blob: 94e221fd877cbb9a2a98018e4951eeacdc399349 [file] [log] [blame]
//===-- X86FixupVectorConstants.cpp - optimize constant generation -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file examines all full size vector constant pool loads and attempts to
// replace them with smaller constant pool entries, including:
// * Converting AVX512 memory-fold instructions to their broadcast-fold form
// * TODO: Broadcasting of full width loads.
// * TODO: Sign/Zero extension of full width loads.
//
//===----------------------------------------------------------------------===//
#include "X86.h"
#include "X86InstrFoldTables.h"
#include "X86InstrInfo.h"
#include "X86Subtarget.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineConstantPool.h"
using namespace llvm;
#define DEBUG_TYPE "x86-fixup-vector-constants"
STATISTIC(NumInstChanges, "Number of instructions changes");
namespace {
class X86FixupVectorConstantsPass : public MachineFunctionPass {
public:
static char ID;
X86FixupVectorConstantsPass() : MachineFunctionPass(ID) {}
StringRef getPassName() const override {
return "X86 Fixup Vector Constants";
}
bool runOnMachineFunction(MachineFunction &MF) override;
bool processInstruction(MachineFunction &MF, MachineBasicBlock &MBB,
MachineInstr &MI);
// This pass runs after regalloc and doesn't support VReg operands.
MachineFunctionProperties getRequiredProperties() const override {
return MachineFunctionProperties().set(
MachineFunctionProperties::Property::NoVRegs);
}
private:
const X86InstrInfo *TII = nullptr;
const X86Subtarget *ST = nullptr;
const MCSchedModel *SM = nullptr;
};
} // end anonymous namespace
char X86FixupVectorConstantsPass::ID = 0;
INITIALIZE_PASS(X86FixupVectorConstantsPass, DEBUG_TYPE, DEBUG_TYPE, false, false)
FunctionPass *llvm::createX86FixupVectorConstants() {
return new X86FixupVectorConstantsPass();
}
static const Constant *getConstantFromPool(const MachineInstr &MI,
const MachineOperand &Op) {
if (!Op.isCPI() || Op.getOffset() != 0)
return nullptr;
ArrayRef<MachineConstantPoolEntry> Constants =
MI.getParent()->getParent()->getConstantPool()->getConstants();
const MachineConstantPoolEntry &ConstantEntry = Constants[Op.getIndex()];
// Bail if this is a machine constant pool entry, we won't be able to dig out
// anything useful.
if (ConstantEntry.isMachineConstantPoolEntry())
return nullptr;
return ConstantEntry.Val.ConstVal;
}
// Attempt to extract the full width of bits data from the constant.
static std::optional<APInt> extractConstantBits(const Constant *C) {
unsigned NumBits = C->getType()->getPrimitiveSizeInBits();
if (auto *CInt = dyn_cast<ConstantInt>(C))
return CInt->getValue();
if (auto *CFP = dyn_cast<ConstantFP>(C))
return CFP->getValue().bitcastToAPInt();
if (auto *CV = dyn_cast<ConstantVector>(C)) {
if (auto *CVSplat = CV->getSplatValue(/*AllowUndefs*/ true)) {
if (std::optional<APInt> Bits = extractConstantBits(CVSplat)) {
assert((NumBits % Bits->getBitWidth()) == 0 && "Illegal splat");
return APInt::getSplat(NumBits, *Bits);
}
}
}
if (auto *CDS = dyn_cast<ConstantDataSequential>(C)) {
bool IsInteger = CDS->getElementType()->isIntegerTy();
bool IsFloat = CDS->getElementType()->isHalfTy() ||
CDS->getElementType()->isBFloatTy() ||
CDS->getElementType()->isFloatTy() ||
CDS->getElementType()->isDoubleTy();
if (IsInteger || IsFloat) {
APInt Bits = APInt::getZero(NumBits);
unsigned EltBits = CDS->getElementType()->getPrimitiveSizeInBits();
for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) {
if (IsInteger)
Bits.insertBits(CDS->getElementAsAPInt(I), I * EltBits);
else
Bits.insertBits(CDS->getElementAsAPFloat(I).bitcastToAPInt(),
I * EltBits);
}
return Bits;
}
}
return std::nullopt;
}
// Attempt to compute the splat width of bits data by normalizing the splat to
// remove undefs.
static std::optional<APInt> getSplatableConstant(const Constant *C,
unsigned SplatBitWidth) {
const Type *Ty = C->getType();
assert((Ty->getPrimitiveSizeInBits() % SplatBitWidth) == 0 &&
"Illegal splat width");
if (std::optional<APInt> Bits = extractConstantBits(C))
if (Bits->isSplat(SplatBitWidth))
return Bits->trunc(SplatBitWidth);
// Detect general splats with undefs.
