blob: 9247d212f73c4536d75a0cdbb53dd7e3b28a9429 [file] [log] [blame]
//===--- InlayHints.cpp ------------------------------------------*- C++-*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "InlayHints.h"
#include "AST.h"
#include "Config.h"
#include "HeuristicResolver.h"
#include "ParsedAST.h"
#include "SourceCode.h"
#include "clang/AST/ASTDiagnostic.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclarationName.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/AST/Stmt.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/AST/Type.h"
#include "clang/Basic/Builtins.h"
#include "clang/Basic/OperatorKinds.h"
#include "clang/Basic/SourceManager.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/SaveAndRestore.h"
#include "llvm/Support/ScopedPrinter.h"
#include "llvm/Support/raw_ostream.h"
#include <optional>
#include <string>
namespace clang {
namespace clangd {
namespace {
// For now, inlay hints are always anchored at the left or right of their range.
enum class HintSide { Left, Right };
// Helper class to iterate over the designator names of an aggregate type.
//
// For an array type, yields [0], [1], [2]...
// For aggregate classes, yields null for each base, then .field1, .field2, ...
class AggregateDesignatorNames {
public:
AggregateDesignatorNames(QualType T) {
if (!T.isNull()) {
T = T.getCanonicalType();
if (T->isArrayType()) {
IsArray = true;
Valid = true;
return;
}
if (const RecordDecl *RD = T->getAsRecordDecl()) {
Valid = true;
FieldsIt = RD->field_begin();
FieldsEnd = RD->field_end();
if (const auto *CRD = llvm::dyn_cast<CXXRecordDecl>(RD)) {
BasesIt = CRD->bases_begin();
BasesEnd = CRD->bases_end();
Valid = CRD->isAggregate();
}
OneField = Valid && BasesIt == BasesEnd && FieldsIt != FieldsEnd &&
std::next(FieldsIt) == FieldsEnd;
}
}
}
// Returns false if the type was not an aggregate.
operator bool() { return Valid; }
// Advance to the next element in the aggregate.
void next() {
if (IsArray)
++Index;
else if (BasesIt != BasesEnd)
++BasesIt;
else if (FieldsIt != FieldsEnd)
++FieldsIt;
}
// Print the designator to Out.
// Returns false if we could not produce a designator for this element.
bool append(std::string &Out, bool ForSubobject) {
if (IsArray) {
Out.push_back('[');
Out.append(std::to_string(Index));
Out.push_back(']');
return true;
}
if (BasesIt != BasesEnd)
return false; // Bases can't be designated. Should we make one up?
if (FieldsIt != FieldsEnd) {
llvm::StringRef FieldName;
if (const IdentifierInfo *II = FieldsIt->getIdentifier())
FieldName = II->getName();
// For certain objects, their subobjects may be named directly.
if (ForSubobject &&
(FieldsIt->isAnonymousStructOrUnion() ||
// std::array<int,3> x = {1,2,3}. Designators not strictly valid!
(OneField && isReservedName(FieldName))))
return true;
if (!FieldName.empty() && !isReservedName(FieldName)) {
Out.push_back('.');
Out.append(FieldName.begin(), FieldName.end());
return true;
}
return false;
}
return false;
}
private:
bool Valid = false;
bool IsArray = false;
bool OneField = false; // e.g. std::array { T __elements[N]; }
unsigned Index = 0;
CXXRecordDecl::base_class_const_iterator BasesIt;
CXXRecordDecl::base_class_const_iterator BasesEnd;
RecordDecl::field_iterator FieldsIt;
RecordDecl::field_iterator FieldsEnd;
};
// Collect designator labels describing the elements of an init list.
//
// This function contributes the designators of some (sub)object, which is
// represented by the semantic InitListExpr Sem.
// This includes any nested subobjects, but *only* if they are part of the same
// original syntactic init list (due to brace elision).
// In other words, it may descend into subobjects but not written init-lists.
//
// For example: struct Outer { Inner a,b; }; struct Inner { int x, y; }
// Outer o{{1, 2}, 3};
// This function will be called with Sem = { {1, 2}, {3, ImplicitValue} }
// It should generate designators '.a:' and '.b.x:'.
// '.a:' is produced directly without recursing into the written sublist.
// (The written sublist will have a separate collectDesignators() call later).
// Recursion with Prefix='.b' and Sem = {3, ImplicitValue} produces '.b.x:'.
void collectDesignators(const InitListExpr *Sem,
llvm::DenseMap<SourceLocation, std::string> &Out,
const llvm::DenseSet<SourceLocation> &NestedBraces,
std::string &Prefix) {
if (!Sem || Sem->isTransparent())
return;
assert(Sem->isSemanticForm());
// The elements of the semantic form all correspond to direct subobjects of
// the aggregate type. `Fields` iterates over these subobject names.
AggregateDesignatorNames Fields(Sem->getType());
if (!Fields)
return;
for (const Expr *Init : Sem->inits()) {
auto Next = llvm::make_scope_exit([&, Size(Prefix.size())] {
Fields.next(); // Always advance to the next subobject name.
Prefix.resize(Size); // Erase any designator we appended.
});
// Skip for a broken initializer or if it is a "hole" in a subobject that
// was not explicitly initialized.
if (!Init || llvm::isa<ImplicitValueInitExpr>(Init))
continue;
const auto *BraceElidedSubobject = llvm::dyn_cast<InitListExpr>(Init);
if (BraceElidedSubobject &&
NestedBraces.contains(BraceElidedSubobject->getLBraceLoc()))
BraceElidedSubobject = nullptr; // there were braces!
if (!Fields.append(Prefix, BraceElidedSubobject != nullptr))
continue; // no designator available for this subobject
if (BraceElidedSubobject) {
// If the braces were elided, this aggregate subobject is initialized
// inline in the same syntactic list.
