with("[..]")
}
impl fmt::Display for WildStr<'_> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str(&self.line)
}
}
impl fmt::Debug for WildStr<'_> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "{:?}", self.line)
}
}
#[test]
fn wild_str_cmp() {
for (a, b) in &[
("a b", "a b"),
("a[..]b", "a b"),
("a[..]", "a b"),
("[..]", "a b"),
("[..]b", "a b"),
] {
assert_eq!(WildStr::new(a), WildStr::new(b));
}
for (a, b) in &[("[..]b", "c"), ("b", "c"), ("b", "cb")] {
assert_ne!(WildStr::new(a), WildStr::new(b));
}
}
#[test]
fn dirty_msvc() {
let case = |expected: &str, wild: &str, msvc: bool| {
assert_eq!(expected, &replace_dirty_msvc_impl(wild, msvc));
};
// no replacements
case("aa", "aa", false);
case("aa", "aa", true);
// with replacements
case(
"\
[DIRTY] a",
"\
[DIRTY-MSVC] a",
true,
);
case(
"",
"\
[DIRTY-MSVC] a",
false,
);
case(
"\
[DIRTY] a
[COMPILING] a",
"\
[DIRTY-MSVC] a
[COMPILING] a",
true,
);
case(
"\
[COMPILING] a",
"\
[DIRTY-MSVC] a
[COMPILING] a",
false,
);
// test trailing newline behavior
case(
"\
A
B
", "\
A
B
", true,
);
case(
"\
A
B
", "\
A
B
", false,
);
case(
"\
A
B", "\
A
B", true,
);
case(
"\
A
B", "\
A
B", false,
);
case(
"\
[DIRTY] a
",
"\
[DIRTY-MSVC] a
",
true,
);
case(
"\n",
"\
[DIRTY-MSVC] a
",
false,
);
case(
"\
[DIRTY] a",
"\
[DIRTY-MSVC] a",
true,
);
case(
"",
"\
[DIRTY-MSVC] a",
false,
);
}