blob: 113e9484f5283ac94aad25ac668f78dbdeb1a900 [file] [log] [blame]
//===- BalancedPartitioning.cpp -------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements BalancedPartitioning, a recursive balanced graph
// partitioning algorithm.
//
//===----------------------------------------------------------------------===//
#include "llvm/Support/BalancedPartitioning.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/ThreadPool.h"
using namespace llvm;
#define DEBUG_TYPE "balanced-partitioning"
void BPFunctionNode::dump(raw_ostream &OS) const {
OS << formatv("{{ID={0} Utilities={{{1:$[,]}} Bucket={2}}", Id,
make_range(UtilityNodes.begin(), UtilityNodes.end()), Bucket);
}
template <typename Func>
void BalancedPartitioning::BPThreadPool::async(Func &&F) {
#if LLVM_ENABLE_THREADS
// This new thread could spawn more threads, so mark it as active
++NumActiveThreads;
TheThreadPool.async([=]() {
// Run the task
F();
// This thread will no longer spawn new threads, so mark it as inactive
if (--NumActiveThreads == 0) {
// There are no more active threads, so mark as finished and notify
{
std::unique_lock<std::mutex> lock(mtx);
assert(!IsFinishedSpawning);
IsFinishedSpawning = true;
}
cv.notify_one();
}
});
#else
llvm_unreachable("threads are disabled");
#endif
}
void BalancedPartitioning::BPThreadPool::wait() {
#if LLVM_ENABLE_THREADS
// TODO: We could remove the mutex and condition variable and use
// std::atomic::wait() instead, but that isn't available until C++20
{
std::unique_lock<std::mutex> lock(mtx);
cv.wait(lock, [&]() { return IsFinishedSpawning; });
assert(IsFinishedSpawning && NumActiveThreads == 0);
}
// Now we can call ThreadPool::wait() since all tasks have been submitted
TheThreadPool.wait();
#else
llvm_unreachable("threads are disabled");
#endif
}
BalancedPartitioning::BalancedPartitioning(
const BalancedPartitioningConfig &Config)
: Config(Config) {
// Pre-computing log2 values
Log2Cache[0] = 0.0;
for (unsigned I = 1; I < LOG_CACHE_SIZE; I++)
Log2Cache[I] = std::log2(I);
}
void BalancedPartitioning::run(std::vector<BPFunctionNode> &Nodes) const {
LLVM_DEBUG(
dbgs() << format(
"Partitioning %d nodes using depth %d and %d iterations per split\n",
Nodes.size(), Config.SplitDepth, Config.IterationsPerSplit));
std::optional<BPThreadPool> TP;
#if LLVM_ENABLE_THREADS
ThreadPool TheThreadPool;
if (Config.TaskSplitDepth > 1)
TP.emplace(TheThreadPool);
#endif
// Record the input order
for (unsigned I = 0; I < Nodes.size(); I++)
Nodes[I].InputOrderIndex = I;
auto NodesRange = llvm::make_range(Nodes.begin(), Nodes.end());
auto BisectTask = [=, &TP]() {
bisect(NodesRange, /*RecDepth=*/0, /*RootBucket=*/1, /*Offset=*/0, TP);
};
if (TP) {
TP->async(std::move(BisectTask));
TP->wait();
} else {
BisectTask();
}
llvm::stable_sort(NodesRange, [](const auto &L, const auto &R) {
return L.Bucket < R.Bucket;
});
LLVM_DEBUG(dbgs() << "Balanced partitioning completed\n");
}
void BalancedPartitioning::bisect(const FunctionNodeRange Nodes,
unsigned RecDepth, unsigned RootBucket,
unsigned Offset,
std::optional<BPThreadPool> &TP) const {
unsigned NumNodes = std::distance(Nodes.begin(), Nodes.end());
if (NumNodes <= 1 || RecDepth >= Config.SplitDepth) {
// We've reach the lowest level of the recursion tree. Fall back to the
// original order and assign to buckets.
