blob: 62883e962b4c762512a9c8ad9f8a74693de78c76 [file] [log] [blame]
//===-- RISCVTargetTransformInfo.cpp - RISC-V specific TTI ----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "RISCVTargetTransformInfo.h"
#include "MCTargetDesc/RISCVMatInt.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/CodeGen/BasicTTIImpl.h"
#include "llvm/CodeGen/CostTable.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/IR/Instructions.h"
#include <cmath>
#include <optional>
using namespace llvm;
#define DEBUG_TYPE "riscvtti"
static cl::opt<unsigned> RVVRegisterWidthLMUL(
"riscv-v-register-bit-width-lmul",
cl::desc(
"The LMUL to use for getRegisterBitWidth queries. Affects LMUL used "
"by autovectorized code. Fractional LMULs are not supported."),
cl::init(2), cl::Hidden);
static cl::opt<unsigned> SLPMaxVF(
"riscv-v-slp-max-vf",
cl::desc(
"Overrides result used for getMaximumVF query which is used "
"exclusively by SLP vectorizer."),
cl::Hidden);
InstructionCost RISCVTTIImpl::getLMULCost(MVT VT) {
// TODO: Here assume reciprocal throughput is 1 for LMUL_1, it is
// implementation-defined.
if (!VT.isVector())
return InstructionCost::getInvalid();
unsigned DLenFactor = ST->getDLenFactor();
unsigned Cost;
if (VT.isScalableVector()) {
unsigned LMul;
bool Fractional;
std::tie(LMul, Fractional) =
RISCVVType::decodeVLMUL(RISCVTargetLowering::getLMUL(VT));
if (Fractional)
Cost = LMul <= DLenFactor ? (DLenFactor / LMul) : 1;
else
Cost = (LMul * DLenFactor);
} else {
Cost = divideCeil(VT.getSizeInBits(), ST->getRealMinVLen() / DLenFactor);
}
return Cost;
}
InstructionCost RISCVTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty,
TTI::TargetCostKind CostKind) {
assert(Ty->isIntegerTy() &&
"getIntImmCost can only estimate cost of materialising integers");
// We have a Zero register, so 0 is always free.
if (Imm == 0)
return TTI::TCC_Free;
// Otherwise, we check how many instructions it will take to materialise.
const DataLayout &DL = getDataLayout();
return RISCVMatInt::getIntMatCost(Imm, DL.getTypeSizeInBits(Ty),
getST()->getFeatureBits());
}
// Look for patterns of shift followed by AND that can be turned into a pair of
// shifts. We won't need to materialize an immediate for the AND so these can
// be considered free.
static bool canUseShiftPair(Instruction *Inst, const APInt &Imm) {
uint64_t Mask = Imm.getZExtValue();
auto *BO = dyn_cast<BinaryOperator>(Inst->getOperand(0));
if (!BO || !BO->hasOneUse())
return false;
if (BO->getOpcode() != Instruction::Shl)
return false;
if (!isa<ConstantInt>(BO->getOperand(1)))
return false;
unsigned ShAmt = cast<ConstantInt>(BO->getOperand(1))->getZExtValue();
// (and (shl x, c2), c1) will be matched to (srli (slli x, c2+c3), c3) if c1
// is a mask shifted by c2 bits with c3 leading zeros.
if (isShiftedMask_64(Mask)) {
unsigned Trailing = llvm::countr_zero(Mask);
if (ShAmt == Trailing)
return true;
}
return false;
}
InstructionCost RISCVTTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx,
const APInt &Imm, Type *Ty,
TTI::TargetCostKind CostKind,
Instruction *Inst) {
assert(Ty->isIntegerTy() &&
"getIntImmCost can only estimate cost of materialising integers");
// We have a Zero register, so 0 is always free.
if (Imm == 0)
return TTI::TCC_Free;
// Some instructions in RISC-V can take a 12-bit immediate. Some of these are
// commutative, in others the immediate comes from a specific argument index.
bool Takes12BitImm = false;
unsigned ImmArgIdx = ~0U;
switch (Opcode) {
case Instruction::GetElementPtr:
// Never hoist any arguments to a GetElementPtr. CodeGenPrepare will
// split up large offsets in GEP into better parts than ConstantHoisting
// can.
return TTI::TCC_Free;
case Instruction::And:
// zext.h
if (Imm == UINT64_C(0xffff) && ST->hasStdExtZbb())
return TTI::TCC_Free;
// zext.w
if (Imm == UINT64_C(0xffffffff) && ST->hasStdExtZba())
return TTI::TCC_Free;
// bclri
if (ST->hasStdExtZbs() && (~Imm).isPowerOf2())
return TTI::TCC_Free;
if (Inst && Idx == 1 && Imm.getBitWidth() <= ST->getXLen() &&
canUseShiftPair(Inst, Imm))
return TTI::TCC_Free;
Takes12BitImm = true;
break;
case Instruction::Add:
Takes12BitImm = true;
break;
case Instruction::Or:
case Instruction::Xor:
// bseti/binvi
if (ST->hasStdExtZbs() && Imm.isPowerOf2())
return TTI::TCC_Free;
Takes12BitImm = true;
break;
case Instruction::Mul:
// Power of 2 is a shift. Negated power of 2 is a shift and a negate.
if (Imm.isPowerOf2() || Imm.isNegatedPowerOf2())
return TTI::TCC_Free;
// FIXME: There is no MULI instruction.
Takes12BitImm = true;
break;
case Instruction::Sub:
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
Takes12BitImm = true;
ImmArgIdx = 1;
break;
default:
break;
}
if (Takes12BitImm) {
// Check immediate is the correct argument...
if (Instruction::isCommutative(Opcode) || Idx == ImmArgIdx) {
// ... and fits into the 12-bit immediate.
if (Imm.getSignificantBits() <= 64 &&
getTLI()->isLegalAddImmediate(Imm.getSExtValue())) {
return TTI::TCC_Free;
}
}
// Otherwise, use the full materialisation cost.
return getIntImmCost(Imm, Ty, CostKind);
}
// By default, prevent hoisting.
return TTI::TCC_Free;
}
InstructionCost
RISCVTTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
const APInt &Imm, Type *Ty,
TTI::TargetCostKind CostKind) {
// Prevent hoisting in unknown cases.
return TTI::TCC_Free;
}
TargetTransformInfo::PopcntSupportKind
RISCVTTIImpl::getPopcntSupport(unsigned TyWidth) {
assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
return ST->hasStdExtZbb() ? TTI::PSK_FastHardware : TTI::PSK_Software;
}
bool RISCVTTIImpl::shouldExpandReduction(const IntrinsicInst *II) const {
// Currently, the ExpandReductions pass can't expand scalable-vector
// reductions, but we still request expansion as RVV doesn't support certain
// reductions and the SelectionDAG can't legalize them either.
switch (II->getIntrinsicID()) {
default:
return false;
// These reductions have no equivalent in RVV
case Intrinsic::vector_reduce_mul:
case Intrinsic::vector_reduce_fmul:
return true;
}
}
std::optional<unsigned> RISCVTTIImpl::getMaxVScale() const {
if (ST->hasVInstructions())
return ST->getRealMaxVLen() / RISCV::RVVBitsPerBlock;
return BaseT::getMaxVScale();
}
std::optional<unsigned> RISCVTTIImpl::getVScaleForTuning() const {
if (ST->hasVInstructions())
if (unsigned MinVLen = ST->getRealMinVLen();
MinVLen >= RISCV::RVVBitsPerBlock)
return MinVLen / RISCV::RVVBitsPerBlock;
return BaseT::getVScaleForTuning();
}
TypeSize
RISCVTTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const {
unsigned LMUL =
llvm::bit_floor(std::clamp<unsigned>(RVVRegisterWidthLMUL, 1, 8));
switch (K) {
case TargetTransformInfo::RGK_Scalar:
return TypeSize::getFixed(ST->getXLen());
case TargetTransformInfo::RGK_FixedWidthVector:
return TypeSize::getFixed(
ST->useRVVForFixedLengthVectors() ? LMUL * ST->getRealMinVLen() : 0);
case TargetTransformInfo::RGK_ScalableVector:
return TypeSize::getScalable(
(ST->hasVInstructions() &&
ST->getRealMinVLen() >= RISCV::RVVBitsPerBlock)
? LMUL * RISCV::RVVBitsPerBlock
: 0);
}
llvm_unreachable("Unsupported register kind");
}
InstructionCost
RISCVTTIImpl::getConstantPoolLoadCost(Type *Ty, TTI::TargetCostKind CostKind) {
// Add a cost of address generation + the cost of the load. The address
// is expected to be a PC relative offset to a constant pool entry
// using auipc/addi.
return 2 + getMemoryOpCost(Instruction::Load, Ty, DL.getABITypeAlign(Ty),
/*AddressSpace=*/0, CostKind);
}
static VectorType *getVRGatherIndexType(MVT DataVT, const RISCVSubtarget &ST,
LLVMContext &C) {
assert((DataVT.getScalarSizeInBits() != 8 ||
DataVT.getVectorNumElements() <= 256) && "unhandled case in lowering");
MVT IndexVT = DataVT.changeTypeToInteger();
if (IndexVT.getScalarType().bitsGT(ST.getXLenVT()))
IndexVT = IndexVT.changeVectorElementType(MVT::i16);
return cast<VectorType>(EVT(IndexVT).getTypeForEVT(C));
}
/// Return the cost of a vrgather.vv instruction for the type VT. vrgather.vv
/// is generally quadratic in the number of vreg implied by LMUL. Note that
/// operand (index and possibly mask) are handled separately.
InstructionCost RISCVTTIImpl::getVRGatherVVCost(MVT VT) {
return getLMULCost(VT) * getLMULCost(VT);
}
InstructionCost RISCVTTIImpl::getShuffleCost(TTI::ShuffleKind Kind,
VectorType *Tp, ArrayRef<int> Mask,
TTI::TargetCostKind CostKind,
int Index, VectorType *SubTp,
ArrayRef<const Value *> Args) {
Kind = improveShuffleKindFromMask(Kind, Mask);
std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Tp);
// First, handle cases where having a fixed length vector enables us to
// give a more accurate cost than falling back to generic scalable codegen.
