blob: f86419319dd3a4dfbf497575f76fd7850d35ae29 [file] [log] [blame]
//===-- RISCVBaseInfo.h - Top level definitions for RISC-V MC ---*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains small standalone enum definitions for the RISC-V target
// useful for the compiler back-end and the MC libraries.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_TARGET_RISCV_MCTARGETDESC_RISCVBASEINFO_H
#define LLVM_LIB_TARGET_RISCV_MCTARGETDESC_RISCVBASEINFO_H
#include "MCTargetDesc/RISCVMCTargetDesc.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/Support/RISCVISAInfo.h"
#include "llvm/TargetParser/SubtargetFeature.h"
namespace llvm {
// RISCVII - This namespace holds all of the target specific flags that
// instruction info tracks. All definitions must match RISCVInstrFormats.td.
namespace RISCVII {
enum {
InstFormatPseudo = 0,
InstFormatR = 1,
InstFormatR4 = 2,
InstFormatI = 3,
InstFormatS = 4,
InstFormatB = 5,
InstFormatU = 6,
InstFormatJ = 7,
InstFormatCR = 8,
InstFormatCI = 9,
InstFormatCSS = 10,
InstFormatCIW = 11,
InstFormatCL = 12,
InstFormatCS = 13,
InstFormatCA = 14,
InstFormatCB = 15,
InstFormatCJ = 16,
InstFormatCU = 17,
InstFormatCLB = 18,
InstFormatCLH = 19,
InstFormatCSB = 20,
InstFormatCSH = 21,
InstFormatOther = 22,
InstFormatMask = 31,
InstFormatShift = 0,
ConstraintShift = InstFormatShift + 5,
VS2Constraint = 0b001 << ConstraintShift,
VS1Constraint = 0b010 << ConstraintShift,
VMConstraint = 0b100 << ConstraintShift,
ConstraintMask = 0b111 << ConstraintShift,
VLMulShift = ConstraintShift + 3,
VLMulMask = 0b111 << VLMulShift,
// Force a tail agnostic policy even this instruction has a tied destination.
ForceTailAgnosticShift = VLMulShift + 3,
ForceTailAgnosticMask = 1 << ForceTailAgnosticShift,
// Is this a _TIED vector pseudo instruction. For these instructions we
// shouldn't skip the tied operand when converting to MC instructions.
IsTiedPseudoShift = ForceTailAgnosticShift + 1,
IsTiedPseudoMask = 1 << IsTiedPseudoShift,
// Does this instruction have a SEW operand. It will be the last explicit
// operand unless there is a vector policy operand. Used by RVV Pseudos.
HasSEWOpShift = IsTiedPseudoShift + 1,
HasSEWOpMask = 1 << HasSEWOpShift,
// Does this instruction have a VL operand. It will be the second to last
// explicit operand unless there is a vector policy operand. Used by RVV
// Pseudos.
HasVLOpShift = HasSEWOpShift + 1,
HasVLOpMask = 1 << HasVLOpShift,
// Does this instruction have a vector policy operand. It will be the last
// explicit operand. Used by RVV Pseudos.
HasVecPolicyOpShift = HasVLOpShift + 1,
HasVecPolicyOpMask = 1 << HasVecPolicyOpShift,
// Is this instruction a vector widening reduction instruction. Used by RVV
// Pseudos.
IsRVVWideningReductionShift = HasVecPolicyOpShift + 1,
IsRVVWideningReductionMask = 1 << IsRVVWideningReductionShift,
// Does this instruction care about mask policy. If it is not, the mask policy
// could be either agnostic or undisturbed. For example, unmasked, store, and
// reduction operations result would not be affected by mask policy, so
// compiler has free to select either one.
UsesMaskPolicyShift = IsRVVWideningReductionShift + 1,
UsesMaskPolicyMask = 1 << UsesMaskPolicyShift,
// Indicates that the result can be considered sign extended from bit 31. Some
// instructions with this flag aren't W instructions, but are either sign
// extended from a smaller size, always outputs a small integer, or put zeros
// in bits 63:31. Used by the SExtWRemoval pass.
IsSignExtendingOpWShift = UsesMaskPolicyShift + 1,
IsSignExtendingOpWMask = 1ULL << IsSignExtendingOpWShift,
HasRoundModeOpShift = IsSignExtendingOpWShift + 1,
HasRoundModeOpMask = 1 << HasRoundModeOpShift,
UsesVXRMShift = HasRoundModeOpShift + 1,
UsesVXRMMask = 1 << UsesVXRMShift,
};
enum VLMUL : uint8_t {
LMUL_1 = 0,
LMUL_2,
LMUL_4,
LMUL_8,
LMUL_RESERVED,
LMUL_F8,
LMUL_F4,
LMUL_F2
};
enum {
TAIL_UNDISTURBED_MASK_UNDISTURBED = 0,
TAIL_AGNOSTIC = 1,
MASK_AGNOSTIC = 2,
};
// Helper functions to read TSFlags.