// TODO: Do we need to handle NumEltsBits > SplatBitWidth splitting?
if (auto *CV = dyn_cast<ConstantVector>(C)) {
unsigned NumOps = CV->getNumOperands();
unsigned NumEltsBits = Ty->getScalarSizeInBits();
unsigned NumScaleOps = SplatBitWidth / NumEltsBits;
if ((SplatBitWidth % NumEltsBits) == 0) {
// Collect the elements and ensure that within the repeated splat sequence
// they either match or are undef.
SmallVector<Constant *, 16> Sequence(NumScaleOps, nullptr);
for (unsigned Idx = 0; Idx != NumOps; ++Idx) {
if (Constant *Elt = CV->getAggregateElement(Idx)) {
if (isa<UndefValue>(Elt))
continue;
unsigned SplatIdx = Idx % NumScaleOps;
if (!Sequence[SplatIdx] || Sequence[SplatIdx] == Elt) {
Sequence[SplatIdx] = Elt;
continue;
}
}
return std::nullopt;
}
// Extract the constant bits forming the splat and insert into the bits
// data, leave undef as zero.
APInt SplatBits = APInt::getZero(SplatBitWidth);
for (unsigned I = 0; I != NumScaleOps; ++I) {
if (!Sequence[I])
continue;
if (std::optional<APInt> Bits = extractConstantBits(Sequence[I])) {
SplatBits.insertBits(*Bits, I * Bits->getBitWidth());
continue;
}
return std::nullopt;
}
return SplatBits;
}
}
return std::nullopt;
}
// Attempt to rebuild a normalized splat vector constant of the requested splat
// width, built up of potentially smaller scalar values.
// NOTE: We don't always bother converting to scalars if the vector length is 1.
static Constant *rebuildSplatableConstant(const Constant *C,
unsigned SplatBitWidth) {
std::optional<APInt> Splat = getSplatableConstant(C, SplatBitWidth);
if (!Splat)
return nullptr;
// Determine scalar size to use for the constant splat vector, clamping as we
// might have found a splat smaller than the original constant data.
const Type *OriginalType = C->getType();
Type *SclTy = OriginalType->getScalarType();
unsigned NumSclBits = SclTy->getPrimitiveSizeInBits();
NumSclBits = std::min<unsigned>(NumSclBits, SplatBitWidth);
if (NumSclBits == 8) {
SmallVector<uint8_t> RawBits;
for (unsigned I = 0; I != SplatBitWidth; I += 8)
RawBits.push_back(Splat->extractBits(8, I).getZExtValue());
return ConstantDataVector::get(OriginalType->getContext(), RawBits);
}
if (NumSclBits == 16) {
SmallVector<uint16_t> RawBits;
for (unsigned I = 0; I != SplatBitWidth; I += 16)
RawBits.push_back(Splat->extractBits(16, I).getZExtValue());
if (SclTy->is16bitFPTy())
return ConstantDataVector::getFP(SclTy, RawBits);
return ConstantDataVector::get(OriginalType->getContext(), RawBits);
}
if (NumSclBits == 32) {
SmallVector<uint32_t> RawBits;
for (unsigned I = 0; I != SplatBitWidth; I += 32)
RawBits.push_back(Splat->extractBits(32, I).getZExtValue());
if (SclTy->isFloatTy())
return ConstantDataVector::getFP(SclTy, RawBits);
return ConstantDataVector::get(OriginalType->getContext(), RawBits);
}
// Fallback to i64 / double.