// Descend into the semantic list describing the subobject.
// (NestedBraces are still correct, they're from the same syntactic list).
collectDesignators(BraceElidedSubobject, Out, NestedBraces, Prefix);
continue;
}
Out.try_emplace(Init->getBeginLoc(), Prefix);
}
}
// Get designators describing the elements of a (syntactic) init list.
// This does not produce designators for any explicitly-written nested lists.
llvm::DenseMap<SourceLocation, std::string>
getDesignators(const InitListExpr *Syn) {
assert(Syn->isSyntacticForm());
// collectDesignators needs to know which InitListExprs in the semantic tree
// were actually written, but InitListExpr::isExplicit() lies.
// Instead, record where braces of sub-init-lists occur in the syntactic form.
llvm::DenseSet<SourceLocation> NestedBraces;
for (const Expr *Init : Syn->inits())
if (auto *Nested = llvm::dyn_cast<InitListExpr>(Init))
NestedBraces.insert(Nested->getLBraceLoc());
// Traverse the semantic form to find the designators.
// We use their SourceLocation to correlate with the syntactic form later.
llvm::DenseMap<SourceLocation, std::string> Designators;
std::string EmptyPrefix;
collectDesignators(Syn->isSemanticForm() ? Syn : Syn->getSemanticForm(),
Designators, NestedBraces, EmptyPrefix);
return Designators;
}
void stripLeadingUnderscores(StringRef &Name) { Name = Name.ltrim('_'); }
// getDeclForType() returns the decl responsible for Type's spelling.
// This is the inverse of ASTContext::getTypeDeclType().
template <typename Ty, typename = decltype(((Ty *)nullptr)->getDecl())>
const NamedDecl *getDeclForTypeImpl(const Ty *T) {
return T->getDecl();
}
const NamedDecl *getDeclForTypeImpl(const void *T) { return nullptr; }
const NamedDecl *getDeclForType(const Type *T) {
switch (T->getTypeClass()) {
#define ABSTRACT_TYPE(TY, BASE)
#define TYPE(TY, BASE) \
case Type::TY: \
return getDeclForTypeImpl(llvm::cast<TY##Type>(T));
#include "clang/AST/TypeNodes.inc"
}
llvm_unreachable("Unknown TypeClass enum");
}
// getSimpleName() returns the plain identifier for an entity, if any.
llvm::StringRef getSimpleName(const DeclarationName &DN) {
if (IdentifierInfo *Ident = DN.getAsIdentifierInfo())
return Ident->getName();
return "";
}
llvm::StringRef getSimpleName(const NamedDecl &D) {
return getSimpleName(D.getDeclName());
}
llvm::StringRef getSimpleName(QualType T) {
if (const auto *ET = llvm::dyn_cast<ElaboratedType>(T))
return getSimpleName(ET->getNamedType());
if (const auto *BT = llvm::dyn_cast<BuiltinType>(T)) {
PrintingPolicy PP(LangOptions{});
PP.adjustForCPlusPlus();
return BT->getName(PP);
}
if (const auto *D = getDeclForType(T.getTypePtr()))
return getSimpleName(D->getDeclName());
return "";
}
// Returns a very abbreviated form of an expression, or "" if it's too complex.
// For example: `foo->bar()` would produce "bar".
// This is used to summarize e.g. the condition of a while loop.
std::string summarizeExpr(const Expr *E) {
struct Namer : ConstStmtVisitor<Namer, std::string> {
std::string Visit(const Expr *E) {
if (E == nullptr)
return "";
return ConstStmtVisitor::Visit(E->IgnoreImplicit());
}
// Any sort of decl reference, we just use the unqualified name.
std::string VisitMemberExpr(const MemberExpr *E) {
return getSimpleName(*E->getMemberDecl()).str();
}
std::string VisitDeclRefExpr(const DeclRefExpr *E) {
return getSimpleName(*E->getFoundDecl()).str();
}
std::string VisitCallExpr(const CallExpr *E) {
return Visit(E->getCallee());
}
std::string
VisitCXXDependentScopeMemberExpr(const CXXDependentScopeMemberExpr *E) {
return getSimpleName(E->getMember()).str();
}
std::string
VisitDependentScopeMemberExpr(const DependentScopeDeclRefExpr *E) {
return getSimpleName(E->getDeclName()).str();
}
std::string VisitCXXFunctionalCastExpr(const CXXFunctionalCastExpr *E) {
return getSimpleName(E->getType()).str();
}
std::string VisitCXXTemporaryObjectExpr(const CXXTemporaryObjectExpr *E) {
return getSimpleName(E->getType()).str();
}
// Step through implicit nodes that clang doesn't classify as such.
std::string VisitCXXMemberCallExpr(const CXXMemberCallExpr *E) {
// Call to operator bool() inside if (X): dispatch to X.
if (E->getNumArgs() == 0 &&
E->getMethodDecl()->getDeclName().getNameKind() ==
DeclarationName::CXXConversionFunctionName &&
E->getSourceRange() ==
E->getImplicitObjectArgument()->getSourceRange())
return Visit(E->getImplicitObjectArgument());
return ConstStmtVisitor::VisitCXXMemberCallExpr(E);
}
std::string VisitCXXConstructExpr(const CXXConstructExpr *E) {
if (E->getNumArgs() == 1)
return Visit(E->getArg(0));
return "";
}
// Literals are just printed
std::string VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
return E->getValue() ? "true" : "false";
}
std::string VisitIntegerLiteral(const IntegerLiteral *E) {
return llvm::to_string(E->getValue());
}
std::string VisitFloatingLiteral(const FloatingLiteral *E) {
std::string Result;
llvm::raw_string_ostream OS(Result);
E->getValue().print(OS);
// Printer adds newlines?!