/// \returns the format of the instruction.
static inline unsigned getFormat(uint64_t TSFlags) {
return (TSFlags & InstFormatMask) >> InstFormatShift;
}
/// \returns the LMUL for the instruction.
static inline VLMUL getLMul(uint64_t TSFlags) {
return static_cast<VLMUL>((TSFlags & VLMulMask) >> VLMulShift);
}
/// \returns true if tail agnostic is enforced for the instruction.
static inline bool doesForceTailAgnostic(uint64_t TSFlags) {
return TSFlags & ForceTailAgnosticMask;
}
/// \returns true if this a _TIED pseudo.
static inline bool isTiedPseudo(uint64_t TSFlags) {
return TSFlags & IsTiedPseudoMask;
}
/// \returns true if there is a SEW operand for the instruction.
static inline bool hasSEWOp(uint64_t TSFlags) {
return TSFlags & HasSEWOpMask;
}
/// \returns true if there is a VL operand for the instruction.
static inline bool hasVLOp(uint64_t TSFlags) {
return TSFlags & HasVLOpMask;
}
/// \returns true if there is a vector policy operand for this instruction.
static inline bool hasVecPolicyOp(uint64_t TSFlags) {
return TSFlags & HasVecPolicyOpMask;
}
/// \returns true if it is a vector widening reduction instruction.
static inline bool isRVVWideningReduction(uint64_t TSFlags) {
return TSFlags & IsRVVWideningReductionMask;
}
/// \returns true if mask policy is valid for the instruction.
static inline bool usesMaskPolicy(uint64_t TSFlags) {
return TSFlags & UsesMaskPolicyMask;
}
/// \returns true if there is a rounding mode operand for this instruction
static inline bool hasRoundModeOp(uint64_t TSFlags) {
return TSFlags & HasRoundModeOpMask;
}
/// \returns true if this instruction uses vxrm
static inline bool usesVXRM(uint64_t TSFlags) { return TSFlags & UsesVXRMMask; }
static inline unsigned getVLOpNum(const MCInstrDesc &Desc) {
const uint64_t TSFlags = Desc.TSFlags;
// This method is only called if we expect to have a VL operand, and all
// instructions with VL also have SEW.
assert(hasSEWOp(TSFlags) && hasVLOp(TSFlags));
unsigned Offset = 2;
if (hasVecPolicyOp(TSFlags))
Offset = 3;
return Desc.getNumOperands() - Offset;
}
static inline unsigned getSEWOpNum(const MCInstrDesc &Desc) {
const uint64_t TSFlags = Desc.TSFlags;
assert(hasSEWOp(TSFlags));
unsigned Offset = 1;
if (hasVecPolicyOp(TSFlags))
Offset = 2;
return Desc.getNumOperands() - Offset;
}
static inline unsigned getVecPolicyOpNum(const MCInstrDesc &Desc) {
assert(hasVecPolicyOp(Desc.TSFlags));
return Desc.getNumOperands() - 1;
}
// Is the first def operand tied to the first use operand. This is true for
// vector pseudo instructions that have a merge operand for tail/mask
// undisturbed. It's also true for vector FMA instructions where one of the
// operands is also the destination register.
static inline bool isFirstDefTiedToFirstUse(const MCInstrDesc &Desc) {
return Desc.getNumDefs() < Desc.getNumOperands() &&
Desc.getOperandConstraint(Desc.getNumDefs(), MCOI::TIED_TO) == 0;
}
// RISC-V Specific Machine Operand Flags
enum {
MO_None = 0,
MO_CALL = 1,
MO_PLT = 2,
MO_LO = 3,
MO_HI = 4,
MO_PCREL_LO = 5,
MO_PCREL_HI = 6,
MO_GOT_HI = 7,
MO_TPREL_LO = 8,
MO_TPREL_HI = 9,
MO_TPREL_ADD = 10,
MO_TLS_GOT_HI = 11,
MO_TLS_GD_HI = 12,
// Used to differentiate between target-specific "direct" flags and "bitmask"
// flags. A machine operand can only have one "direct" flag, but can have
// multiple "bitmask" flags.