// TODO: Each of these cases hints at a modeling gap around scalable vectors.
if (isa<FixedVectorType>(Tp)) {
switch (Kind) {
default:
break;
case TTI::SK_PermuteSingleSrc: {
if (Mask.size() >= 2 && LT.second.isFixedLengthVector()) {
MVT EltTp = LT.second.getVectorElementType();
// If the size of the element is < ELEN then shuffles of interleaves and
// deinterleaves of 2 vectors can be lowered into the following
// sequences
if (EltTp.getScalarSizeInBits() < ST->getELEN()) {
// Example sequence:
// vsetivli zero, 4, e8, mf4, ta, ma (ignored)
// vwaddu.vv v10, v8, v9
// li a0, -1 (ignored)
// vwmaccu.vx v10, a0, v9
if (ShuffleVectorInst::isInterleaveMask(Mask, 2, Mask.size()))
return 2 * LT.first * getLMULCost(LT.second);
if (Mask[0] == 0 || Mask[0] == 1) {
auto DeinterleaveMask = createStrideMask(Mask[0], 2, Mask.size());
// Example sequence:
// vnsrl.wi v10, v8, 0
if (equal(DeinterleaveMask, Mask))
return LT.first * getLMULCost(LT.second);
}
}
// vrgather + cost of generating the mask constant.
// We model this for an unknown mask with a single vrgather.
if (LT.first == 1 &&
(LT.second.getScalarSizeInBits() != 8 ||
LT.second.getVectorNumElements() <= 256)) {
VectorType *IdxTy = getVRGatherIndexType(LT.second, *ST, Tp->getContext());
InstructionCost IndexCost = getConstantPoolLoadCost(IdxTy, CostKind);
return IndexCost + getVRGatherVVCost(LT.second);
}
}
break;
}
case TTI::SK_Transpose:
case TTI::SK_PermuteTwoSrc: {
if (Mask.size() >= 2 && LT.second.isFixedLengthVector()) {
// 2 x (vrgather + cost of generating the mask constant) + cost of mask
// register for the second vrgather. We model this for an unknown
// (shuffle) mask.
if (LT.first == 1 &&
(LT.second.getScalarSizeInBits() != 8 ||
LT.second.getVectorNumElements() <= 256)) {
auto &C = Tp->getContext();
auto EC = Tp->getElementCount();
VectorType *IdxTy = getVRGatherIndexType(LT.second, *ST, C);
VectorType *MaskTy = VectorType::get(IntegerType::getInt1Ty(C), EC);
InstructionCost IndexCost = getConstantPoolLoadCost(IdxTy, CostKind);
InstructionCost MaskCost = getConstantPoolLoadCost(MaskTy, CostKind);
return 2 * IndexCost + 2 * getVRGatherVVCost(LT.second) + MaskCost;
}
}
break;
}
}
};
// Handle scalable vectors (and fixed vectors legalized to scalable vectors).
switch (Kind) {
default:
// Fallthrough to generic handling.
// TODO: Most of these cases will return getInvalid in generic code, and
// must be implemented here.
break;
case TTI::SK_ExtractSubvector:
// Example sequence:
// vsetivli zero, 4, e8, mf2, tu, ma (ignored)
// vslidedown.vi v8, v9, 2
return LT.first * getLMULCost(LT.second);
case TTI::SK_InsertSubvector:
// Example sequence:
// vsetivli zero, 4, e8, mf2, tu, ma (ignored)
// vslideup.vi v8, v9, 2
return LT.first * getLMULCost(LT.second);
case TTI::SK_Select: {
// Example sequence:
// li a0, 90
// vsetivli zero, 8, e8, mf2, ta, ma (ignored)
// vmv.s.x v0, a0
// vmerge.vvm v8, v9, v8, v0
return LT.first * 3 * getLMULCost(LT.second);
}
case TTI::SK_Broadcast: {
bool HasScalar = (Args.size() > 0) && (Operator::getOpcode(Args[0]) ==
Instruction::InsertElement);
if (LT.second.getScalarSizeInBits() == 1) {
if (HasScalar) {
// Example sequence:
// andi a0, a0, 1
// vsetivli zero, 2, e8, mf8, ta, ma (ignored)
// vmv.v.x v8, a0
// vmsne.vi v0, v8, 0
return LT.first * getLMULCost(LT.second) * 3;
}
// Example sequence:
// vsetivli zero, 2, e8, mf8, ta, mu (ignored)
// vmv.v.i v8, 0
// vmerge.vim v8, v8, 1, v0
// vmv.x.s a0, v8
// andi a0, a0, 1
// vmv.v.x v8, a0
// vmsne.vi v0, v8, 0
return LT.first * getLMULCost(LT.second) * 6;
}
if (HasScalar) {
// Example sequence:
// vmv.v.x v8, a0
return LT.first * getLMULCost(LT.second);
}
// Example sequence:
// vrgather.vi v9, v8, 0
// TODO: vrgather could be slower than vmv.v.x. It is
// implementation-dependent.
return LT.first * getLMULCost(LT.second);
}
case TTI::SK_Splice:
// vslidedown+vslideup.
// TODO: Multiplying by LT.first implies this legalizes into multiple copies
// of similar code, but I think we expand through memory.
return 2 * LT.first * getLMULCost(LT.second);
case TTI::SK_Reverse: {
// TODO: Cases to improve here:
// * Illegal vector types
// * i64 on RV32
// * i1 vector
// At low LMUL, most of the cost is producing the vrgather index register.
// At high LMUL, the cost of the vrgather itself will dominate.
// Example sequence:
// csrr a0, vlenb
// srli a0, a0, 3
// addi a0, a0, -1
// vsetvli a1, zero, e8, mf8, ta, mu (ignored)
// vid.v v9
// vrsub.vx v10, v9, a0
// vrgather.vv v9, v8, v10
InstructionCost LenCost = 3;
if (LT.second.isFixedLengthVector())
// vrsub.vi has a 5 bit immediate field, otherwise an li suffices
LenCost = isInt<5>(LT.second.getVectorNumElements() - 1) ? 0 : 1;
InstructionCost GatherCost = 2 + getVRGatherVVCost(LT.second);
// Mask operation additionally required extend and truncate
InstructionCost ExtendCost = Tp->getElementType()->isIntegerTy(1) ? 3 : 0;
return LT.first * (LenCost + GatherCost + ExtendCost);
}
}
return BaseT::getShuffleCost(Kind, Tp, Mask, CostKind, Index, SubTp);
}
InstructionCost
RISCVTTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *Src, Align Alignment,
unsigned AddressSpace,
TTI::TargetCostKind CostKind) {
if (!isLegalMaskedLoadStore(Src, Alignment) ||
CostKind != TTI::TCK_RecipThroughput)
return BaseT::getMaskedMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
CostKind);
return getMemoryOpCost(Opcode, Src, Alignment, AddressSpace, CostKind);
}
InstructionCost RISCVTTIImpl::getInterleavedMemoryOpCost(
unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
bool UseMaskForCond, bool UseMaskForGaps) {
if (isa<ScalableVectorType>(VecTy))
return InstructionCost::getInvalid();
auto *FVTy = cast<FixedVectorType>(VecTy);
InstructionCost MemCost =
getMemoryOpCost(Opcode, VecTy, Alignment, AddressSpace, CostKind);
unsigned VF = FVTy->getNumElements() / Factor;
// The interleaved memory access pass will lower interleaved memory ops (i.e
// a load and store followed by a specific shuffle) to vlseg/vsseg
// intrinsics. In those cases then we can treat it as if it's just one (legal)
// memory op
if (!UseMaskForCond && !UseMaskForGaps &&
Factor <= TLI->getMaxSupportedInterleaveFactor()) {
std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(FVTy);
// Need to make sure type has't been scalarized
if (LT.second.isFixedLengthVector()) {
auto *LegalFVTy = FixedVectorType::get(FVTy->getElementType(),
LT.second.getVectorNumElements());
// FIXME: We use the memory op cost of the *legalized* type here, becuase
// it's getMemoryOpCost returns a really expensive cost for types like
// <6 x i8>, which show up when doing interleaves of Factor=3 etc.
// Should the memory op cost of these be cheaper?
if (TLI->isLegalInterleavedAccessType(LegalFVTy, Factor, Alignment,
AddressSpace, DL)) {
InstructionCost LegalMemCost = getMemoryOpCost(
Opcode, LegalFVTy, Alignment, AddressSpace, CostKind);
return LT.first + LegalMemCost;
}
}
}
// An interleaved load will look like this for Factor=3:
// %wide.vec = load <12 x i32>, ptr %3, align 4
// %strided.vec = shufflevector %wide.vec, poison, <4 x i32> <stride mask>
// %strided.vec1 = shufflevector %wide.vec, poison, <4 x i32> <stride mask>
// %strided.vec2 = shufflevector %wide.vec, poison, <4 x i32> <stride mask>
if (Opcode == Instruction::Load) {
InstructionCost Cost = MemCost;
for (unsigned Index : Indices) {
FixedVectorType *SubVecTy =
FixedVectorType::get(FVTy->getElementType(), VF);
auto Mask = createStrideMask(Index, Factor, VF);
InstructionCost ShuffleCost =
getShuffleCost(TTI::ShuffleKind::SK_PermuteSingleSrc, SubVecTy, Mask,
CostKind, 0, nullptr, {});
Cost += ShuffleCost;
}
return Cost;
}
// TODO: Model for NF > 2
// We'll need to enhance getShuffleCost to model shuffles that are just
// inserts and extracts into subvectors, since they won't have the full cost
// of a vrgather.