llvm::stable_sort(Nodes, [](const auto &L, const auto &R) {
return L.InputOrderIndex < R.InputOrderIndex;
});
for (auto &N : Nodes)
N.Bucket = Offset++;
return;
}
LLVM_DEBUG(dbgs() << format("Bisect with %d nodes and root bucket %d\n",
NumNodes, RootBucket));
std::mt19937 RNG(RootBucket);
unsigned LeftBucket = 2 * RootBucket;
unsigned RightBucket = 2 * RootBucket + 1;
// Split into two and assign to the left and right buckets
split(Nodes, LeftBucket);
runIterations(Nodes, RecDepth, LeftBucket, RightBucket, RNG);
// Split nodes wrt the resulting buckets
auto NodesMid =
llvm::partition(Nodes, [&](auto &N) { return N.Bucket == LeftBucket; });
unsigned MidOffset = Offset + std::distance(Nodes.begin(), NodesMid);
auto LeftNodes = llvm::make_range(Nodes.begin(), NodesMid);
auto RightNodes = llvm::make_range(NodesMid, Nodes.end());
auto LeftRecTask = [=, &TP]() {
bisect(LeftNodes, RecDepth + 1, LeftBucket, Offset, TP);
};
auto RightRecTask = [=, &TP]() {
bisect(RightNodes, RecDepth + 1, RightBucket, MidOffset, TP);
};
if (TP && RecDepth < Config.TaskSplitDepth && NumNodes >= 4) {
TP->async(std::move(LeftRecTask));
TP->async(std::move(RightRecTask));
} else {
LeftRecTask();
RightRecTask();
}
}
void BalancedPartitioning::runIterations(const FunctionNodeRange Nodes,
unsigned RecDepth, unsigned LeftBucket,
unsigned RightBucket,
std::mt19937 &RNG) const {
unsigned NumNodes = std::distance(Nodes.begin(), Nodes.end());
DenseMap<BPFunctionNode::UtilityNodeT, unsigned> UtilityNodeDegree;
for (auto &N : Nodes)
for (auto &UN : N.UtilityNodes)
++UtilityNodeDegree[UN];
// Remove utility nodes if they have just one edge or are connected to all
// functions
for (auto &N : Nodes)
llvm::erase_if(N.UtilityNodes, [&](auto &UN) {
return UtilityNodeDegree[UN] <= 1 || UtilityNodeDegree[UN] >= NumNodes;
});
// Renumber utility nodes so they can be used to index into Signatures
DenseMap<BPFunctionNode::UtilityNodeT, unsigned> UtilityNodeIndex;
for (auto &N : Nodes)
for (auto &UN : N.UtilityNodes)
if (!UtilityNodeIndex.count(UN))
UtilityNodeIndex[UN] = UtilityNodeIndex.size();
for (auto &N : Nodes)
for (auto &UN : N.UtilityNodes)
UN = UtilityNodeIndex[UN];
// Initialize signatures
SignaturesT Signatures(/*Size=*/UtilityNodeIndex.size());
for (auto &N : Nodes) {
for (auto &UN : N.UtilityNodes) {
assert(UN < Signatures.size());
if (N.Bucket == LeftBucket) {
Signatures[UN].LeftCount++;
} else {
Signatures[UN].RightCount++;
}
}
}
for (unsigned I = 0; I < Config.IterationsPerSplit; I++) {
unsigned NumMovedNodes =
runIteration(Nodes, LeftBucket, RightBucket, Signatures, RNG);
if (NumMovedNodes == 0)
break;
}
}
unsigned BalancedPartitioning::runIteration(const FunctionNodeRange Nodes,
unsigned LeftBucket,
unsigned RightBucket,
SignaturesT &Signatures,
std::mt19937 &RNG) const {
// Init signature cost caches
for (auto &Signature : Signatures) {
if (Signature.CachedGainIsValid)
continue;
unsigned L = Signature.LeftCount;
unsigned R = Signature.RightCount;
assert((L > 0 || R > 0) && "incorrect signature");
float Cost = logCost(L, R);
Signature.CachedGainLR = 0.f;
Signature.CachedGainRL = 0.f;
if (L > 0)
Signature.CachedGainLR = Cost - logCost(L - 1, R + 1);
if (R > 0)
Signature.CachedGainRL = Cost - logCost(L + 1, R - 1);