Result.resize(llvm::StringRef(Result).rtrim().size());
return Result;
}
std::string VisitStringLiteral(const StringLiteral *E) {
std::string Result = "\"";
if (E->containsNonAscii()) {
Result += "...";
} else if (E->getLength() > 10) {
Result += E->getString().take_front(7);
Result += "...";
} else {
llvm::raw_string_ostream OS(Result);
llvm::printEscapedString(E->getString(), OS);
}
Result.push_back('"');
return Result;
}
// Simple operators. Motivating cases are `!x` and `I < Length`.
std::string printUnary(llvm::StringRef Spelling, const Expr *Operand,
bool Prefix) {
std::string Sub = Visit(Operand);
if (Sub.empty())
return "";
if (Prefix)
return (Spelling + Sub).str();
Sub += Spelling;
return Sub;
}
bool InsideBinary = false; // No recursing into binary expressions.
std::string printBinary(llvm::StringRef Spelling, const Expr *LHSOp,
const Expr *RHSOp) {
if (InsideBinary)
return "";
llvm::SaveAndRestore InBinary(InsideBinary, true);
std::string LHS = Visit(LHSOp);
std::string RHS = Visit(RHSOp);
if (LHS.empty() && RHS.empty())
return "";
if (LHS.empty())
LHS = "...";
LHS.push_back(' ');
LHS += Spelling;
LHS.push_back(' ');
if (RHS.empty())
LHS += "...";
else
LHS += RHS;
return LHS;
}
std::string VisitUnaryOperator(const UnaryOperator *E) {
return printUnary(E->getOpcodeStr(E->getOpcode()), E->getSubExpr(),
!E->isPostfix());
}
std::string VisitBinaryOperator(const BinaryOperator *E) {
return printBinary(E->getOpcodeStr(E->getOpcode()), E->getLHS(),
E->getRHS());
}
std::string VisitCXXOperatorCallExpr(const CXXOperatorCallExpr *E) {
const char *Spelling = getOperatorSpelling(E->getOperator());
// Handle weird unary-that-look-like-binary postfix operators.
if ((E->getOperator() == OO_PlusPlus ||
E->getOperator() == OO_MinusMinus) &&
E->getNumArgs() == 2)
return printUnary(Spelling, E->getArg(0), false);
if (E->isInfixBinaryOp())
return printBinary(Spelling, E->getArg(0), E->getArg(1));
if (E->getNumArgs() == 1) {
switch (E->getOperator()) {
case OO_Plus:
case OO_Minus:
case OO_Star:
case OO_Amp:
case OO_Tilde:
case OO_Exclaim:
case OO_PlusPlus:
case OO_MinusMinus:
return printUnary(Spelling, E->getArg(0), true);
default:
break;
}
}
return "";
}
};
return Namer{}.Visit(E);
}
// Determines if any intermediate type in desugaring QualType QT is of
// substituted template parameter type. Ignore pointer or reference wrappers.
bool isSugaredTemplateParameter(QualType QT) {
static auto PeelWrappers = [](QualType QT) {
// Neither `PointerType` nor `ReferenceType` is considered as sugared
// type. Peel it.
QualType Next;
while (!(Next = QT->getPointeeType()).isNull())
QT = Next;
return QT;
};
while (true) {
QualType Desugared =
PeelWrappers(QT->getLocallyUnqualifiedSingleStepDesugaredType());
if (Desugared == QT)
break;
if (Desugared->getAs<SubstTemplateTypeParmType>())
return true;
QT = Desugared;
}
return false;
}
// A simple wrapper for `clang::desugarForDiagnostic` that provides optional
// semantic.
std::optional<QualType> desugar(ASTContext &AST, QualType QT) {
bool ShouldAKA = false;
auto Desugared = clang::desugarForDiagnostic(AST, QT, ShouldAKA);
if (!ShouldAKA)
return std::nullopt;
return Desugared;
}
// Apply a series of heuristic methods to determine whether or not a QualType QT
// is suitable for desugaring (e.g. getting the real name behind the using-alias
// name). If so, return the desugared type. Otherwise, return the unchanged
// parameter QT.
//
// This could be refined further. See
// https://github.com/clangd/clangd/issues/1298.
QualType maybeDesugar(ASTContext &AST, QualType QT) {
// Prefer desugared type for name that aliases the template parameters.