// An interleaved store for 3 vectors of 4 lanes will look like
// %11 = shufflevector <4 x i32> %4, <4 x i32> %6, <8 x i32> <0...7>
// %12 = shufflevector <4 x i32> %9, <4 x i32> poison, <8 x i32> <0...3>
// %13 = shufflevector <8 x i32> %11, <8 x i32> %12, <12 x i32> <0...11>
// %interleaved.vec = shufflevector %13, poison, <12 x i32> <interleave mask>
// store <12 x i32> %interleaved.vec, ptr %10, align 4
if (Factor != 2)
return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
Alignment, AddressSpace, CostKind,
UseMaskForCond, UseMaskForGaps);
assert(Opcode == Instruction::Store && "Opcode must be a store");
// For an interleaving store of 2 vectors, we perform one large interleaving
// shuffle that goes into the wide store
auto Mask = createInterleaveMask(VF, Factor);
InstructionCost ShuffleCost =
getShuffleCost(TTI::ShuffleKind::SK_PermuteSingleSrc, FVTy, Mask,
CostKind, 0, nullptr, {});
return MemCost + ShuffleCost;
}
InstructionCost RISCVTTIImpl::getGatherScatterOpCost(
unsigned Opcode, Type *DataTy, const Value *Ptr, bool VariableMask,
Align Alignment, TTI::TargetCostKind CostKind, const Instruction *I) {
if (CostKind != TTI::TCK_RecipThroughput)
return BaseT::getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
Alignment, CostKind, I);
if ((Opcode == Instruction::Load &&
!isLegalMaskedGather(DataTy, Align(Alignment))) ||
(Opcode == Instruction::Store &&
!isLegalMaskedScatter(DataTy, Align(Alignment))))
return BaseT::getGatherScatterOpCost(Opcode, DataTy, Ptr, VariableMask,
Alignment, CostKind, I);
// Cost is proportional to the number of memory operations implied. For
// scalable vectors, we use an estimate on that number since we don't
// know exactly what VL will be.
auto &VTy = *cast<VectorType>(DataTy);
InstructionCost MemOpCost =
getMemoryOpCost(Opcode, VTy.getElementType(), Alignment, 0, CostKind,
{TTI::OK_AnyValue, TTI::OP_None}, I);
unsigned NumLoads = getEstimatedVLFor(&VTy);
return NumLoads * MemOpCost;
}
// Currently, these represent both throughput and codesize costs
// for the respective intrinsics. The costs in this table are simply
// instruction counts with the following adjustments made:
// * One vsetvli is considered free.
static const CostTblEntry VectorIntrinsicCostTable[]{
{Intrinsic::floor, MVT::v2f32, 9},
{Intrinsic::floor, MVT::v4f32, 9},
{Intrinsic::floor, MVT::v8f32, 9},
{Intrinsic::floor, MVT::v16f32, 9},
{Intrinsic::floor, MVT::nxv1f32, 9},
{Intrinsic::floor, MVT::nxv2f32, 9},
{Intrinsic::floor, MVT::nxv4f32, 9},
{Intrinsic::floor, MVT::nxv8f32, 9},
{Intrinsic::floor, MVT::nxv16f32, 9},
{Intrinsic::floor, MVT::v2f64, 9},
{Intrinsic::floor, MVT::v4f64, 9},
{Intrinsic::floor, MVT::v8f64, 9},
{Intrinsic::floor, MVT::v16f64, 9},
{Intrinsic::floor, MVT::nxv1f64, 9},
{Intrinsic::floor, MVT::nxv2f64, 9},
{Intrinsic::floor, MVT::nxv4f64, 9},
{Intrinsic::floor, MVT::nxv8f64, 9},
{Intrinsic::ceil, MVT::v2f32, 9},
{Intrinsic::ceil, MVT::v4f32, 9},
{Intrinsic::ceil, MVT::v8f32, 9},
{Intrinsic::ceil, MVT::v16f32, 9},
{Intrinsic::ceil, MVT::nxv1f32, 9},
{Intrinsic::ceil, MVT::nxv2f32, 9},
{Intrinsic::ceil, MVT::nxv4f32, 9},
{Intrinsic::ceil, MVT::nxv8f32, 9},
{Intrinsic::ceil, MVT::nxv16f32, 9},
{Intrinsic::ceil, MVT::v2f64, 9},
{Intrinsic::ceil, MVT::v4f64, 9},
{Intrinsic::ceil, MVT::v8f64, 9},
{Intrinsic::ceil, MVT::v16f64, 9},
{Intrinsic::ceil, MVT::nxv1f64, 9},
{Intrinsic::ceil, MVT::nxv2f64, 9},
{Intrinsic::ceil, MVT::nxv4f64, 9},
{Intrinsic::ceil, MVT::nxv8f64, 9},
{Intrinsic::trunc, MVT::v2f32, 7},
{Intrinsic::trunc, MVT::v4f32, 7},
{Intrinsic::trunc, MVT::v8f32, 7},
{Intrinsic::trunc, MVT::v16f32, 7},
{Intrinsic::trunc, MVT::nxv1f32, 7},
{Intrinsic::trunc, MVT::nxv2f32, 7},
{Intrinsic::trunc, MVT::nxv4f32, 7},
{Intrinsic::trunc, MVT::nxv8f32, 7},
{Intrinsic::trunc, MVT::nxv16f32, 7},
{Intrinsic::trunc, MVT::v2f64, 7},
{Intrinsic::trunc, MVT::v4f64, 7},
{Intrinsic::trunc, MVT::v8f64, 7},
{Intrinsic::trunc, MVT::v16f64, 7},
{Intrinsic::trunc, MVT::nxv1f64, 7},
{Intrinsic::trunc, MVT::nxv2f64, 7},
{Intrinsic::trunc, MVT::nxv4f64, 7},
{Intrinsic::trunc, MVT::nxv8f64, 7},
{Intrinsic::round, MVT::v2f32, 9},
{Intrinsic::round, MVT::v4f32, 9},
{Intrinsic::round, MVT::v8f32, 9},
{Intrinsic::round, MVT::v16f32, 9},
{Intrinsic::round, MVT::nxv1f32, 9},
{Intrinsic::round, MVT::nxv2f32, 9},
{Intrinsic::round, MVT::nxv4f32, 9},
{Intrinsic::round, MVT::nxv8f32, 9},
{Intrinsic::round, MVT::nxv16f32, 9},
{Intrinsic::round, MVT::v2f64, 9},
{Intrinsic::round, MVT::v4f64, 9},
{Intrinsic::round, MVT::v8f64, 9},
{Intrinsic::round, MVT::v16f64, 9},
{Intrinsic::round, MVT::nxv1f64, 9},
{Intrinsic::round, MVT::nxv2f64, 9},
{Intrinsic::round, MVT::nxv4f64, 9},
{Intrinsic::round, MVT::nxv8f64, 9},
{Intrinsic::roundeven, MVT::v2f32, 9},
{Intrinsic::roundeven, MVT::v4f32, 9},
{Intrinsic::roundeven, MVT::v8f32, 9},
{Intrinsic::roundeven, MVT::v16f32, 9},
{Intrinsic::roundeven, MVT::nxv1f32, 9},
{Intrinsic::roundeven, MVT::nxv2f32, 9},
{Intrinsic::roundeven, MVT::nxv4f32, 9},
{Intrinsic::roundeven, MVT::nxv8f32, 9},
{Intrinsic::roundeven, MVT::nxv16f32, 9},
{Intrinsic::roundeven, MVT::v2f64, 9},
{Intrinsic::roundeven, MVT::v4f64, 9},
{Intrinsic::roundeven, MVT::v8f64, 9},
{Intrinsic::roundeven, MVT::v16f64, 9},
{Intrinsic::roundeven, MVT::nxv1f64, 9},
{Intrinsic::roundeven, MVT::nxv2f64, 9},
{Intrinsic::roundeven, MVT::nxv4f64, 9},
{Intrinsic::roundeven, MVT::nxv8f64, 9},
{Intrinsic::rint, MVT::v2f32, 7},
{Intrinsic::rint, MVT::v4f32, 7},
{Intrinsic::rint, MVT::v8f32, 7},
{Intrinsic::rint, MVT::v16f32, 7},
{Intrinsic::rint, MVT::nxv1f32, 7},
{Intrinsic::rint, MVT::nxv2f32, 7},
{Intrinsic::rint, MVT::nxv4f32, 7},
{Intrinsic::rint, MVT::nxv8f32, 7},
{Intrinsic::rint, MVT::nxv16f32, 7},
{Intrinsic::rint, MVT::v2f64, 7},
{Intrinsic::rint, MVT::v4f64, 7},
{Intrinsic::rint, MVT::v8f64, 7},
{Intrinsic::rint, MVT::v16f64, 7},
{Intrinsic::rint, MVT::nxv1f64, 7},
{Intrinsic::rint, MVT::nxv2f64, 7},
{Intrinsic::rint, MVT::nxv4f64, 7},
{Intrinsic::rint, MVT::nxv8f64, 7},
{Intrinsic::nearbyint, MVT::v2f32, 9},
{Intrinsic::nearbyint, MVT::v4f32, 9},
{Intrinsic::nearbyint, MVT::v8f32, 9},
{Intrinsic::nearbyint, MVT::v16f32, 9},
{Intrinsic::nearbyint, MVT::nxv1f32, 9},
{Intrinsic::nearbyint, MVT::nxv2f32, 9},
{Intrinsic::nearbyint, MVT::nxv4f32, 9},
{Intrinsic::nearbyint, MVT::nxv8f32, 9},
{Intrinsic::nearbyint, MVT::nxv16f32, 9},
{Intrinsic::nearbyint, MVT::v2f64, 9},
{Intrinsic::nearbyint, MVT::v4f64, 9},
{Intrinsic::nearbyint, MVT::v8f64, 9},
{Intrinsic::nearbyint, MVT::v16f64, 9},
{Intrinsic::nearbyint, MVT::nxv1f64, 9},
{Intrinsic::nearbyint, MVT::nxv2f64, 9},
{Intrinsic::nearbyint, MVT::nxv4f64, 9},
{Intrinsic::nearbyint, MVT::nxv8f64, 9},
{Intrinsic::bswap, MVT::v2i16, 3},