MO_DIRECT_FLAG_MASK = 15
};
} // namespace RISCVII
namespace RISCVOp {
enum OperandType : unsigned {
OPERAND_FIRST_RISCV_IMM = MCOI::OPERAND_FIRST_TARGET,
OPERAND_UIMM1 = OPERAND_FIRST_RISCV_IMM,
OPERAND_UIMM2,
OPERAND_UIMM2_LSB0,
OPERAND_UIMM3,
OPERAND_UIMM4,
OPERAND_UIMM5,
OPERAND_UIMM6,
OPERAND_UIMM7,
OPERAND_UIMM7_LSB00,
OPERAND_UIMM8_LSB00,
OPERAND_UIMM8,
OPERAND_UIMM8_LSB000,
OPERAND_UIMM8_GE32,
OPERAND_UIMM9_LSB000,
OPERAND_UIMM10_LSB00_NONZERO,
OPERAND_UIMM12,
OPERAND_ZERO,
OPERAND_SIMM5,
OPERAND_SIMM5_PLUS1,
OPERAND_SIMM6,
OPERAND_SIMM6_NONZERO,
OPERAND_SIMM10_LSB0000_NONZERO,
OPERAND_SIMM12,
OPERAND_SIMM12_LSB00000,
OPERAND_UIMM20,
OPERAND_UIMMLOG2XLEN,
OPERAND_UIMMLOG2XLEN_NONZERO,
OPERAND_CLUI_IMM,
OPERAND_VTYPEI10,
OPERAND_VTYPEI11,
OPERAND_RVKRNUM,
OPERAND_RVKRNUM_0_7,
OPERAND_RVKRNUM_1_10,
OPERAND_RVKRNUM_2_14,
OPERAND_LAST_RISCV_IMM = OPERAND_RVKRNUM_2_14,
// Operand is either a register or uimm5, this is used by V extension pseudo
// instructions to represent a value that be passed as AVL to either vsetvli
// or vsetivli.
OPERAND_AVL,
};
} // namespace RISCVOp
// Describes the predecessor/successor bits used in the FENCE instruction.
namespace RISCVFenceField {
enum FenceField {
I = 8,
O = 4,
R = 2,
W = 1
};
}
// Describes the supported floating point rounding mode encodings.
namespace RISCVFPRndMode {
enum RoundingMode {
RNE = 0,
RTZ = 1,
RDN = 2,
RUP = 3,
RMM = 4,
DYN = 7,
Invalid
};
inline static StringRef roundingModeToString(RoundingMode RndMode) {
switch (RndMode) {
default:
llvm_unreachable("Unknown floating point rounding mode");
case RISCVFPRndMode::RNE:
return "rne";
case RISCVFPRndMode::RTZ:
return "rtz";
case RISCVFPRndMode::RDN:
return "rdn";
case RISCVFPRndMode::RUP:
return "rup";
case RISCVFPRndMode::RMM:
return "rmm";
case RISCVFPRndMode::DYN:
return "dyn";
}
}
inline static RoundingMode stringToRoundingMode(StringRef Str) {
return StringSwitch<RoundingMode>(Str)
.Case("rne", RISCVFPRndMode::RNE)
.Case("rtz", RISCVFPRndMode::RTZ)
.Case("rdn", RISCVFPRndMode::RDN)
.Case("rup", RISCVFPRndMode::RUP)
.Case("rmm", RISCVFPRndMode::RMM)
.Case("dyn", RISCVFPRndMode::DYN)
.Default(RISCVFPRndMode::Invalid);
}
inline static bool isValidRoundingMode(unsigned Mode) {
switch (Mode) {
default:
return false;
case RISCVFPRndMode::RNE:
case RISCVFPRndMode::RTZ:
case RISCVFPRndMode::RDN:
case RISCVFPRndMode::RUP:
case RISCVFPRndMode::RMM:
case RISCVFPRndMode::DYN:
return true;
}
}
} // namespace RISCVFPRndMode
//===----------------------------------------------------------------------===//
// Floating-point Immediates
//
namespace RISCVLoadFPImm {
float getFPImm(unsigned Imm);
/// getLoadFPImm - Return a 5-bit binary encoding of the floating-point
/// immediate value. If the value cannot be represented as a 5-bit binary
/// encoding, then return -1.
int getLoadFPImm(APFloat FPImm);
} // namespace RISCVLoadFPImm
namespace RISCVSysReg {
struct SysReg {
const char *Name;
const char *DeprecatedName;
unsigned Encoding;
// FIXME: add these additional fields when needed.
// Privilege Access: Read, Write, Read-Only.
// unsigned ReadWrite;
// Privilege Mode: User, System or Machine.