// This can prevent things like printing opaque `: type` when accessing std
// containers.
if (isSugaredTemplateParameter(QT))
return desugar(AST, QT).value_or(QT);
// Prefer desugared type for `decltype(expr)` specifiers.
if (QT->isDecltypeType())
return QT.getCanonicalType();
if (const AutoType *AT = QT->getContainedAutoType())
if (!AT->getDeducedType().isNull() &&
AT->getDeducedType()->isDecltypeType())
return QT.getCanonicalType();
return QT;
}
class InlayHintVisitor : public RecursiveASTVisitor<InlayHintVisitor> {
public:
InlayHintVisitor(std::vector<InlayHint> &Results, ParsedAST &AST,
const Config &Cfg, std::optional<Range> RestrictRange)
: Results(Results), AST(AST.getASTContext()), Tokens(AST.getTokens()),
Cfg(Cfg), RestrictRange(std::move(RestrictRange)),
MainFileID(AST.getSourceManager().getMainFileID()),
Resolver(AST.getHeuristicResolver()),
TypeHintPolicy(this->AST.getPrintingPolicy()) {
bool Invalid = false;
llvm::StringRef Buf =
AST.getSourceManager().getBufferData(MainFileID, &Invalid);
MainFileBuf = Invalid ? StringRef{} : Buf;
TypeHintPolicy.SuppressScope = true; // keep type names short
TypeHintPolicy.AnonymousTagLocations =
false; // do not print lambda locations
// Not setting PrintCanonicalTypes for "auto" allows
// SuppressDefaultTemplateArgs (set by default) to have an effect.
}
bool VisitTypeLoc(TypeLoc TL) {
if (const auto *DT = llvm::dyn_cast<DecltypeType>(TL.getType()))
if (QualType UT = DT->getUnderlyingType(); !UT->isDependentType())
addTypeHint(TL.getSourceRange(), UT, ": ");
return true;
}
bool VisitCXXConstructExpr(CXXConstructExpr *E) {
// Weed out constructor calls that don't look like a function call with
// an argument list, by checking the validity of getParenOrBraceRange().
// Also weed out std::initializer_list constructors as there are no names
// for the individual arguments.
if (!E->getParenOrBraceRange().isValid() ||
E->isStdInitListInitialization()) {
return true;
}
processCall(E->getConstructor(), {E->getArgs(), E->getNumArgs()});
return true;
}
bool VisitCallExpr(CallExpr *E) {
if (!Cfg.InlayHints.Parameters)
return true;
// Do not show parameter hints for operator calls written using operator
// syntax or user-defined literals. (Among other reasons, the resulting
// hints can look awkard, e.g. the expression can itself be a function
// argument and then we'd get two hints side by side).
if (isa<CXXOperatorCallExpr>(E) || isa<UserDefinedLiteral>(E))
return true;
auto CalleeDecls = Resolver->resolveCalleeOfCallExpr(E);
if (CalleeDecls.size() != 1)
return true;
const FunctionDecl *Callee = nullptr;
if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecls[0]))
Callee = FD;
else if (const auto *FTD = dyn_cast<FunctionTemplateDecl>(CalleeDecls[0]))
Callee = FTD->getTemplatedDecl();
if (!Callee)
return true;
processCall(Callee, {E->getArgs(), E->getNumArgs()});
return true;
}
bool VisitFunctionDecl(FunctionDecl *D) {
if (auto *FPT =
llvm::dyn_cast<FunctionProtoType>(D->getType().getTypePtr())) {
if (!FPT->hasTrailingReturn()) {
if (auto FTL = D->getFunctionTypeLoc())
addReturnTypeHint(D, FTL.getRParenLoc());
}
}
if (Cfg.InlayHints.BlockEnd && D->isThisDeclarationADefinition()) {
// We use `printName` here to properly print name of ctor/dtor/operator
// overload.
if (const Stmt *Body = D->getBody())
addBlockEndHint(Body->getSourceRange(), "", printName(AST, *D), "");
}
return true;
}
bool VisitForStmt(ForStmt *S) {
if (Cfg.InlayHints.BlockEnd) {
std::string Name;
// Common case: for (int I = 0; I < N; I++). Use "I" as the name.
if (auto *DS = llvm::dyn_cast_or_null<DeclStmt>(S->getInit());
DS && DS->isSingleDecl())
Name = getSimpleName(llvm::cast<NamedDecl>(*DS->getSingleDecl()));
else
Name = summarizeExpr(S->getCond());
markBlockEnd(S->getBody(), "for", Name);
}
return true;
}
bool VisitCXXForRangeStmt(CXXForRangeStmt *S) {
if (Cfg.InlayHints.BlockEnd)
markBlockEnd(S->getBody(), "for", getSimpleName(*S->getLoopVariable()));
return true;
}
bool VisitWhileStmt(WhileStmt *S) {
if (Cfg.InlayHints.BlockEnd)
markBlockEnd(S->getBody(), "while", summarizeExpr(S->getCond()));
return true;
}
bool VisitSwitchStmt(SwitchStmt *S) {
if (Cfg.InlayHints.BlockEnd)
markBlockEnd(S->getBody(), "switch", summarizeExpr(S->getCond()));
return true;
}
// If/else chains are tricky.
// if (cond1) {
// } else if (cond2) {
// } // mark as "cond1" or "cond2"?
// For now, the answer is neither, just mark as "if".