{Intrinsic::bswap, MVT::v4i16, 3},
{Intrinsic::bswap, MVT::v8i16, 3},
{Intrinsic::bswap, MVT::v16i16, 3},
{Intrinsic::bswap, MVT::nxv1i16, 3},
{Intrinsic::bswap, MVT::nxv2i16, 3},
{Intrinsic::bswap, MVT::nxv4i16, 3},
{Intrinsic::bswap, MVT::nxv8i16, 3},
{Intrinsic::bswap, MVT::nxv16i16, 3},
{Intrinsic::bswap, MVT::v2i32, 12},
{Intrinsic::bswap, MVT::v4i32, 12},
{Intrinsic::bswap, MVT::v8i32, 12},
{Intrinsic::bswap, MVT::v16i32, 12},
{Intrinsic::bswap, MVT::nxv1i32, 12},
{Intrinsic::bswap, MVT::nxv2i32, 12},
{Intrinsic::bswap, MVT::nxv4i32, 12},
{Intrinsic::bswap, MVT::nxv8i32, 12},
{Intrinsic::bswap, MVT::nxv16i32, 12},
{Intrinsic::bswap, MVT::v2i64, 31},
{Intrinsic::bswap, MVT::v4i64, 31},
{Intrinsic::bswap, MVT::v8i64, 31},
{Intrinsic::bswap, MVT::v16i64, 31},
{Intrinsic::bswap, MVT::nxv1i64, 31},
{Intrinsic::bswap, MVT::nxv2i64, 31},
{Intrinsic::bswap, MVT::nxv4i64, 31},
{Intrinsic::bswap, MVT::nxv8i64, 31},
{Intrinsic::vp_bswap, MVT::v2i16, 3},
{Intrinsic::vp_bswap, MVT::v4i16, 3},
{Intrinsic::vp_bswap, MVT::v8i16, 3},
{Intrinsic::vp_bswap, MVT::v16i16, 3},
{Intrinsic::vp_bswap, MVT::nxv1i16, 3},
{Intrinsic::vp_bswap, MVT::nxv2i16, 3},
{Intrinsic::vp_bswap, MVT::nxv4i16, 3},
{Intrinsic::vp_bswap, MVT::nxv8i16, 3},
{Intrinsic::vp_bswap, MVT::nxv16i16, 3},
{Intrinsic::vp_bswap, MVT::v2i32, 12},
{Intrinsic::vp_bswap, MVT::v4i32, 12},
{Intrinsic::vp_bswap, MVT::v8i32, 12},
{Intrinsic::vp_bswap, MVT::v16i32, 12},
{Intrinsic::vp_bswap, MVT::nxv1i32, 12},
{Intrinsic::vp_bswap, MVT::nxv2i32, 12},
{Intrinsic::vp_bswap, MVT::nxv4i32, 12},
{Intrinsic::vp_bswap, MVT::nxv8i32, 12},
{Intrinsic::vp_bswap, MVT::nxv16i32, 12},
{Intrinsic::vp_bswap, MVT::v2i64, 31},
{Intrinsic::vp_bswap, MVT::v4i64, 31},
{Intrinsic::vp_bswap, MVT::v8i64, 31},
{Intrinsic::vp_bswap, MVT::v16i64, 31},
{Intrinsic::vp_bswap, MVT::nxv1i64, 31},
{Intrinsic::vp_bswap, MVT::nxv2i64, 31},
{Intrinsic::vp_bswap, MVT::nxv4i64, 31},
{Intrinsic::vp_bswap, MVT::nxv8i64, 31},
{Intrinsic::vp_fshl, MVT::v2i8, 7},
{Intrinsic::vp_fshl, MVT::v4i8, 7},
{Intrinsic::vp_fshl, MVT::v8i8, 7},
{Intrinsic::vp_fshl, MVT::v16i8, 7},
{Intrinsic::vp_fshl, MVT::nxv1i8, 7},
{Intrinsic::vp_fshl, MVT::nxv2i8, 7},
{Intrinsic::vp_fshl, MVT::nxv4i8, 7},
{Intrinsic::vp_fshl, MVT::nxv8i8, 7},
{Intrinsic::vp_fshl, MVT::nxv16i8, 7},
{Intrinsic::vp_fshl, MVT::nxv32i8, 7},
{Intrinsic::vp_fshl, MVT::nxv64i8, 7},
{Intrinsic::vp_fshl, MVT::v2i16, 7},
{Intrinsic::vp_fshl, MVT::v4i16, 7},
{Intrinsic::vp_fshl, MVT::v8i16, 7},
{Intrinsic::vp_fshl, MVT::v16i16, 7},
{Intrinsic::vp_fshl, MVT::nxv1i16, 7},
{Intrinsic::vp_fshl, MVT::nxv2i16, 7},
{Intrinsic::vp_fshl, MVT::nxv4i16, 7},
{Intrinsic::vp_fshl, MVT::nxv8i16, 7},
{Intrinsic::vp_fshl, MVT::nxv16i16, 7},
{Intrinsic::vp_fshl, MVT::nxv32i16, 7},
{Intrinsic::vp_fshl, MVT::v2i32, 7},
{Intrinsic::vp_fshl, MVT::v4i32, 7},
{Intrinsic::vp_fshl, MVT::v8i32, 7},
{Intrinsic::vp_fshl, MVT::v16i32, 7},
{Intrinsic::vp_fshl, MVT::nxv1i32, 7},
{Intrinsic::vp_fshl, MVT::nxv2i32, 7},
{Intrinsic::vp_fshl, MVT::nxv4i32, 7},
{Intrinsic::vp_fshl, MVT::nxv8i32, 7},
{Intrinsic::vp_fshl, MVT::nxv16i32, 7},
{Intrinsic::vp_fshl, MVT::v2i64, 7},
{Intrinsic::vp_fshl, MVT::v4i64, 7},
{Intrinsic::vp_fshl, MVT::v8i64, 7},
{Intrinsic::vp_fshl, MVT::v16i64, 7},
{Intrinsic::vp_fshl, MVT::nxv1i64, 7},
{Intrinsic::vp_fshl, MVT::nxv2i64, 7},
{Intrinsic::vp_fshl, MVT::nxv4i64, 7},
{Intrinsic::vp_fshl, MVT::nxv8i64, 7},
{Intrinsic::vp_fshr, MVT::v2i8, 7},
{Intrinsic::vp_fshr, MVT::v4i8, 7},
{Intrinsic::vp_fshr, MVT::v8i8, 7},
{Intrinsic::vp_fshr, MVT::v16i8, 7},
{Intrinsic::vp_fshr, MVT::nxv1i8, 7},
{Intrinsic::vp_fshr, MVT::nxv2i8, 7},
{Intrinsic::vp_fshr, MVT::nxv4i8, 7},
{Intrinsic::vp_fshr, MVT::nxv8i8, 7},
{Intrinsic::vp_fshr, MVT::nxv16i8, 7},
{Intrinsic::vp_fshr, MVT::nxv32i8, 7},
{Intrinsic::vp_fshr, MVT::nxv64i8, 7},
{Intrinsic::vp_fshr, MVT::v2i16, 7},
{Intrinsic::vp_fshr, MVT::v4i16, 7},
{Intrinsic::vp_fshr, MVT::v8i16, 7},
{Intrinsic::vp_fshr, MVT::v16i16, 7},
{Intrinsic::vp_fshr, MVT::nxv1i16, 7},
{Intrinsic::vp_fshr, MVT::nxv2i16, 7},
{Intrinsic::vp_fshr, MVT::nxv4i16, 7},
{Intrinsic::vp_fshr, MVT::nxv8i16, 7},
{Intrinsic::vp_fshr, MVT::nxv16i16, 7},
{Intrinsic::vp_fshr, MVT::nxv32i16, 7},
{Intrinsic::vp_fshr, MVT::v2i32, 7},
{Intrinsic::vp_fshr, MVT::v4i32, 7},
{Intrinsic::vp_fshr, MVT::v8i32, 7},
{Intrinsic::vp_fshr, MVT::v16i32, 7},
{Intrinsic::vp_fshr, MVT::nxv1i32, 7},
{Intrinsic::vp_fshr, MVT::nxv2i32, 7},
{Intrinsic::vp_fshr, MVT::nxv4i32, 7},
{Intrinsic::vp_fshr, MVT::nxv8i32, 7},
{Intrinsic::vp_fshr, MVT::nxv16i32, 7},
{Intrinsic::vp_fshr, MVT::v2i64, 7},
{Intrinsic::vp_fshr, MVT::v4i64, 7},
{Intrinsic::vp_fshr, MVT::v8i64, 7},
{Intrinsic::vp_fshr, MVT::v16i64, 7},
{Intrinsic::vp_fshr, MVT::nxv1i64, 7},
{Intrinsic::vp_fshr, MVT::nxv2i64, 7},
{Intrinsic::vp_fshr, MVT::nxv4i64, 7},
{Intrinsic::vp_fshr, MVT::nxv8i64, 7},
{Intrinsic::bitreverse, MVT::v2i8, 17},
{Intrinsic::bitreverse, MVT::v4i8, 17},
{Intrinsic::bitreverse, MVT::v8i8, 17},
{Intrinsic::bitreverse, MVT::v16i8, 17},
{Intrinsic::bitreverse, MVT::nxv1i8, 17},
{Intrinsic::bitreverse, MVT::nxv2i8, 17},
{Intrinsic::bitreverse, MVT::nxv4i8, 17},
{Intrinsic::bitreverse, MVT::nxv8i8, 17},
{Intrinsic::bitreverse, MVT::nxv16i8, 17},
{Intrinsic::bitreverse, MVT::v2i16, 24},
{Intrinsic::bitreverse, MVT::v4i16, 24},
{Intrinsic::bitreverse, MVT::v8i16, 24},
{Intrinsic::bitreverse, MVT::v16i16, 24},
{Intrinsic::bitreverse, MVT::nxv1i16, 24},
{Intrinsic::bitreverse, MVT::nxv2i16, 24},
{Intrinsic::bitreverse, MVT::nxv4i16, 24},
{Intrinsic::bitreverse, MVT::nxv8i16, 24},
{Intrinsic::bitreverse, MVT::nxv16i16, 24},
{Intrinsic::bitreverse, MVT::v2i32, 33},
{Intrinsic::bitreverse, MVT::v4i32, 33},
{Intrinsic::bitreverse, MVT::v8i32, 33},
{Intrinsic::bitreverse, MVT::v16i32, 33},
{Intrinsic::bitreverse, MVT::nxv1i32, 33},
{Intrinsic::bitreverse, MVT::nxv2i32, 33},
{Intrinsic::bitreverse, MVT::nxv4i32, 33},
{Intrinsic::bitreverse, MVT::nxv8i32, 33},
{Intrinsic::bitreverse, MVT::nxv16i32, 33},
{Intrinsic::bitreverse, MVT::v2i64, 52},
{Intrinsic::bitreverse, MVT::v4i64, 52},
{Intrinsic::bitreverse, MVT::v8i64, 52},
{Intrinsic::bitreverse, MVT::v16i64, 52},
{Intrinsic::bitreverse, MVT::nxv1i64, 52},
{Intrinsic::bitreverse, MVT::nxv2i64, 52},
{Intrinsic::bitreverse, MVT::nxv4i64, 52},
{Intrinsic::bitreverse, MVT::nxv8i64, 52},
{Intrinsic::vp_bitreverse, MVT::v2i8, 17},
{Intrinsic::vp_bitreverse, MVT::v4i8, 17},
{Intrinsic::vp_bitreverse, MVT::v8i8, 17},
{Intrinsic::vp_bitreverse, MVT::v16i8, 17},
{Intrinsic::vp_bitreverse, MVT::nxv1i8, 17},
{Intrinsic::vp_bitreverse, MVT::nxv2i8, 17},
{Intrinsic::vp_bitreverse, MVT::nxv4i8, 17},
{Intrinsic::vp_bitreverse, MVT::nxv8i8, 17},