Signature.CachedGainIsValid = true;
}
// Compute move gains
typedef std::pair<float, BPFunctionNode *> GainPair;
std::vector<GainPair> Gains;
for (auto &N : Nodes) {
bool FromLeftToRight = (N.Bucket == LeftBucket);
float Gain = moveGain(N, FromLeftToRight, Signatures);
Gains.push_back(std::make_pair(Gain, &N));
}
// Collect left and right gains
auto LeftEnd = llvm::partition(
Gains, [&](const auto &GP) { return GP.second->Bucket == LeftBucket; });
auto LeftRange = llvm::make_range(Gains.begin(), LeftEnd);
auto RightRange = llvm::make_range(LeftEnd, Gains.end());
// Sort gains in descending order
auto LargerGain = [](const auto &L, const auto &R) {
return L.first > R.first;
};
llvm::stable_sort(LeftRange, LargerGain);
llvm::stable_sort(RightRange, LargerGain);
unsigned NumMovedDataVertices = 0;
for (auto [LeftPair, RightPair] : llvm::zip(LeftRange, RightRange)) {
auto &[LeftGain, LeftNode] = LeftPair;
auto &[RightGain, RightNode] = RightPair;
// Stop when the gain is no longer beneficial
if (LeftGain + RightGain <= 0.f)
break;
// Try to exchange the nodes between buckets
if (moveFunctionNode(*LeftNode, LeftBucket, RightBucket, Signatures, RNG))
++NumMovedDataVertices;
if (moveFunctionNode(*RightNode, LeftBucket, RightBucket, Signatures, RNG))
++NumMovedDataVertices;
}
return NumMovedDataVertices;
}
bool BalancedPartitioning::moveFunctionNode(BPFunctionNode &N,
unsigned LeftBucket,
unsigned RightBucket,
SignaturesT &Signatures,
std::mt19937 &RNG) const {
// Sometimes we skip the move. This helps to escape local optima
if (std::uniform_real_distribution<float>(0.f, 1.f)(RNG) <=
Config.SkipProbability)
return false;
bool FromLeftToRight = (N.Bucket == LeftBucket);
// Update the current bucket
N.Bucket = (FromLeftToRight ? RightBucket : LeftBucket);
// Update signatures and invalidate gain cache
if (FromLeftToRight) {
for (auto &UN : N.UtilityNodes) {
auto &Signature = Signatures[UN];
Signature.LeftCount--;
Signature.RightCount++;
Signature.CachedGainIsValid = false;
}
} else {
for (auto &UN : N.UtilityNodes) {
auto &Signature = Signatures[UN];
Signature.LeftCount++;
Signature.RightCount--;
Signature.CachedGainIsValid = false;
}
}
return true;
}
void BalancedPartitioning::split(const FunctionNodeRange Nodes,
unsigned StartBucket) const {
unsigned NumNodes = std::distance(Nodes.begin(), Nodes.end());
auto NodesMid = Nodes.begin() + (NumNodes + 1) / 2;
std::nth_element(Nodes.begin(), NodesMid, Nodes.end(), [](auto &L, auto &R) {
return L.InputOrderIndex < R.InputOrderIndex;
});
for (auto &N : llvm::make_range(Nodes.begin(), NodesMid))
N.Bucket = StartBucket;
for (auto &N : llvm::make_range(NodesMid, Nodes.end()))
N.Bucket = StartBucket + 1;
}
float BalancedPartitioning::moveGain(const BPFunctionNode &N,
bool FromLeftToRight,
const SignaturesT &Signatures) {
float Gain = 0.f;
for (auto &UN : N.UtilityNodes)
Gain += (FromLeftToRight ? Signatures[UN].CachedGainLR
: Signatures[UN].CachedGainRL);
return Gain;
}
float BalancedPartitioning::logCost(unsigned X, unsigned Y) const {
return -(X * log2Cached(X + 1) + Y * log2Cached(Y + 1));
}
float BalancedPartitioning::log2Cached(unsigned i) const {
return (i < LOG_CACHE_SIZE) ? Log2Cache[i] : std::log2(i);
}