// The ElseIf is a different IfStmt that doesn't know about the outer one.
llvm::DenseSet<const IfStmt *> ElseIfs; // not eligible for names
bool VisitIfStmt(IfStmt *S) {
if (Cfg.InlayHints.BlockEnd) {
if (const auto *ElseIf = llvm::dyn_cast_or_null<IfStmt>(S->getElse()))
ElseIfs.insert(ElseIf);
// Don't use markBlockEnd: the relevant range is [then.begin, else.end].
if (const auto *EndCS = llvm::dyn_cast<CompoundStmt>(
S->getElse() ? S->getElse() : S->getThen())) {
addBlockEndHint(
{S->getThen()->getBeginLoc(), EndCS->getRBracLoc()}, "if",
ElseIfs.contains(S) ? "" : summarizeExpr(S->getCond()), "");
}
}
return true;
}
void markBlockEnd(const Stmt *Body, llvm::StringRef Label,
llvm::StringRef Name = "") {
if (const auto *CS = llvm::dyn_cast_or_null<CompoundStmt>(Body))
addBlockEndHint(CS->getSourceRange(), Label, Name, "");
}
bool VisitTagDecl(TagDecl *D) {
if (Cfg.InlayHints.BlockEnd && D->isThisDeclarationADefinition()) {
std::string DeclPrefix = D->getKindName().str();
if (const auto *ED = dyn_cast<EnumDecl>(D)) {
if (ED->isScoped())
DeclPrefix += ED->isScopedUsingClassTag() ? " class" : " struct";
};
addBlockEndHint(D->getBraceRange(), DeclPrefix, getSimpleName(*D), ";");
}
return true;
}
bool VisitNamespaceDecl(NamespaceDecl *D) {
if (Cfg.InlayHints.BlockEnd) {
// For namespace, the range actually starts at the namespace keyword. But
// it should be fine since it's usually very short.
addBlockEndHint(D->getSourceRange(), "namespace", getSimpleName(*D), "");
}
return true;
}
bool VisitLambdaExpr(LambdaExpr *E) {
FunctionDecl *D = E->getCallOperator();
if (!E->hasExplicitResultType())
addReturnTypeHint(D, E->hasExplicitParameters()
? D->getFunctionTypeLoc().getRParenLoc()
: E->getIntroducerRange().getEnd());
return true;
}
void addReturnTypeHint(FunctionDecl *D, SourceRange Range) {
auto *AT = D->getReturnType()->getContainedAutoType();
if (!AT || AT->getDeducedType().isNull())
return;
addTypeHint(Range, D->getReturnType(), /*Prefix=*/"-> ");
}
bool VisitVarDecl(VarDecl *D) {
// Do not show hints for the aggregate in a structured binding,
// but show hints for the individual bindings.
if (auto *DD = dyn_cast<DecompositionDecl>(D)) {
for (auto *Binding : DD->bindings()) {
// For structured bindings, print canonical types. This is important
// because for bindings that use the tuple_element protocol, the
// non-canonical types would be "tuple_element<I, A>::type".
if (auto Type = Binding->getType(); !Type.isNull())
addTypeHint(Binding->getLocation(), Type.getCanonicalType(),
/*Prefix=*/": ");
}
return true;
}
if (auto *AT = D->getType()->getContainedAutoType()) {
if (AT->isDeduced() && !D->getType()->isDependentType()) {
// Our current approach is to place the hint on the variable
// and accordingly print the full type
// (e.g. for `const auto& x = 42`, print `const int&`).
// Alternatively, we could place the hint on the `auto`
// (and then just print the type deduced for the `auto`).
addTypeHint(D->getLocation(), D->getType(), /*Prefix=*/": ");
}
}
// Handle templates like `int foo(auto x)` with exactly one instantiation.
if (auto *PVD = llvm::dyn_cast<ParmVarDecl>(D)) {
if (D->getIdentifier() && PVD->getType()->isDependentType() &&
!getContainedAutoParamType(D->getTypeSourceInfo()->getTypeLoc())
.isNull()) {
if (auto *IPVD = getOnlyParamInstantiation(PVD))
addTypeHint(D->getLocation(), IPVD->getType(), /*Prefix=*/": ");
}
}
return true;
}
ParmVarDecl *getOnlyParamInstantiation(ParmVarDecl *D) {
auto *TemplateFunction = llvm::dyn_cast<FunctionDecl>(D->getDeclContext());
if (!TemplateFunction)
return nullptr;
auto *InstantiatedFunction = llvm::dyn_cast_or_null<FunctionDecl>(
getOnlyInstantiation(TemplateFunction));
if (!InstantiatedFunction)
return nullptr;
unsigned ParamIdx = 0;
for (auto *Param : TemplateFunction->parameters()) {
// Can't reason about param indexes in the presence of preceding packs.
// And if this param is a pack, it may expand to multiple params.
if (Param->isParameterPack())
return nullptr;
if (Param == D)
break;
++ParamIdx;
}
assert(ParamIdx < TemplateFunction->getNumParams() &&
"Couldn't find param in list?");
assert(ParamIdx < InstantiatedFunction->getNumParams() &&
"Instantiated function has fewer (non-pack) parameters?");
return InstantiatedFunction->getParamDecl(ParamIdx);
}
bool VisitInitListExpr(InitListExpr *Syn) {
// We receive the syntactic form here (shouldVisitImplicitCode() is false).
// This is the one we will ultimately attach designators to.
// It may have subobject initializers inlined without braces. The *semantic*
// form of the init-list has nested init-lists for these.