SmallVector<uint64_t> RawBits;
for (unsigned I = 0; I != SplatBitWidth; I += 64)
RawBits.push_back(Splat->extractBits(64, I).getZExtValue());
if (SclTy->isDoubleTy())
return ConstantDataVector::getFP(SclTy, RawBits);
return ConstantDataVector::get(OriginalType->getContext(), RawBits);
}
bool X86FixupVectorConstantsPass::processInstruction(MachineFunction &MF,
MachineBasicBlock &MBB,
MachineInstr &MI) {
unsigned Opc = MI.getOpcode();
MachineConstantPool *CP = MI.getParent()->getParent()->getConstantPool();
bool HasDQI = ST->hasDQI();
bool HasBWI = ST->hasBWI();
auto ConvertToBroadcast = [&](unsigned OpBcst256, unsigned OpBcst128,
unsigned OpBcst64, unsigned OpBcst32,
unsigned OpBcst16, unsigned OpBcst8,
unsigned OperandNo) {
assert(MI.getNumOperands() >= (OperandNo + X86::AddrNumOperands) &&
"Unexpected number of operands!");
MachineOperand &CstOp = MI.getOperand(OperandNo + X86::AddrDisp);
if (auto *C = getConstantFromPool(MI, CstOp)) {
// Attempt to detect a suitable splat from increasing splat widths.
std::pair<unsigned, unsigned> Broadcasts[] = {
{8, OpBcst8}, {16, OpBcst16}, {32, OpBcst32},
{64, OpBcst64}, {128, OpBcst128}, {256, OpBcst256},
};
for (auto [BitWidth, OpBcst] : Broadcasts) {
if (OpBcst) {
// Construct a suitable splat constant and adjust the MI to
// use the new constant pool entry.
if (Constant *NewCst = rebuildSplatableConstant(C, BitWidth)) {
unsigned NewCPI =
CP->getConstantPoolIndex(NewCst, Align(BitWidth / 8));
MI.setDesc(TII->get(OpBcst));
CstOp.setIndex(NewCPI);
return true;
}
}
}
}
return false;
};
// Attempt to convert full width vector loads into broadcast loads.
switch (Opc) {
/* FP Loads */
case X86::MOVAPDrm:
case X86::MOVAPSrm:
case X86::MOVUPDrm:
case X86::MOVUPSrm:
// TODO: SSE3 MOVDDUP Handling
return false;
case X86::VMOVAPDrm:
case X86::VMOVAPSrm:
case X86::VMOVUPDrm:
case X86::VMOVUPSrm:
return ConvertToBroadcast(0, 0, X86::VMOVDDUPrm, X86::VBROADCASTSSrm, 0, 0,
1);
case X86::VMOVAPDYrm:
case X86::VMOVAPSYrm:
case X86::VMOVUPDYrm:
case X86::VMOVUPSYrm:
return ConvertToBroadcast(0, X86::VBROADCASTF128, X86::VBROADCASTSDYrm,
X86::VBROADCASTSSYrm, 0, 0, 1);
case X86::VMOVAPDZ128rm:
case X86::VMOVAPSZ128rm:
case X86::VMOVUPDZ128rm:
case X86::VMOVUPSZ128rm:
return ConvertToBroadcast(0, 0, X86::VMOVDDUPZ128rm,
X86::VBROADCASTSSZ128rm, 0, 0, 1);
case X86::VMOVAPDZ256rm:
case X86::VMOVAPSZ256rm:
case X86::VMOVUPDZ256rm:
case X86::VMOVUPSZ256rm:
return ConvertToBroadcast(
0, HasDQI ? X86::VBROADCASTF64X2Z128rm : X86::VBROADCASTF32X4Z256rm,
X86::VBROADCASTSDZ256rm, X86::VBROADCASTSSZ256rm, 0, 0, 1);
case X86::VMOVAPDZrm:
case X86::VMOVAPSZrm:
case X86::VMOVUPDZrm:
case X86::VMOVUPSZrm:
return ConvertToBroadcast(
HasDQI ? X86::VBROADCASTF32X8rm : X86::VBROADCASTF64X4rm,
HasDQI ? X86::VBROADCASTF64X2rm : X86::VBROADCASTF32X4rm,
X86::VBROADCASTSDZrm, X86::VBROADCASTSSZrm, 0, 0, 1);
/* Integer Loads */