// unsigned Mode;
// Check field name.
// unsigned Extra;
// Register number without the privilege bits.
// unsigned Number;
FeatureBitset FeaturesRequired;
bool isRV32Only;
bool haveRequiredFeatures(const FeatureBitset &ActiveFeatures) const {
// Not in 32-bit mode.
if (isRV32Only && ActiveFeatures[RISCV::Feature64Bit])
return false;
// No required feature associated with the system register.
if (FeaturesRequired.none())
return true;
return (FeaturesRequired & ActiveFeatures) == FeaturesRequired;
}
bool haveVendorRequiredFeatures(const FeatureBitset &ActiveFeatures) const {
// Not in 32-bit mode.
if (isRV32Only && ActiveFeatures[RISCV::Feature64Bit])
return false;
// No required feature associated with the system register.
if (FeaturesRequired.none())
return false;
return (FeaturesRequired & ActiveFeatures) == FeaturesRequired;
}
};
struct SiFiveReg : SysReg {};
#define GET_SysRegsList_DECL
#define GET_SiFiveRegsList_DECL
#include "RISCVGenSearchableTables.inc"
} // end namespace RISCVSysReg
namespace RISCVInsnOpcode {
struct RISCVOpcode {
const char *Name;
unsigned Value;
};
#define GET_RISCVOpcodesList_DECL
#include "RISCVGenSearchableTables.inc"
} // end namespace RISCVInsnOpcode
namespace RISCVABI {
enum ABI {
ABI_ILP32,
ABI_ILP32F,
ABI_ILP32D,
ABI_ILP32E,
ABI_LP64,
ABI_LP64F,
ABI_LP64D,
ABI_LP64E,
ABI_Unknown
};
// Returns the target ABI, or else a StringError if the requested ABIName is
// not supported for the given TT and FeatureBits combination.
ABI computeTargetABI(const Triple &TT, const FeatureBitset &FeatureBits,
StringRef ABIName);
ABI getTargetABI(StringRef ABIName);
// Returns the register used to hold the stack pointer after realignment.
MCRegister getBPReg();
// Returns the register holding shadow call stack pointer.
MCRegister getSCSPReg();
} // namespace RISCVABI
namespace RISCVFeatures {
// Validates if the given combination of features are valid for the target
// triple. Exits with report_fatal_error if not.
void validate(const Triple &TT, const FeatureBitset &FeatureBits);
llvm::Expected<std::unique_ptr<RISCVISAInfo>>
parseFeatureBits(bool IsRV64, const FeatureBitset &FeatureBits);
} // namespace RISCVFeatures
namespace RISCVVType {
// Is this a SEW value that can be encoded into the VTYPE format.
inline static bool isValidSEW(unsigned SEW) {
return isPowerOf2_32(SEW) && SEW >= 8 && SEW <= 1024;
}
// Is this a LMUL value that can be encoded into the VTYPE format.
inline static bool isValidLMUL(unsigned LMUL, bool Fractional) {
return isPowerOf2_32(LMUL) && LMUL <= 8 && (!Fractional || LMUL != 1);
}
unsigned encodeVTYPE(RISCVII::VLMUL VLMUL, unsigned SEW, bool TailAgnostic,
bool MaskAgnostic);
inline static RISCVII::VLMUL getVLMUL(unsigned VType) {
unsigned VLMUL = VType & 0x7;
return static_cast<RISCVII::VLMUL>(VLMUL);
}
// Decode VLMUL into 1,2,4,8 and fractional indicator.