// getDesignators will look at the semantic form to determine the labels.
assert(Syn->isSyntacticForm() && "RAV should not visit implicit code!");
if (!Cfg.InlayHints.Designators)
return true;
if (Syn->isIdiomaticZeroInitializer(AST.getLangOpts()))
return true;
llvm::DenseMap<SourceLocation, std::string> Designators =
getDesignators(Syn);
for (const Expr *Init : Syn->inits()) {
if (llvm::isa<DesignatedInitExpr>(Init))
continue;
auto It = Designators.find(Init->getBeginLoc());
if (It != Designators.end() &&
!isPrecededByParamNameComment(Init, It->second))
addDesignatorHint(Init->getSourceRange(), It->second);
}
return true;
}
// FIXME: Handle RecoveryExpr to try to hint some invalid calls.
private:
using NameVec = SmallVector<StringRef, 8>;
void processCall(const FunctionDecl *Callee,
llvm::ArrayRef<const Expr *> Args) {
if (!Cfg.InlayHints.Parameters || Args.size() == 0 || !Callee)
return;
// The parameter name of a move or copy constructor is not very interesting.
if (auto *Ctor = dyn_cast<CXXConstructorDecl>(Callee))
if (Ctor->isCopyOrMoveConstructor())
return;
// Resolve parameter packs to their forwarded parameter
auto ForwardedParams = resolveForwardingParameters(Callee);
NameVec ParameterNames = chooseParameterNames(ForwardedParams);
// Exclude setters (i.e. functions with one argument whose name begins with
// "set"), and builtins like std::move/forward/... as their parameter name
// is also not likely to be interesting.
if (isSetter(Callee, ParameterNames) || isSimpleBuiltin(Callee))
return;
for (size_t I = 0; I < ParameterNames.size() && I < Args.size(); ++I) {
// Pack expansion expressions cause the 1:1 mapping between arguments and
// parameters to break down, so we don't add further inlay hints if we
// encounter one.
if (isa<PackExpansionExpr>(Args[I])) {
break;
}
StringRef Name = ParameterNames[I];
bool NameHint = shouldHintName(Args[I], Name);
bool ReferenceHint =
shouldHintReference(Callee->getParamDecl(I), ForwardedParams[I]);
if (NameHint || ReferenceHint) {
addInlayHint(Args[I]->getSourceRange(), HintSide::Left,
InlayHintKind::Parameter, ReferenceHint ? "&" : "",
NameHint ? Name : "", ": ");
}
}
}
static bool isSetter(const FunctionDecl *Callee, const NameVec &ParamNames) {
if (ParamNames.size() != 1)
return false;
StringRef Name = getSimpleName(*Callee);
if (!Name.starts_with_insensitive("set"))
return false;
// In addition to checking that the function has one parameter and its
// name starts with "set", also check that the part after "set" matches
// the name of the parameter (ignoring case). The idea here is that if
// the parameter name differs, it may contain extra information that
// may be useful to show in a hint, as in:
// void setTimeout(int timeoutMillis);
// This currently doesn't handle cases where params use snake_case
// and functions don't, e.g.
// void setExceptionHandler(EHFunc exception_handler);
// We could improve this by replacing `equals_insensitive` with some
// `sloppy_equals` which ignores case and also skips underscores.
StringRef WhatItIsSetting = Name.substr(3).ltrim("_");
return WhatItIsSetting.equals_insensitive(ParamNames[0]);
}
// Checks if the callee is one of the builtins
// addressof, as_const, forward, move(_if_noexcept)
static bool isSimpleBuiltin(const FunctionDecl *Callee) {
switch (Callee->getBuiltinID()) {
case Builtin::BIaddressof:
case Builtin::BIas_const:
case Builtin::BIforward:
case Builtin::BImove:
case Builtin::BImove_if_noexcept:
return true;
default:
return false;
}
}
bool shouldHintName(const Expr *Arg, StringRef ParamName) {
if (ParamName.empty())
return false;
// If the argument expression is a single name and it matches the
// parameter name exactly, omit the name hint.
if (ParamName == getSpelledIdentifier(Arg))
return false;
// Exclude argument expressions preceded by a /*paramName*/.
if (isPrecededByParamNameComment(Arg, ParamName))
return false;
return true;
}
bool shouldHintReference(const ParmVarDecl *Param,
const ParmVarDecl *ForwardedParam) {
// We add a & hint only when the argument is passed as mutable reference.
// For parameters that are not part of an expanded pack, this is
// straightforward. For expanded pack parameters, it's likely that they will
// be forwarded to another function. In this situation, we only want to add
// the reference hint if the argument is actually being used via mutable
// reference. This means we need to check
// 1. whether the value category of the argument is preserved, i.e. each
// pack expansion uses std::forward correctly.
// 2. whether the argument is ever copied/cast instead of passed
// by-reference
// Instead of checking this explicitly, we use the following proxy:
// 1. the value category can only change from rvalue to lvalue during
// forwarding, so checking whether both the parameter of the forwarding
// function and the forwarded function are lvalue references detects such
// a conversion.
// 2. if the argument is copied/cast somewhere in the chain of forwarding
// calls, it can only be passed on to an rvalue reference or const lvalue
// reference parameter. Thus if the forwarded parameter is a mutable
// lvalue reference, it cannot have been copied/cast to on the way.
// Additionally, we should not add a reference hint if the forwarded
// parameter was only partially resolved, i.e. points to an expanded pack
// parameter, since we do not know how it will be used eventually.
auto Type = Param->getType();
auto ForwardedType = ForwardedParam->getType();
return Type->isLValueReferenceType() &&
ForwardedType->isLValueReferenceType() &&
!ForwardedType.getNonReferenceType().isConstQualified() &&
!isExpandedFromParameterPack(ForwardedParam);
}
// Checks if "E" is spelled in the main file and preceded by a C-style comment
// whose contents match ParamName (allowing for whitespace and an optional "="
// at the end.
bool isPrecededByParamNameComment(const Expr *E, StringRef ParamName) {
auto &SM = AST.getSourceManager();
auto FileLoc = SM.getFileLoc(E->getBeginLoc());
auto Decomposed = SM.getDecomposedLoc(FileLoc);
if (Decomposed.first != MainFileID)
return false;
StringRef SourcePrefix = MainFileBuf.substr(0, Decomposed.second);
// Allow whitespace between comment and expression.