{Intrinsic::vp_bitreverse, MVT::nxv16i8, 17},
{Intrinsic::vp_bitreverse, MVT::v2i16, 24},
{Intrinsic::vp_bitreverse, MVT::v4i16, 24},
{Intrinsic::vp_bitreverse, MVT::v8i16, 24},
{Intrinsic::vp_bitreverse, MVT::v16i16, 24},
{Intrinsic::vp_bitreverse, MVT::nxv1i16, 24},
{Intrinsic::vp_bitreverse, MVT::nxv2i16, 24},
{Intrinsic::vp_bitreverse, MVT::nxv4i16, 24},
{Intrinsic::vp_bitreverse, MVT::nxv8i16, 24},
{Intrinsic::vp_bitreverse, MVT::nxv16i16, 24},
{Intrinsic::vp_bitreverse, MVT::v2i32, 33},
{Intrinsic::vp_bitreverse, MVT::v4i32, 33},
{Intrinsic::vp_bitreverse, MVT::v8i32, 33},
{Intrinsic::vp_bitreverse, MVT::v16i32, 33},
{Intrinsic::vp_bitreverse, MVT::nxv1i32, 33},
{Intrinsic::vp_bitreverse, MVT::nxv2i32, 33},
{Intrinsic::vp_bitreverse, MVT::nxv4i32, 33},
{Intrinsic::vp_bitreverse, MVT::nxv8i32, 33},
{Intrinsic::vp_bitreverse, MVT::nxv16i32, 33},
{Intrinsic::vp_bitreverse, MVT::v2i64, 52},
{Intrinsic::vp_bitreverse, MVT::v4i64, 52},
{Intrinsic::vp_bitreverse, MVT::v8i64, 52},
{Intrinsic::vp_bitreverse, MVT::v16i64, 52},
{Intrinsic::vp_bitreverse, MVT::nxv1i64, 52},
{Intrinsic::vp_bitreverse, MVT::nxv2i64, 52},
{Intrinsic::vp_bitreverse, MVT::nxv4i64, 52},
{Intrinsic::vp_bitreverse, MVT::nxv8i64, 52},
{Intrinsic::ctpop, MVT::v2i8, 12},
{Intrinsic::ctpop, MVT::v4i8, 12},
{Intrinsic::ctpop, MVT::v8i8, 12},
{Intrinsic::ctpop, MVT::v16i8, 12},
{Intrinsic::ctpop, MVT::nxv1i8, 12},
{Intrinsic::ctpop, MVT::nxv2i8, 12},
{Intrinsic::ctpop, MVT::nxv4i8, 12},
{Intrinsic::ctpop, MVT::nxv8i8, 12},
{Intrinsic::ctpop, MVT::nxv16i8, 12},
{Intrinsic::ctpop, MVT::v2i16, 19},
{Intrinsic::ctpop, MVT::v4i16, 19},
{Intrinsic::ctpop, MVT::v8i16, 19},
{Intrinsic::ctpop, MVT::v16i16, 19},
{Intrinsic::ctpop, MVT::nxv1i16, 19},
{Intrinsic::ctpop, MVT::nxv2i16, 19},
{Intrinsic::ctpop, MVT::nxv4i16, 19},
{Intrinsic::ctpop, MVT::nxv8i16, 19},
{Intrinsic::ctpop, MVT::nxv16i16, 19},
{Intrinsic::ctpop, MVT::v2i32, 20},
{Intrinsic::ctpop, MVT::v4i32, 20},
{Intrinsic::ctpop, MVT::v8i32, 20},
{Intrinsic::ctpop, MVT::v16i32, 20},
{Intrinsic::ctpop, MVT::nxv1i32, 20},
{Intrinsic::ctpop, MVT::nxv2i32, 20},
{Intrinsic::ctpop, MVT::nxv4i32, 20},
{Intrinsic::ctpop, MVT::nxv8i32, 20},
{Intrinsic::ctpop, MVT::nxv16i32, 20},
{Intrinsic::ctpop, MVT::v2i64, 21},
{Intrinsic::ctpop, MVT::v4i64, 21},
{Intrinsic::ctpop, MVT::v8i64, 21},
{Intrinsic::ctpop, MVT::v16i64, 21},
{Intrinsic::ctpop, MVT::nxv1i64, 21},
{Intrinsic::ctpop, MVT::nxv2i64, 21},
{Intrinsic::ctpop, MVT::nxv4i64, 21},
{Intrinsic::ctpop, MVT::nxv8i64, 21},
{Intrinsic::vp_ctpop, MVT::v2i8, 12},
{Intrinsic::vp_ctpop, MVT::v4i8, 12},
{Intrinsic::vp_ctpop, MVT::v8i8, 12},
{Intrinsic::vp_ctpop, MVT::v16i8, 12},
{Intrinsic::vp_ctpop, MVT::nxv1i8, 12},
{Intrinsic::vp_ctpop, MVT::nxv2i8, 12},
{Intrinsic::vp_ctpop, MVT::nxv4i8, 12},
{Intrinsic::vp_ctpop, MVT::nxv8i8, 12},
{Intrinsic::vp_ctpop, MVT::nxv16i8, 12},
{Intrinsic::vp_ctpop, MVT::v2i16, 19},
{Intrinsic::vp_ctpop, MVT::v4i16, 19},
{Intrinsic::vp_ctpop, MVT::v8i16, 19},
{Intrinsic::vp_ctpop, MVT::v16i16, 19},
{Intrinsic::vp_ctpop, MVT::nxv1i16, 19},
{Intrinsic::vp_ctpop, MVT::nxv2i16, 19},
{Intrinsic::vp_ctpop, MVT::nxv4i16, 19},
{Intrinsic::vp_ctpop, MVT::nxv8i16, 19},
{Intrinsic::vp_ctpop, MVT::nxv16i16, 19},
{Intrinsic::vp_ctpop, MVT::v2i32, 20},
{Intrinsic::vp_ctpop, MVT::v4i32, 20},
{Intrinsic::vp_ctpop, MVT::v8i32, 20},
{Intrinsic::vp_ctpop, MVT::v16i32, 20},
{Intrinsic::vp_ctpop, MVT::nxv1i32, 20},
{Intrinsic::vp_ctpop, MVT::nxv2i32, 20},
{Intrinsic::vp_ctpop, MVT::nxv4i32, 20},
{Intrinsic::vp_ctpop, MVT::nxv8i32, 20},
{Intrinsic::vp_ctpop, MVT::nxv16i32, 20},
{Intrinsic::vp_ctpop, MVT::v2i64, 21},
{Intrinsic::vp_ctpop, MVT::v4i64, 21},
{Intrinsic::vp_ctpop, MVT::v8i64, 21},
{Intrinsic::vp_ctpop, MVT::v16i64, 21},
{Intrinsic::vp_ctpop, MVT::nxv1i64, 21},
{Intrinsic::vp_ctpop, MVT::nxv2i64, 21},
{Intrinsic::vp_ctpop, MVT::nxv4i64, 21},
{Intrinsic::vp_ctpop, MVT::nxv8i64, 21},
{Intrinsic::vp_ctlz, MVT::v2i8, 19},
{Intrinsic::vp_ctlz, MVT::v4i8, 19},
{Intrinsic::vp_ctlz, MVT::v8i8, 19},
{Intrinsic::vp_ctlz, MVT::v16i8, 19},
{Intrinsic::vp_ctlz, MVT::nxv1i8, 19},
{Intrinsic::vp_ctlz, MVT::nxv2i8, 19},
{Intrinsic::vp_ctlz, MVT::nxv4i8, 19},
{Intrinsic::vp_ctlz, MVT::nxv8i8, 19},
{Intrinsic::vp_ctlz, MVT::nxv16i8, 19},
{Intrinsic::vp_ctlz, MVT::nxv32i8, 19},
{Intrinsic::vp_ctlz, MVT::nxv64i8, 19},
{Intrinsic::vp_ctlz, MVT::v2i16, 28},
{Intrinsic::vp_ctlz, MVT::v4i16, 28},
{Intrinsic::vp_ctlz, MVT::v8i16, 28},
{Intrinsic::vp_ctlz, MVT::v16i16, 28},
{Intrinsic::vp_ctlz, MVT::nxv1i16, 28},
{Intrinsic::vp_ctlz, MVT::nxv2i16, 28},
{Intrinsic::vp_ctlz, MVT::nxv4i16, 28},
{Intrinsic::vp_ctlz, MVT::nxv8i16, 28},
{Intrinsic::vp_ctlz, MVT::nxv16i16, 28},
{Intrinsic::vp_ctlz, MVT::nxv32i16, 28},
{Intrinsic::vp_ctlz, MVT::v2i32, 31},
{Intrinsic::vp_ctlz, MVT::v4i32, 31},
{Intrinsic::vp_ctlz, MVT::v8i32, 31},
{Intrinsic::vp_ctlz, MVT::v16i32, 31},
{Intrinsic::vp_ctlz, MVT::nxv1i32, 31},
{Intrinsic::vp_ctlz, MVT::nxv2i32, 31},
{Intrinsic::vp_ctlz, MVT::nxv4i32, 31},
{Intrinsic::vp_ctlz, MVT::nxv8i32, 31},
{Intrinsic::vp_ctlz, MVT::nxv16i32, 31},
{Intrinsic::vp_ctlz, MVT::v2i64, 35},
{Intrinsic::vp_ctlz, MVT::v4i64, 35},
{Intrinsic::vp_ctlz, MVT::v8i64, 35},
{Intrinsic::vp_ctlz, MVT::v16i64, 35},
{Intrinsic::vp_ctlz, MVT::nxv1i64, 35},
{Intrinsic::vp_ctlz, MVT::nxv2i64, 35},
{Intrinsic::vp_ctlz, MVT::nxv4i64, 35},
{Intrinsic::vp_ctlz, MVT::nxv8i64, 35},
{Intrinsic::vp_cttz, MVT::v2i8, 16},
{Intrinsic::vp_cttz, MVT::v4i8, 16},
{Intrinsic::vp_cttz, MVT::v8i8, 16},
{Intrinsic::vp_cttz, MVT::v16i8, 16},
{Intrinsic::vp_cttz, MVT::nxv1i8, 16},
{Intrinsic::vp_cttz, MVT::nxv2i8, 16},
{Intrinsic::vp_cttz, MVT::nxv4i8, 16},
{Intrinsic::vp_cttz, MVT::nxv8i8, 16},
{Intrinsic::vp_cttz, MVT::nxv16i8, 16},
{Intrinsic::vp_cttz, MVT::nxv32i8, 16},
{Intrinsic::vp_cttz, MVT::nxv64i8, 16},
{Intrinsic::vp_cttz, MVT::v2i16, 23},
{Intrinsic::vp_cttz, MVT::v4i16, 23},
{Intrinsic::vp_cttz, MVT::v8i16, 23},
{Intrinsic::vp_cttz, MVT::v16i16, 23},
{Intrinsic::vp_cttz, MVT::nxv1i16, 23},
{Intrinsic::vp_cttz, MVT::nxv2i16, 23},
{Intrinsic::vp_cttz, MVT::nxv4i16, 23},
{Intrinsic::vp_cttz, MVT::nxv8i16, 23},
{Intrinsic::vp_cttz, MVT::nxv16i16, 23},
{Intrinsic::vp_cttz, MVT::nxv32i16, 23},
{Intrinsic::vp_cttz, MVT::v2i32, 24},
{Intrinsic::vp_cttz, MVT::v4i32, 24},
{Intrinsic::vp_cttz, MVT::v8i32, 24},
{Intrinsic::vp_cttz, MVT::v16i32, 24},
{Intrinsic::vp_cttz, MVT::nxv1i32, 24},
{Intrinsic::vp_cttz, MVT::nxv2i32, 24},
{Intrinsic::vp_cttz, MVT::nxv4i32, 24},
{Intrinsic::vp_cttz, MVT::nxv8i32, 24},
{Intrinsic::vp_cttz, MVT::nxv16i32, 24},
{Intrinsic::vp_cttz, MVT::v2i64, 25},
{Intrinsic::vp_cttz, MVT::v4i64, 25},
{Intrinsic::vp_cttz, MVT::v8i64, 25},