case X86::VMOVDQArm:
case X86::VMOVDQUrm:
if (ST->hasAVX2())
return ConvertToBroadcast(0, 0, X86::VPBROADCASTQrm, X86::VPBROADCASTDrm,
X86::VPBROADCASTWrm, X86::VPBROADCASTBrm, 1);
return ConvertToBroadcast(0, 0, X86::VMOVDDUPrm, X86::VBROADCASTSSrm, 0, 0,
1);
case X86::VMOVDQAYrm:
case X86::VMOVDQUYrm:
if (ST->hasAVX2())
return ConvertToBroadcast(0, X86::VBROADCASTI128, X86::VPBROADCASTQYrm,
X86::VPBROADCASTDYrm, X86::VPBROADCASTWYrm,
X86::VPBROADCASTBYrm, 1);
return ConvertToBroadcast(0, X86::VBROADCASTF128, X86::VBROADCASTSDYrm,
X86::VBROADCASTSSYrm, 0, 0, 1);
case X86::VMOVDQA32Z128rm:
case X86::VMOVDQA64Z128rm:
case X86::VMOVDQU32Z128rm:
case X86::VMOVDQU64Z128rm:
return ConvertToBroadcast(0, 0, X86::VPBROADCASTQZ128rm,
X86::VPBROADCASTDZ128rm,
HasBWI ? X86::VPBROADCASTWZ128rm : 0,
HasBWI ? X86::VPBROADCASTBZ128rm : 0, 1);
case X86::VMOVDQA32Z256rm:
case X86::VMOVDQA64Z256rm:
case X86::VMOVDQU32Z256rm:
case X86::VMOVDQU64Z256rm:
return ConvertToBroadcast(
0, HasDQI ? X86::VBROADCASTI64X2Z128rm : X86::VBROADCASTI32X4Z256rm,
X86::VPBROADCASTQZ256rm, X86::VPBROADCASTDZ256rm,
HasBWI ? X86::VPBROADCASTWZ256rm : 0,
HasBWI ? X86::VPBROADCASTBZ256rm : 0, 1);
case X86::VMOVDQA32Zrm:
case X86::VMOVDQA64Zrm:
case X86::VMOVDQU32Zrm:
case X86::VMOVDQU64Zrm:
return ConvertToBroadcast(
HasDQI ? X86::VBROADCASTI32X8rm : X86::VBROADCASTI64X4rm,
HasDQI ? X86::VBROADCASTI64X2rm : X86::VBROADCASTI32X4rm,
X86::VPBROADCASTQZrm, X86::VPBROADCASTDZrm,
HasBWI ? X86::VPBROADCASTWZrm : 0, HasBWI ? X86::VPBROADCASTBZrm : 0,
1);
}
// Attempt to find a AVX512 mapping from a full width memory-fold instruction
// to a broadcast-fold instruction variant.
if ((MI.getDesc().TSFlags & X86II::EncodingMask) == X86II::EVEX) {
unsigned OpBcst32 = 0, OpBcst64 = 0;
unsigned OpNoBcst32 = 0, OpNoBcst64 = 0;
if (const X86MemoryFoldTableEntry *Mem2Bcst =
llvm::lookupBroadcastFoldTable(Opc, 32)) {
OpBcst32 = Mem2Bcst->DstOp;
OpNoBcst32 = Mem2Bcst->Flags & TB_INDEX_MASK;
}
if (const X86MemoryFoldTableEntry *Mem2Bcst =
llvm::lookupBroadcastFoldTable(Opc, 64)) {
OpBcst64 = Mem2Bcst->DstOp;
OpNoBcst64 = Mem2Bcst->Flags & TB_INDEX_MASK;
}
assert(((OpBcst32 == 0) || (OpBcst64 == 0) || (OpNoBcst32 == OpNoBcst64)) &&
"OperandNo mismatch");
if (OpBcst32 || OpBcst64) {
unsigned OpNo = OpBcst32 == 0 ? OpNoBcst64 : OpNoBcst32;
return ConvertToBroadcast(0, 0, OpBcst64, OpBcst32, 0, 0, OpNo);
}
}
return false;
}
bool X86FixupVectorConstantsPass::runOnMachineFunction(MachineFunction &MF) {
LLVM_DEBUG(dbgs() << "Start X86FixupVectorConstants\n";);
bool Changed = false;
ST = &MF.getSubtarget<X86Subtarget>();
TII = ST->getInstrInfo();
SM = &ST->getSchedModel();
for (MachineBasicBlock &MBB : MF) {
for (MachineInstr &MI : MBB) {
if (processInstruction(MF, MBB, MI)) {
++NumInstChanges;
Changed = true;
}
}
}
LLVM_DEBUG(dbgs() << "End X86FixupVectorConstants\n";);
return Changed;
}