std::pair<unsigned, bool> decodeVLMUL(RISCVII::VLMUL VLMUL);
inline static RISCVII::VLMUL encodeLMUL(unsigned LMUL, bool Fractional) {
assert(isValidLMUL(LMUL, Fractional) && "Unsupported LMUL");
unsigned LmulLog2 = Log2_32(LMUL);
return static_cast<RISCVII::VLMUL>(Fractional ? 8 - LmulLog2 : LmulLog2);
}
inline static unsigned decodeVSEW(unsigned VSEW) {
assert(VSEW < 8 && "Unexpected VSEW value");
return 1 << (VSEW + 3);
}
inline static unsigned encodeSEW(unsigned SEW) {
assert(isValidSEW(SEW) && "Unexpected SEW value");
return Log2_32(SEW) - 3;
}
inline static unsigned getSEW(unsigned VType) {
unsigned VSEW = (VType >> 3) & 0x7;
return decodeVSEW(VSEW);
}
inline static bool isTailAgnostic(unsigned VType) { return VType & 0x40; }
inline static bool isMaskAgnostic(unsigned VType) { return VType & 0x80; }
void printVType(unsigned VType, raw_ostream &OS);
unsigned getSEWLMULRatio(unsigned SEW, RISCVII::VLMUL VLMul);
} // namespace RISCVVType
namespace RISCVRVC {
bool compress(MCInst &OutInst, const MCInst &MI, const MCSubtargetInfo &STI);
bool uncompress(MCInst &OutInst, const MCInst &MI, const MCSubtargetInfo &STI);
} // namespace RISCVRVC
namespace RISCVZC {
enum RLISTENCODE {
RA = 4,
RA_S0,
RA_S0_S1,
RA_S0_S2,
RA_S0_S3,
RA_S0_S4,
RA_S0_S5,
RA_S0_S6,
RA_S0_S7,
RA_S0_S8,
RA_S0_S9,
// note - to include s10, s11 must also be included
RA_S0_S11,
INVALID_RLIST,
};
inline unsigned encodeRlist(MCRegister EndReg, bool IsRV32E = false) {
assert((!IsRV32E || EndReg <= RISCV::X9) && "Invalid Rlist for RV32E");
switch (EndReg) {
case RISCV::X1:
return RLISTENCODE::RA;
case RISCV::X8:
return RLISTENCODE::RA_S0;
case RISCV::X9:
return RLISTENCODE::RA_S0_S1;
case RISCV::X18:
return RLISTENCODE::RA_S0_S2;
case RISCV::X19:
return RLISTENCODE::RA_S0_S3;
case RISCV::X20:
return RLISTENCODE::RA_S0_S4;
case RISCV::X21:
return RLISTENCODE::RA_S0_S5;
case RISCV::X22:
return RLISTENCODE::RA_S0_S6;
case RISCV::X23:
return RLISTENCODE::RA_S0_S7;
case RISCV::X24:
return RLISTENCODE::RA_S0_S8;
case RISCV::X25:
return RLISTENCODE::RA_S0_S9;
case RISCV::X26:
return RLISTENCODE::INVALID_RLIST;
case RISCV::X27:
return RLISTENCODE::RA_S0_S11;
default:
llvm_unreachable("Undefined input.");
}
}
inline static unsigned getStackAdjBase(unsigned RlistVal, bool IsRV64,
bool IsEABI) {
assert(RlistVal != RLISTENCODE::INVALID_RLIST &&
"{ra, s0-s10} is not supported, s11 must be included.");
if (IsEABI)
return 16;
if (!IsRV64) {
switch (RlistVal) {
case RLISTENCODE::RA:
case RLISTENCODE::RA_S0:
case RLISTENCODE::RA_S0_S1:
case RLISTENCODE::RA_S0_S2:
return 16;
case RLISTENCODE::RA_S0_S3:
case RLISTENCODE::RA_S0_S4:
case RLISTENCODE::RA_S0_S5:
case RLISTENCODE::RA_S0_S6:
return 32;
case RLISTENCODE::RA_S0_S7:
case RLISTENCODE::RA_S0_S8:
case RLISTENCODE::RA_S0_S9:
return 48;
case RLISTENCODE::RA_S0_S11:
return 64;
}
} else {
switch (RlistVal) {
case RLISTENCODE::RA:
case RLISTENCODE::RA_S0:
return 16;
case RLISTENCODE::RA_S0_S1:
case RLISTENCODE::RA_S0_S2:
return 32;
case RLISTENCODE::RA_S0_S3:
case RLISTENCODE::RA_S0_S4:
return 48;
case RLISTENCODE::RA_S0_S5:
case RLISTENCODE::RA_S0_S6:
return 64;
case RLISTENCODE::RA_S0_S7:
case RLISTENCODE::RA_S0_S8:
return 80;
case RLISTENCODE::RA_S0_S9:
return 96;
case RLISTENCODE::RA_S0_S11:
return 112;
}
}
llvm_unreachable("Unexpected RlistVal");
}
inline static bool getSpimm(unsigned RlistVal, unsigned &SpimmVal,
int64_t StackAdjustment, bool IsRV64, bool IsEABI) {
if (RlistVal == RLISTENCODE::INVALID_RLIST)
return false;
unsigned stackAdj = getStackAdjBase(RlistVal, IsRV64, IsEABI);
SpimmVal = (StackAdjustment - stackAdj) / 16;
if (SpimmVal > 3)
return false;
return true;
}
void printRlist(unsigned SlistEncode, raw_ostream &OS);
void printSpimm(int64_t Spimm, raw_ostream &OS);
} // namespace RISCVZC
} // namespace llvm
#endif