SourcePrefix = SourcePrefix.rtrim();
// Check for comment ending.
if (!SourcePrefix.consume_back("*/"))
return false;
// Ignore some punctuation and whitespace around comment.
// In particular this allows designators to match nicely.
llvm::StringLiteral IgnoreChars = " =.";
SourcePrefix = SourcePrefix.rtrim(IgnoreChars);
ParamName = ParamName.trim(IgnoreChars);
// Other than that, the comment must contain exactly ParamName.
if (!SourcePrefix.consume_back(ParamName))
return false;
SourcePrefix = SourcePrefix.rtrim(IgnoreChars);
return SourcePrefix.endswith("/*");
}
// If "E" spells a single unqualified identifier, return that name.
// Otherwise, return an empty string.
static StringRef getSpelledIdentifier(const Expr *E) {
E = E->IgnoreUnlessSpelledInSource();
if (auto *DRE = dyn_cast<DeclRefExpr>(E))
if (!DRE->getQualifier())
return getSimpleName(*DRE->getDecl());
if (auto *ME = dyn_cast<MemberExpr>(E))
if (!ME->getQualifier() && ME->isImplicitAccess())
return getSimpleName(*ME->getMemberDecl());
return {};
}
NameVec chooseParameterNames(SmallVector<const ParmVarDecl *> Parameters) {
NameVec ParameterNames;
for (const auto *P : Parameters) {
if (isExpandedFromParameterPack(P)) {
// If we haven't resolved a pack paramater (e.g. foo(Args... args)) to a
// non-pack parameter, then hinting as foo(args: 1, args: 2, args: 3) is
// unlikely to be useful.
ParameterNames.emplace_back();
} else {
auto SimpleName = getSimpleName(*P);
// If the parameter is unnamed in the declaration:
// attempt to get its name from the definition
if (SimpleName.empty()) {
if (const auto *PD = getParamDefinition(P)) {
SimpleName = getSimpleName(*PD);
}
}
ParameterNames.emplace_back(SimpleName);
}
}
// Standard library functions often have parameter names that start
// with underscores, which makes the hints noisy, so strip them out.
for (auto &Name : ParameterNames)
stripLeadingUnderscores(Name);
return ParameterNames;
}
// for a ParmVarDecl from a function declaration, returns the corresponding
// ParmVarDecl from the definition if possible, nullptr otherwise.
static const ParmVarDecl *getParamDefinition(const ParmVarDecl *P) {
if (auto *Callee = dyn_cast<FunctionDecl>(P->getDeclContext())) {
if (auto *Def = Callee->getDefinition()) {
auto I = std::distance(Callee->param_begin(),
llvm::find(Callee->parameters(), P));
if (I < Callee->getNumParams()) {
return Def->getParamDecl(I);
}
}
}
return nullptr;
}
// We pass HintSide rather than SourceLocation because we want to ensure
// it is in the same file as the common file range.
void addInlayHint(SourceRange R, HintSide Side, InlayHintKind Kind,
llvm::StringRef Prefix, llvm::StringRef Label,
llvm::StringRef Suffix) {
auto LSPRange = getHintRange(R);
if (!LSPRange)
return;
addInlayHint(*LSPRange, Side, Kind, Prefix, Label, Suffix);
}
void addInlayHint(Range LSPRange, HintSide Side, InlayHintKind Kind,
llvm::StringRef Prefix, llvm::StringRef Label,
llvm::StringRef Suffix) {
// We shouldn't get as far as adding a hint if the category is disabled.
// We'd like to disable as much of the analysis as possible above instead.
// Assert in debug mode but add a dynamic check in production.
assert(Cfg.InlayHints.Enabled && "Shouldn't get here if disabled!");
switch (Kind) {
#define CHECK_KIND(Enumerator, ConfigProperty) \
case InlayHintKind::Enumerator: \
assert(Cfg.InlayHints.ConfigProperty && \
"Shouldn't get here if kind is disabled!"); \
if (!Cfg.InlayHints.ConfigProperty) \
return; \
break
CHECK_KIND(Parameter, Parameters);
CHECK_KIND(Type, DeducedTypes);
CHECK_KIND(Designator, Designators);
CHECK_KIND(BlockEnd, BlockEnd);
#undef CHECK_KIND
}
Position LSPPos = Side == HintSide::Left ? LSPRange.start : LSPRange.end;
if (RestrictRange &&
(LSPPos < RestrictRange->start || !(LSPPos < RestrictRange->end)))
return;
bool PadLeft = Prefix.consume_front(" ");
bool PadRight = Suffix.consume_back(" ");
Results.push_back(InlayHint{LSPPos, (Prefix + Label + Suffix).str(), Kind,
PadLeft, PadRight, LSPRange});
}
// Get the range of the main file that *exactly* corresponds to R.
std::optional<Range> getHintRange(SourceRange R) {
const auto &SM = AST.getSourceManager();
auto Spelled = Tokens.spelledForExpanded(Tokens.expandedTokens(R));
// TokenBuffer will return null if e.g. R corresponds to only part of a
// macro expansion.
if (!Spelled || Spelled->empty())
return std::nullopt;
// Hint must be within the main file, not e.g. a non-preamble include.
if (SM.getFileID(Spelled->front().location()) != SM.getMainFileID() ||
SM.getFileID(Spelled->back().location()) != SM.getMainFileID())
return std::nullopt;
return Range{sourceLocToPosition(SM, Spelled->front().location()),
sourceLocToPosition(SM, Spelled->back().endLocation())};
}
void addTypeHint(SourceRange R, QualType T, llvm::StringRef Prefix) {
if (!Cfg.InlayHints.DeducedTypes || T.isNull())
return;
// The sugared type is more useful in some cases, and the canonical
// type in other cases.
auto Desugared = maybeDesugar(AST, T);
std::string TypeName = Desugared.getAsString(TypeHintPolicy);
if (T != Desugared && !shouldPrintTypeHint(TypeName)) {
// If the desugared type is too long to display, fallback to the sugared
// type.
