blob: 9cce5b26cd305b010b2c9bbda5b077107a07f2e1 [file] [log] [blame]
//! A test for the logic that updates the state in a `ResultsCursor` during seek.
use std::marker::PhantomData;
use rustc_index::bit_set::BitSet;
use rustc_index::IndexVec;
use rustc_middle::mir::{self, BasicBlock, Location};
use rustc_middle::ty;
use rustc_span::DUMMY_SP;
use super::*;
/// Creates a `mir::Body` with a few disconnected basic blocks.
///
/// This is the `Body` that will be used by the `MockAnalysis` below. The shape of its CFG is not
/// important.
fn mock_body<'tcx>() -> mir::Body<'tcx> {
let source_info = mir::SourceInfo::outermost(DUMMY_SP);
let mut blocks = IndexVec::new();
let mut block = |n, kind| {
let nop = mir::Statement { source_info, kind: mir::StatementKind::Nop };
blocks.push(mir::BasicBlockData {
statements: std::iter::repeat(&nop).cloned().take(n).collect(),
terminator: Some(mir::Terminator { source_info, kind }),
is_cleanup: false,
})
};
let dummy_place = mir::Place { local: mir::RETURN_PLACE, projection: ty::List::empty() };
block(4, mir::TerminatorKind::Return);
block(1, mir::TerminatorKind::Return);
block(
2,
mir::TerminatorKind::Call {
func: mir::Operand::Copy(dummy_place.clone()),
args: vec![],
destination: dummy_place.clone(),
target: Some(mir::START_BLOCK),
unwind: mir::UnwindAction::Continue,
call_source: mir::CallSource::Misc,
fn_span: DUMMY_SP,
},
);
block(3, mir::TerminatorKind::Return);
block(0, mir::TerminatorKind::Return);
block(
4,
mir::TerminatorKind::Call {
func: mir::Operand::Copy(dummy_place.clone()),
args: vec![],
destination: dummy_place.clone(),
target: Some(mir::START_BLOCK),
unwind: mir::UnwindAction::Continue,
call_source: mir::CallSource::Misc,
fn_span: DUMMY_SP,
},
);
mir::Body::new_cfg_only(blocks)
}
/// A dataflow analysis whose state is unique at every possible `SeekTarget`.
///
/// Uniqueness is achieved by having a *locally* unique effect before and after each statement and
/// terminator (see `effect_at_target`) while ensuring that the entry set for each block is
/// *globally* unique (see `mock_entry_set`).
///
/// For example, a `BasicBlock` with ID `2` and a `Call` terminator has the following state at each
/// location ("+x" indicates that "x" is added to the state).
///
/// | Location | Before | After |
/// |------------------------|-------------------|--------|
/// | (on_entry) | {102} ||
/// | statement 0 | +0 | +1 |
/// | statement 1 | +2 | +3 |
/// | `Call` terminator | +4 | +5 |
/// | (on unwind) | {102,0,1,2,3,4,5} ||
///
/// The `102` in the block's entry set is derived from the basic block index and ensures that the
/// expected state is unique across all basic blocks. Remember, it is generated by
/// `mock_entry_sets`, not from actually running `MockAnalysis` to fixpoint.
struct MockAnalysis<'tcx, D> {
body: &'tcx mir::Body<'tcx>,
dir: PhantomData<D>,
}
impl<D: Direction> MockAnalysis<'_, D> {
const BASIC_BLOCK_OFFSET: usize = 100;
/// The entry set for each `BasicBlock` is the ID of that block offset by a fixed amount to
/// avoid colliding with the statement/terminator effects.
fn mock_entry_set(&self, bb: BasicBlock) -> BitSet<usize> {
let mut ret = self.bottom_value(self.body);
ret.insert(Self::BASIC_BLOCK_OFFSET + bb.index());
ret
}
fn mock_entry_sets(&self) -> IndexVec<BasicBlock, BitSet<usize>> {
let empty = self.bottom_value(self.body);
let mut ret = IndexVec::from_elem(empty, &self.body.basic_blocks);
for (bb, _) in self.body.basic_blocks.iter_enumerated() {
ret[bb] = self.mock_entry_set(bb);
}
ret
}
/// Returns the index that should be added to the dataflow state at the given target.
fn effect(&self, loc: EffectIndex) -> usize {
let idx = match loc.effect {
Effect::Before => loc.statement_index * 2,
Effect::Primary => loc.statement_index * 2 + 1,
};
assert!(idx < Self::BASIC_BLOCK_OFFSET, "Too many statements in basic block");
idx
}
/// Returns the expected state at the given `SeekTarget`.
///
/// This is the union of index of the target basic block, the index assigned to the
/// target statement or terminator, and the indices of all preceding statements in the target
/// basic block.