{Intrinsic::vp_cttz, MVT::v16i64, 25},
{Intrinsic::vp_cttz, MVT::nxv1i64, 25},
{Intrinsic::vp_cttz, MVT::nxv2i64, 25},
{Intrinsic::vp_cttz, MVT::nxv4i64, 25},
{Intrinsic::vp_cttz, MVT::nxv8i64, 25},
};
static unsigned getISDForVPIntrinsicID(Intrinsic::ID ID) {
switch (ID) {
#define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD) \
case Intrinsic::VPID: \
return ISD::VPSD;
#include "llvm/IR/VPIntrinsics.def"
#undef HELPER_MAP_VPID_TO_VPSD
}
return ISD::DELETED_NODE;
}
InstructionCost
RISCVTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
TTI::TargetCostKind CostKind) {
auto *RetTy = ICA.getReturnType();
switch (ICA.getID()) {
case Intrinsic::ceil:
case Intrinsic::floor:
case Intrinsic::trunc:
case Intrinsic::rint:
case Intrinsic::round:
case Intrinsic::roundeven: {
// These all use the same code.
auto LT = getTypeLegalizationCost(RetTy);
if (!LT.second.isVector() && TLI->isOperationCustom(ISD::FCEIL, LT.second))
return LT.first * 8;
break;
}
case Intrinsic::umin:
case Intrinsic::umax:
case Intrinsic::smin:
case Intrinsic::smax: {
auto LT = getTypeLegalizationCost(RetTy);
if ((ST->hasVInstructions() && LT.second.isVector()) ||
(LT.second.isScalarInteger() && ST->hasStdExtZbb()))
return LT.first;
break;
}
case Intrinsic::sadd_sat:
case Intrinsic::ssub_sat:
case Intrinsic::uadd_sat:
case Intrinsic::usub_sat:
case Intrinsic::fabs:
case Intrinsic::sqrt: {
auto LT = getTypeLegalizationCost(RetTy);
if (ST->hasVInstructions() && LT.second.isVector())
return LT.first;
break;
}
case Intrinsic::abs: {
auto LT = getTypeLegalizationCost(RetTy);
if (ST->hasVInstructions() && LT.second.isVector()) {
// vrsub.vi v10, v8, 0
// vmax.vv v8, v8, v10
return LT.first * 2;
}
break;
}
// TODO: add more intrinsic
case Intrinsic::experimental_stepvector: {
unsigned Cost = 1; // vid
auto LT = getTypeLegalizationCost(RetTy);
return Cost + (LT.first - 1);
}
case Intrinsic::vp_rint: {
// RISC-V target uses at least 5 instructions to lower rounding intrinsics.
unsigned Cost = 5;
auto LT = getTypeLegalizationCost(RetTy);
if (TLI->isOperationCustom(ISD::VP_FRINT, LT.second))
return Cost * LT.first;
break;
}
case Intrinsic::vp_nearbyint: {
// More one read and one write for fflags than vp_rint.
unsigned Cost = 7;
auto LT = getTypeLegalizationCost(RetTy);
if (TLI->isOperationCustom(ISD::VP_FRINT, LT.second))
return Cost * LT.first;
break;
}
case Intrinsic::vp_ceil:
case Intrinsic::vp_floor:
case Intrinsic::vp_round:
case Intrinsic::vp_roundeven:
case Intrinsic::vp_roundtozero: {
// Rounding with static rounding mode needs two more instructions to
// swap/write FRM than vp_rint.
unsigned Cost = 7;
auto LT = getTypeLegalizationCost(RetTy);
unsigned VPISD = getISDForVPIntrinsicID(ICA.getID());
if (TLI->isOperationCustom(VPISD, LT.second))
return Cost * LT.first;
break;
}
}
if (ST->hasVInstructions() && RetTy->isVectorTy()) {
auto LT = getTypeLegalizationCost(RetTy);
if (const auto *Entry = CostTableLookup(VectorIntrinsicCostTable,
ICA.getID(), LT.second))
return LT.first * Entry->Cost;
}
return BaseT::getIntrinsicInstrCost(ICA, CostKind);
}
InstructionCost RISCVTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst,
Type *Src,
TTI::CastContextHint CCH,
TTI::TargetCostKind CostKind,
const Instruction *I) {
if (isa<VectorType>(Dst) && isa<VectorType>(Src)) {
// FIXME: Need to compute legalizing cost for illegal types.
if (!isTypeLegal(Src) || !isTypeLegal(Dst))
return BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
// Skip if element size of Dst or Src is bigger than ELEN.
if (Src->getScalarSizeInBits() > ST->getELEN() ||
Dst->getScalarSizeInBits() > ST->getELEN())
return BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
int ISD = TLI->InstructionOpcodeToISD(Opcode);
assert(ISD && "Invalid opcode");
// FIXME: Need to consider vsetvli and lmul.
int PowDiff = (int)Log2_32(Dst->getScalarSizeInBits()) -
(int)Log2_32(Src->getScalarSizeInBits());
switch (ISD) {
case ISD::SIGN_EXTEND:
case ISD::ZERO_EXTEND:
if (Src->getScalarSizeInBits() == 1) {
// We do not use vsext/vzext to extend from mask vector.
// Instead we use the following instructions to extend from mask vector:
// vmv.v.i v8, 0
// vmerge.vim v8, v8, -1, v0
return 2;
}
return 1;
case ISD::TRUNCATE:
if (Dst->getScalarSizeInBits() == 1) {
// We do not use several vncvt to truncate to mask vector. So we could
// not use PowDiff to calculate it.
// Instead we use the following instructions to truncate to mask vector:
// vand.vi v8, v8, 1
// vmsne.vi v0, v8, 0
return 2;
}
[[fallthrough]];
case ISD::FP_EXTEND:
case ISD::FP_ROUND:
// Counts of narrow/widen instructions.
return std::abs(PowDiff);
case ISD::FP_TO_SINT:
case ISD::FP_TO_UINT:
case ISD::SINT_TO_FP:
case ISD::UINT_TO_FP:
if (Src->getScalarSizeInBits() == 1 || Dst->getScalarSizeInBits() == 1) {
// The cost of convert from or to mask vector is different from other
// cases. We could not use PowDiff to calculate it.
// For mask vector to fp, we should use the following instructions:
// vmv.v.i v8, 0
// vmerge.vim v8, v8, -1, v0
// vfcvt.f.x.v v8, v8
// And for fp vector to mask, we use:
// vfncvt.rtz.x.f.w v9, v8
// vand.vi v8, v9, 1
// vmsne.vi v0, v8, 0
return 3;
}
if (std::abs(PowDiff) <= 1)
return 1;
// Backend could lower (v[sz]ext i8 to double) to vfcvt(v[sz]ext.f8 i8),
// so it only need two conversion.
if (Src->isIntOrIntVectorTy())
return 2;
// Counts of narrow/widen instructions.
return std::abs(PowDiff);
}
}
return BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I);
}
unsigned RISCVTTIImpl::getEstimatedVLFor(VectorType *Ty) {
if (isa<ScalableVectorType>(Ty)) {
const unsigned EltSize = DL.getTypeSizeInBits(Ty->getElementType());
const unsigned MinSize = DL.getTypeSizeInBits(Ty).getKnownMinValue();
const unsigned VectorBits = *getVScaleForTuning() * RISCV::RVVBitsPerBlock;
return RISCVTargetLowering::computeVLMAX(VectorBits, EltSize, MinSize);
}
return cast<FixedVectorType>(Ty)->getNumElements();
}
InstructionCost
RISCVTTIImpl::getMinMaxReductionCost(Intrinsic::ID IID, VectorType *Ty,
FastMathFlags FMF,
TTI::TargetCostKind CostKind) {
if (isa<FixedVectorType>(Ty) && !ST->useRVVForFixedLengthVectors())
return BaseT::getMinMaxReductionCost(IID, Ty, FMF, CostKind);
// Skip if scalar size of Ty is bigger than ELEN.
if (Ty->getScalarSizeInBits() > ST->getELEN())
return BaseT::getMinMaxReductionCost(IID, Ty, FMF, CostKind);
std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty);
if (Ty->getElementType()->isIntegerTy(1))
// vcpop sequences, see vreduction-mask.ll. umax, smin actually only
// cost 2, but we don't have enough info here so we slightly over cost.
return (LT.first - 1) + 3;
// IR Reduction is composed by two vmv and one rvv reduction instruction.