TypeName = T.getAsString(TypeHintPolicy);
}
if (shouldPrintTypeHint(TypeName))
addInlayHint(R, HintSide::Right, InlayHintKind::Type, Prefix, TypeName,
/*Suffix=*/"");
}
void addDesignatorHint(SourceRange R, llvm::StringRef Text) {
addInlayHint(R, HintSide::Left, InlayHintKind::Designator,
/*Prefix=*/"", Text, /*Suffix=*/"=");
}
bool shouldPrintTypeHint(llvm::StringRef TypeName) const noexcept {
return Cfg.InlayHints.TypeNameLimit == 0 ||
TypeName.size() < Cfg.InlayHints.TypeNameLimit;
}
void addBlockEndHint(SourceRange BraceRange, StringRef DeclPrefix,
StringRef Name, StringRef OptionalPunctuation) {
auto HintRange = computeBlockEndHintRange(BraceRange, OptionalPunctuation);
if (!HintRange)
return;
std::string Label = DeclPrefix.str();
if (!Label.empty() && !Name.empty())
Label += ' ';
Label += Name;
constexpr unsigned HintMaxLengthLimit = 60;
if (Label.length() > HintMaxLengthLimit)
return;
addInlayHint(*HintRange, HintSide::Right, InlayHintKind::BlockEnd, " // ",
Label, "");
}
// Compute the LSP range to attach the block end hint to, if any allowed.
// 1. "}" is the last non-whitespace character on the line. The range of "}"
// is returned.
// 2. After "}", if the trimmed trailing text is exactly
// `OptionalPunctuation`, say ";". The range of "} ... ;" is returned.
// Otherwise, the hint shouldn't be shown.
std::optional<Range> computeBlockEndHintRange(SourceRange BraceRange,
StringRef OptionalPunctuation) {
constexpr unsigned HintMinLineLimit = 2;
auto &SM = AST.getSourceManager();
auto [BlockBeginFileId, BlockBeginOffset] =
SM.getDecomposedLoc(SM.getFileLoc(BraceRange.getBegin()));
auto RBraceLoc = SM.getFileLoc(BraceRange.getEnd());
auto [RBraceFileId, RBraceOffset] = SM.getDecomposedLoc(RBraceLoc);
// Because we need to check the block satisfies the minimum line limit, we
// require both source location to be in the main file. This prevents hint
// to be shown in weird cases like '{' is actually in a "#include", but it's
// rare anyway.
if (BlockBeginFileId != MainFileID || RBraceFileId != MainFileID)
return std::nullopt;
StringRef RestOfLine = MainFileBuf.substr(RBraceOffset).split('\n').first;
if (!RestOfLine.starts_with("}"))
return std::nullopt;
StringRef TrimmedTrailingText = RestOfLine.drop_front().trim();
if (!TrimmedTrailingText.empty() &&
TrimmedTrailingText != OptionalPunctuation)
return std::nullopt;
auto BlockBeginLine = SM.getLineNumber(BlockBeginFileId, BlockBeginOffset);
auto RBraceLine = SM.getLineNumber(RBraceFileId, RBraceOffset);
// Don't show hint on trivial blocks like `class X {};`
if (BlockBeginLine + HintMinLineLimit - 1 > RBraceLine)
return std::nullopt;
// This is what we attach the hint to, usually "}" or "};".
StringRef HintRangeText = RestOfLine.take_front(
TrimmedTrailingText.empty()
? 1
: TrimmedTrailingText.bytes_end() - RestOfLine.bytes_begin());
Position HintStart = sourceLocToPosition(SM, RBraceLoc);
Position HintEnd = sourceLocToPosition(
SM, RBraceLoc.getLocWithOffset(HintRangeText.size()));
return Range{HintStart, HintEnd};
}
std::vector<InlayHint> &Results;
ASTContext &AST;
const syntax::TokenBuffer &Tokens;
const Config &Cfg;
std::optional<Range> RestrictRange;
FileID MainFileID;
StringRef MainFileBuf;
const HeuristicResolver *Resolver;
PrintingPolicy TypeHintPolicy;
};
} // namespace
std::vector<InlayHint> inlayHints(ParsedAST &AST,
std::optional<Range> RestrictRange) {
std::vector<InlayHint> Results;
const auto &Cfg = Config::current();
if (!Cfg.InlayHints.Enabled)
return Results;
InlayHintVisitor Visitor(Results, AST, Cfg, std::move(RestrictRange));
Visitor.TraverseAST(AST.getASTContext());
// De-duplicate hints. Duplicates can sometimes occur due to e.g. explicit
// template instantiations.
llvm::sort(Results);
Results.erase(std::unique(Results.begin(), Results.end()), Results.end());
return Results;
}
} // namespace clangd
} // namespace clang