///
/// For example, the expected state when calling
/// `seek_before_primary_effect(Location { block: 2, statement_index: 2 })`
/// would be `[102, 0, 1, 2, 3, 4]`.
fn expected_state_at_target(&self, target: SeekTarget) -> BitSet<usize> {
let block = target.block();
let mut ret = self.bottom_value(self.body);
ret.insert(Self::BASIC_BLOCK_OFFSET + block.index());
let target = match target {
SeekTarget::BlockEntry { .. } => return ret,
SeekTarget::Before(loc) => Effect::Before.at_index(loc.statement_index),
SeekTarget::After(loc) => Effect::Primary.at_index(loc.statement_index),
};
let mut pos = if D::IS_FORWARD {
Effect::Before.at_index(0)
} else {
Effect::Before.at_index(self.body[block].statements.len())
};
loop {
ret.insert(self.effect(pos));
if pos == target {
return ret;
}
if D::IS_FORWARD {
pos = pos.next_in_forward_order();
} else {
pos = pos.next_in_backward_order();
}
}
}
}
impl<'tcx, D: Direction> AnalysisDomain<'tcx> for MockAnalysis<'tcx, D> {
type Domain = BitSet<usize>;
type Direction = D;
const NAME: &'static str = "mock";
fn bottom_value(&self, body: &mir::Body<'tcx>) -> Self::Domain {
BitSet::new_empty(Self::BASIC_BLOCK_OFFSET + body.basic_blocks.len())
}
fn initialize_start_block(&self, _: &mir::Body<'tcx>, _: &mut Self::Domain) {
unimplemented!("This is never called since `MockAnalysis` is never iterated to fixpoint");
}
}
impl<'tcx, D: Direction> Analysis<'tcx> for MockAnalysis<'tcx, D> {
fn apply_statement_effect(
&mut self,
state: &mut Self::Domain,
_statement: &mir::Statement<'tcx>,
location: Location,
) {
let idx = self.effect(Effect::Primary.at_index(location.statement_index));
assert!(state.insert(idx));
}
fn apply_before_statement_effect(
&mut self,
state: &mut Self::Domain,
_statement: &mir::Statement<'tcx>,
location: Location,
) {
let idx = self.effect(Effect::Before.at_index(location.statement_index));
assert!(state.insert(idx));
}
fn apply_terminator_effect<'mir>(
&mut self,
state: &mut Self::Domain,
terminator: &'mir mir::Terminator<'tcx>,
location: Location,
) -> TerminatorEdges<'mir, 'tcx> {
let idx = self.effect(Effect::Primary.at_index(location.statement_index));
assert!(state.insert(idx));
terminator.edges()
}
fn apply_before_terminator_effect(
&mut self,
state: &mut Self::Domain,
_terminator: &mir::Terminator<'tcx>,
location: Location,
) {
let idx = self.effect(Effect::Before.at_index(location.statement_index));
assert!(state.insert(idx));
}
fn apply_call_return_effect(
&mut self,
_state: &mut Self::Domain,
_block: BasicBlock,
_return_places: CallReturnPlaces<'_, 'tcx>,
) {
}
}
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
enum SeekTarget {
BlockEntry(BasicBlock),
Before(Location),
After(Location),
}
impl SeekTarget {
fn block(&self) -> BasicBlock {
use SeekTarget::*;
match *self {
BlockEntry(block) => block,
Before(loc) | After(loc) => loc.block,
}
}
/// An iterator over all possible `SeekTarget`s in a given block in order, starting with
/// `BlockEntry`.
fn iter_in_block(body: &mir::Body<'_>, block: BasicBlock) -> impl Iterator<Item = Self> {
let statements_and_terminator = (0..=body[block].statements.len())
.flat_map(|i| (0..2).map(move |j| (i, j)))
.map(move |(i, kind)| {
let loc = Location { block, statement_index: i };
match kind {
0 => SeekTarget::Before(loc),
1 => SeekTarget::After(loc),
_ => unreachable!(),
}
});
std::iter::once(SeekTarget::BlockEntry(block)).chain(statements_and_terminator)
}
}
fn test_cursor<D: Direction>(analysis: MockAnalysis<'_, D>) {
let body = analysis.body;
let mut cursor =
Results { entry_sets: analysis.mock_entry_sets(), analysis, _marker: PhantomData }
.into_results_cursor(body);
cursor.allow_unreachable();
let every_target = || {
body.basic_blocks.iter_enumerated().flat_map(|(bb, _)| SeekTarget::iter_in_block(body, bb))
};
let mut seek_to_target = |targ| {
use SeekTarget::*;
match targ {
BlockEntry(block) => cursor.seek_to_block_entry(block),
Before(loc) => cursor.seek_before_primary_effect(loc),
After(loc) => cursor.seek_after_primary_effect(loc),
}
assert_eq!(cursor.get(), &cursor.analysis().expected_state_at_target(targ));
};
// Seek *to* every possible `SeekTarget` *from* every possible `SeekTarget`.
//
// By resetting the cursor to `from` each time it changes, we end up checking some edges twice.
// What we really want is an Eulerian cycle for the complete digraph over all possible
// `SeekTarget`s, but it's not worth spending the time to compute it.
for from in every_target() {
seek_to_target(from);
for to in every_target() {
dbg!(from);
dbg!(to);
seek_to_target(to);
seek_to_target(from);
}
}
}
#[test]
fn backward_cursor() {
let body = mock_body();
let body = &body;
let analysis = MockAnalysis { body, dir: PhantomData::<Backward> };
test_cursor(analysis)
}
#[test]
fn forward_cursor() {
let body = mock_body();
let body = &body;
let analysis = MockAnalysis { body, dir: PhantomData::<Forward> };
test_cursor(analysis)
}