InstructionCost BaseCost = 2;
if (CostKind == TTI::TCK_CodeSize)
return (LT.first - 1) + BaseCost;
unsigned VL = getEstimatedVLFor(Ty);
return (LT.first - 1) + BaseCost + Log2_32_Ceil(VL);
}
InstructionCost
RISCVTTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *Ty,
std::optional<FastMathFlags> FMF,
TTI::TargetCostKind CostKind) {
if (isa<FixedVectorType>(Ty) && !ST->useRVVForFixedLengthVectors())
return BaseT::getArithmeticReductionCost(Opcode, Ty, FMF, CostKind);
// Skip if scalar size of Ty is bigger than ELEN.
if (Ty->getScalarSizeInBits() > ST->getELEN())
return BaseT::getArithmeticReductionCost(Opcode, Ty, FMF, CostKind);
int ISD = TLI->InstructionOpcodeToISD(Opcode);
assert(ISD && "Invalid opcode");
if (ISD != ISD::ADD && ISD != ISD::OR && ISD != ISD::XOR && ISD != ISD::AND &&
ISD != ISD::FADD)
return BaseT::getArithmeticReductionCost(Opcode, Ty, FMF, CostKind);
std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty);
if (Ty->getElementType()->isIntegerTy(1))
// vcpop sequences, see vreduction-mask.ll
return (LT.first - 1) + (ISD == ISD::AND ? 3 : 2);
// IR Reduction is composed by two vmv and one rvv reduction instruction.
InstructionCost BaseCost = 2;
if (CostKind == TTI::TCK_CodeSize)
return (LT.first - 1) + BaseCost;
unsigned VL = getEstimatedVLFor(Ty);
if (TTI::requiresOrderedReduction(FMF))
return (LT.first - 1) + BaseCost + VL;
return (LT.first - 1) + BaseCost + Log2_32_Ceil(VL);
}
InstructionCost RISCVTTIImpl::getExtendedReductionCost(
unsigned Opcode, bool IsUnsigned, Type *ResTy, VectorType *ValTy,
FastMathFlags FMF, TTI::TargetCostKind CostKind) {
if (isa<FixedVectorType>(ValTy) && !ST->useRVVForFixedLengthVectors())
return BaseT::getExtendedReductionCost(Opcode, IsUnsigned, ResTy, ValTy,
FMF, CostKind);
// Skip if scalar size of ResTy is bigger than ELEN.
if (ResTy->getScalarSizeInBits() > ST->getELEN())
return BaseT::getExtendedReductionCost(Opcode, IsUnsigned, ResTy, ValTy,
FMF, CostKind);
if (Opcode != Instruction::Add && Opcode != Instruction::FAdd)
return BaseT::getExtendedReductionCost(Opcode, IsUnsigned, ResTy, ValTy,
FMF, CostKind);
std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(ValTy);
if (ResTy->getScalarSizeInBits() != 2 * LT.second.getScalarSizeInBits())
return BaseT::getExtendedReductionCost(Opcode, IsUnsigned, ResTy, ValTy,
FMF, CostKind);
return (LT.first - 1) +
getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind);
}
InstructionCost RISCVTTIImpl::getStoreImmCost(Type *Ty,
TTI::OperandValueInfo OpInfo,
TTI::TargetCostKind CostKind) {
assert(OpInfo.isConstant() && "non constant operand?");
if (!isa<VectorType>(Ty))
// FIXME: We need to account for immediate materialization here, but doing
// a decent job requires more knowledge about the immediate than we
// currently have here.
return 0;
if (OpInfo.isUniform())
// vmv.x.i, vmv.v.x, or vfmv.v.f
// We ignore the cost of the scalar constant materialization to be consistent
// with how we treat scalar constants themselves just above.
return 1;
return getConstantPoolLoadCost(Ty, CostKind);
}
InstructionCost RISCVTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
MaybeAlign Alignment,
unsigned AddressSpace,
TTI::TargetCostKind CostKind,
TTI::OperandValueInfo OpInfo,
const Instruction *I) {
EVT VT = TLI->getValueType(DL, Src, true);
// Type legalization can't handle structs
if (VT == MVT::Other)
return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
CostKind, OpInfo, I);
InstructionCost Cost = 0;
if (Opcode == Instruction::Store && OpInfo.isConstant())
Cost += getStoreImmCost(Src, OpInfo, CostKind);
InstructionCost BaseCost =
BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
CostKind, OpInfo, I);
// Assume memory ops cost scale with the number of vector registers
// possible accessed by the instruction. Note that BasicTTI already
// handles the LT.first term for us.
if (std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Src);
LT.second.isVector())
BaseCost *= getLMULCost(LT.second);
return Cost + BaseCost;
}
InstructionCost RISCVTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
Type *CondTy,
CmpInst::Predicate VecPred,
TTI::TargetCostKind CostKind,
const Instruction *I) {
if (CostKind != TTI::TCK_RecipThroughput)
return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind,
I);
if (isa<FixedVectorType>(ValTy) && !ST->useRVVForFixedLengthVectors())
return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind,
I);
// Skip if scalar size of ValTy is bigger than ELEN.
if (ValTy->isVectorTy() && ValTy->getScalarSizeInBits() > ST->getELEN())
return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind,
I);
if (Opcode == Instruction::Select && ValTy->isVectorTy()) {
std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(ValTy);
if (CondTy->isVectorTy()) {
if (ValTy->getScalarSizeInBits() == 1) {
// vmandn.mm v8, v8, v9
// vmand.mm v9, v0, v9
// vmor.mm v0, v9, v8
return LT.first * 3;
}
// vselect and max/min are supported natively.
return LT.first * 1;
}
if (ValTy->getScalarSizeInBits() == 1) {
// vmv.v.x v9, a0
// vmsne.vi v9, v9, 0
// vmandn.mm v8, v8, v9
// vmand.mm v9, v0, v9
// vmor.mm v0, v9, v8
return LT.first * 5;
}
// vmv.v.x v10, a0
// vmsne.vi v0, v10, 0
// vmerge.vvm v8, v9, v8, v0
return LT.first * 3;
}
if ((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
ValTy->isVectorTy()) {
std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(ValTy);
// Support natively.
if (CmpInst::isIntPredicate(VecPred))
return LT.first * 1;
// If we do not support the input floating point vector type, use the base
// one which will calculate as:
// ScalarizeCost + Num * Cost for fixed vector,
// InvalidCost for scalable vector.
if ((ValTy->getScalarSizeInBits() == 16 && !ST->hasVInstructionsF16()) ||
(ValTy->getScalarSizeInBits() == 32 && !ST->hasVInstructionsF32()) ||
(ValTy->getScalarSizeInBits() == 64 && !ST->hasVInstructionsF64()))
return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind,
I);
switch (VecPred) {
// Support natively.
case CmpInst::FCMP_OEQ:
case CmpInst::FCMP_OGT:
case CmpInst::FCMP_OGE:
case CmpInst::FCMP_OLT:
case CmpInst::FCMP_OLE:
case CmpInst::FCMP_UNE:
return LT.first * 1;
// TODO: Other comparisons?
default:
break;
}
}
// TODO: Add cost for scalar type.
return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I);
}
InstructionCost RISCVTTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
TTI::TargetCostKind CostKind,
unsigned Index, Value *Op0,
Value *Op1) {
assert(Val->isVectorTy() && "This must be a vector type");
if (Opcode != Instruction::ExtractElement &&
Opcode != Instruction::InsertElement)
return BaseT::getVectorInstrCost(Opcode, Val, CostKind, Index, Op0, Op1);
// Legalize the type.
std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Val);
// This type is legalized to a scalar type.
if (!LT.second.isVector())
return 0;
// For unsupported scalable vector.
if (LT.second.isScalableVector() && !LT.first.isValid())
return LT.first;
if (!isTypeLegal(Val))
return BaseT::getVectorInstrCost(Opcode, Val, CostKind, Index, Op0, Op1);
// In RVV, we could use vslidedown + vmv.x.s to extract element from vector
// and vslideup + vmv.s.x to insert element to vector.
unsigned BaseCost = 1;
// When insertelement we should add the index with 1 as the input of vslideup.
unsigned SlideCost = Opcode == Instruction::InsertElement ? 2 : 1;
if (Index != -1U) {
// The type may be split. For fixed-width vectors we can normalize the
// index to the new type.
if (LT.second.isFixedLengthVector()) {
unsigned Width = LT.second.getVectorNumElements();
Index = Index % Width;
}
// We could extract/insert the first element without vslidedown/vslideup.
if (Index == 0)
SlideCost = 0;
else if (Opcode == Instruction::InsertElement)
SlideCost = 1; // With a constant index, we do not need to use addi.
}
// Mask vector extract/insert element is different from normal case.
if (Val->getScalarSizeInBits() == 1) {
// For extractelement, we need the following instructions:
// vmv.v.i v8, 0
// vmerge.vim v8, v8, 1, v0
// vsetivli zero, 1, e8, m2, ta, mu (not count)
// vslidedown.vx v8, v8, a0
// vmv.x.s a0, v8
// For insertelement, we need the following instructions:
// vsetvli a2, zero, e8, m1, ta, mu (not count)
// vmv.s.x v8, a0
// vmv.v.i v9, 0
// vmerge.vim v9, v9, 1, v0
// addi a0, a1, 1
// vsetvli zero, a0, e8, m1, tu, mu (not count)
// vslideup.vx v9, v8, a1
// vsetvli a0, zero, e8, m1, ta, mu (not count)
// vand.vi v8, v9, 1
// vmsne.vi v0, v8, 0
// TODO: should we count these special vsetvlis?
BaseCost = Opcode == Instruction::InsertElement ? 5 : 3;
}
// Extract i64 in the target that has XLEN=32 need more instruction.
if (Val->getScalarType()->isIntegerTy() &&
ST->getXLen() < Val->getScalarSizeInBits()) {
// For extractelement, we need the following instructions:
// vsetivli zero, 1, e64, m1, ta, mu (not count)
// vslidedown.vx v8, v8, a0
// vmv.x.s a0, v8
// li a1, 32
// vsrl.vx v8, v8, a1
// vmv.x.s a1, v8
// For insertelement, we need the following instructions:
// vsetivli zero, 2, e32, m4, ta, mu (not count)
// vmv.v.i v12, 0
// vslide1up.vx v16, v12, a1
// vslide1up.vx v12, v16, a0
// addi a0, a2, 1
// vsetvli zero, a0, e64, m4, tu, mu (not count)
// vslideup.vx v8, v12, a2
// TODO: should we count these special vsetvlis?
BaseCost = Opcode == Instruction::InsertElement ? 3 : 4;
}
return BaseCost + SlideCost;
}
InstructionCost RISCVTTIImpl::getArithmeticInstrCost(
unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
TTI::OperandValueInfo Op1Info, TTI::OperandValueInfo Op2Info,
ArrayRef<const Value *> Args, const Instruction *CxtI) {
// TODO: Handle more cost kinds.
if (CostKind != TTI::TCK_RecipThroughput)
return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, Op2Info,
Args, CxtI);
if (isa<FixedVectorType>(Ty) && !ST->useRVVForFixedLengthVectors())
return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, Op2Info,
Args, CxtI);
// Skip if scalar size of Ty is bigger than ELEN.
if (isa<VectorType>(Ty) && Ty->getScalarSizeInBits() > ST->getELEN())
return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, Op2Info,
Args, CxtI);
// Legalize the type.
std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty);
// TODO: Handle scalar type.
if (!LT.second.isVector())
return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, Op2Info,
Args, CxtI);
auto getConstantMatCost =
[&](unsigned Operand, TTI::OperandValueInfo OpInfo) -> InstructionCost {
if (OpInfo.isUniform() && TLI->canSplatOperand(Opcode, Operand))
// Two sub-cases:
// * Has a 5 bit immediate operand which can be splatted.
// * Has a larger immediate which must be materialized in scalar register
// We return 0 for both as we currently ignore the cost of materializing
// scalar constants in GPRs.
return 0;
return getConstantPoolLoadCost(Ty, CostKind);
};
// Add the cost of materializing any constant vectors required.
InstructionCost ConstantMatCost = 0;
if (Op1Info.isConstant())
ConstantMatCost += getConstantMatCost(0, Op1Info);
if (Op2Info.isConstant())
ConstantMatCost += getConstantMatCost(1, Op2Info);
switch (TLI->InstructionOpcodeToISD(Opcode)) {
case ISD::ADD:
case ISD::SUB:
case ISD::AND:
case ISD::OR:
case ISD::XOR:
case ISD::SHL:
case ISD::SRL:
case ISD::SRA:
case ISD::MUL:
case ISD::MULHS:
case ISD::MULHU:
case ISD::FADD:
case ISD::FSUB:
case ISD::FMUL:
case ISD::FNEG: {
return ConstantMatCost + getLMULCost(LT.second) * LT.first * 1;
}
default:
return ConstantMatCost +
BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, Op2Info,
Args, CxtI);
}
}
// TODO: Deduplicate from TargetTransformInfoImplCRTPBase.
InstructionCost RISCVTTIImpl::getPointersChainCost(
ArrayRef<const Value *> Ptrs, const Value *Base,
const TTI::PointersChainInfo &Info, Type *AccessTy,
TTI::TargetCostKind CostKind) {
InstructionCost Cost = TTI::TCC_Free;
// In the basic model we take into account GEP instructions only
// (although here can come alloca instruction, a value, constants and/or
// constant expressions, PHIs, bitcasts ... whatever allowed to be used as a
// pointer). Typically, if Base is a not a GEP-instruction and all the
// pointers are relative to the same base address, all the rest are
// either GEP instructions, PHIs, bitcasts or constants. When we have same
// base, we just calculate cost of each non-Base GEP as an ADD operation if
// any their index is a non-const.
// If no known dependecies between the pointers cost is calculated as a sum
// of costs of GEP instructions.
for (auto [I, V] : enumerate(Ptrs)) {
const auto *GEP = dyn_cast<GetElementPtrInst>(V);
if (!GEP)
continue;
if (Info.isSameBase() && V != Base) {
if (GEP->hasAllConstantIndices())
continue;
// If the chain is unit-stride and BaseReg + stride*i is a legal
// addressing mode, then presume the base GEP is sitting around in a
// register somewhere and check if we can fold the offset relative to
// it.
unsigned Stride = DL.getTypeStoreSize(AccessTy);
if (Info.isUnitStride() &&
isLegalAddressingMode(AccessTy,
/* BaseGV */ nullptr,
/* BaseOffset */ Stride * I,
/* HasBaseReg */ true,
/* Scale */ 0,
GEP->getType()->getPointerAddressSpace()))
continue;
Cost += getArithmeticInstrCost(Instruction::Add, GEP->getType(), CostKind,
{TTI::OK_AnyValue, TTI::OP_None},
{TTI::OK_AnyValue, TTI::OP_None},
std::nullopt);
} else {
SmallVector<const Value *> Indices(GEP->indices());
Cost += getGEPCost(GEP->getSourceElementType(), GEP->getPointerOperand(),
Indices, AccessTy, CostKind);
}
}
return Cost;
}
void RISCVTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
TTI::UnrollingPreferences &UP,
OptimizationRemarkEmitter *ORE) {
// TODO: More tuning on benchmarks and metrics with changes as needed
// would apply to all settings below to enable performance.
if (ST->enableDefaultUnroll())
return BasicTTIImplBase::getUnrollingPreferences(L, SE, UP, ORE);
// Enable Upper bound unrolling universally, not dependant upon the conditions
// below.
UP.UpperBound = true;
// Disable loop unrolling for Oz and Os.
UP.OptSizeThreshold = 0;
UP.PartialOptSizeThreshold = 0;
if (L->getHeader()->getParent()->hasOptSize())
return;
SmallVector<BasicBlock *, 4> ExitingBlocks;
L->getExitingBlocks(ExitingBlocks);
LLVM_DEBUG(dbgs() << "Loop has:\n"
<< "Blocks: " << L->getNumBlocks() << "\n"
<< "Exit blocks: " << ExitingBlocks.size() << "\n");
// Only allow another exit other than the latch. This acts as an early exit
// as it mirrors the profitability calculation of the runtime unroller.
if (ExitingBlocks.size() > 2)
return;
// Limit the CFG of the loop body for targets with a branch predictor.
// Allowing 4 blocks permits if-then-else diamonds in the body.
if (L->getNumBlocks() > 4)
return;
// Don't unroll vectorized loops, including the remainder loop
if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized"))
return;
// Scan the loop: don't unroll loops with calls as this could prevent
// inlining.
InstructionCost Cost = 0;
for (auto *BB : L->getBlocks()) {
for (auto &I : *BB) {
// Initial setting - Don't unroll loops containing vectorized
// instructions.
if (I.getType()->isVectorTy())
return;
if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
if (const Function *F = cast<CallBase>(I).getCalledFunction()) {
if (!isLoweredToCall(F))
continue;
}
return;
}
SmallVector<const Value *> Operands(I.operand_values());
Cost += getInstructionCost(&I, Operands,
TargetTransformInfo::TCK_SizeAndLatency);
}
}
LLVM_DEBUG(dbgs() << "Cost of loop: " << Cost << "\n");
UP.Partial = true;
UP.Runtime = true;
UP.UnrollRemainder = true;
UP.UnrollAndJam = true;
UP.UnrollAndJamInnerLoopThreshold = 60;
// Force unrolling small loops can be very useful because of the branch
// taken cost of the backedge.
if (Cost < 12)
UP.Force = true;
}
void RISCVTTIImpl::getPeelingPreferences(Loop *L, ScalarEvolution &SE,
TTI::PeelingPreferences &PP) {
BaseT::getPeelingPreferences(L, SE, PP);
}
unsigned RISCVTTIImpl::getRegUsageForType(Type *Ty) {
TypeSize Size = DL.getTypeSizeInBits(Ty);
if (Ty->isVectorTy()) {
if (Size.isScalable() && ST->hasVInstructions())
return divideCeil(Size.getKnownMinValue(), RISCV::RVVBitsPerBlock);
if (ST->useRVVForFixedLengthVectors())
return divideCeil(Size, ST->getRealMinVLen());
}
return BaseT::getRegUsageForType(Ty);
}
unsigned RISCVTTIImpl::getMaximumVF(unsigned ElemWidth, unsigned Opcode) const {
if (SLPMaxVF.getNumOccurrences())
return SLPMaxVF;
// Return how many elements can fit in getRegisterBitwidth. This is the
// same routine as used in LoopVectorizer. We should probably be
// accounting for whether we actually have instructions with the right
// lane type, but we don't have enough information to do that without
// some additional plumbing which hasn't been justified yet.
TypeSize RegWidth =
getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector);
// If no vector registers, or absurd element widths, disable
// vectorization by returning 1.
return std::max<unsigned>(1U, RegWidth.getFixedValue() / ElemWidth);
}
bool RISCVTTIImpl::isLSRCostLess(const TargetTransformInfo::LSRCost &C1,
const TargetTransformInfo::LSRCost &C2) {
// RISC-V specific here are "instruction number 1st priority".
return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost,
C1.NumIVMuls, C1.NumBaseAdds,
C1.ScaleCost, C1.ImmCost, C1.SetupCost) <
std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost,
C2.NumIVMuls, C2.NumBaseAdds,
C2.ScaleCost, C2.ImmCost, C2.SetupCost);
}