blob: 6a8171224913bba8f11407067d6e150c852fb447 [file] [log] [blame]
//! This calculates the types which has storage which lives across a suspension point in a
//! generator from the perspective of typeck. The actual types used at runtime
//! is calculated in `rustc_mir_transform::generator` and may be a subset of the
//! types computed here.
use self::drop_ranges::DropRanges;
use super::FnCtxt;
use rustc_data_structures::fx::{FxHashSet, FxIndexSet};
use rustc_errors::{pluralize, DelayDm};
use rustc_hir as hir;
use rustc_hir::def::{CtorKind, DefKind, Res};
use rustc_hir::def_id::DefId;
use rustc_hir::hir_id::HirIdSet;
use rustc_hir::intravisit::{self, Visitor};
use rustc_hir::{Arm, Expr, ExprKind, Guard, HirId, Pat, PatKind};
use rustc_infer::infer::{DefineOpaqueTypes, RegionVariableOrigin};
use rustc_middle::middle::region::{self, Scope, ScopeData, YieldData};
use rustc_middle::ty::fold::FnMutDelegate;
use rustc_middle::ty::{self, BoundVariableKind, RvalueScopes, Ty, TyCtxt, TypeVisitableExt};
use rustc_span::symbol::sym;
use rustc_span::Span;
use smallvec::{smallvec, SmallVec};
mod drop_ranges;
struct InteriorVisitor<'a, 'tcx> {
fcx: &'a FnCtxt<'a, 'tcx>,
region_scope_tree: &'a region::ScopeTree,
types: FxIndexSet<ty::GeneratorInteriorTypeCause<'tcx>>,
rvalue_scopes: &'a RvalueScopes,
expr_count: usize,
kind: hir::GeneratorKind,
prev_unresolved_span: Option<Span>,
linted_values: HirIdSet,
drop_ranges: DropRanges,
}
impl<'a, 'tcx> InteriorVisitor<'a, 'tcx> {
fn record(
&mut self,
ty: Ty<'tcx>,
hir_id: HirId,
scope: Option<region::Scope>,
expr: Option<&'tcx Expr<'tcx>>,
source_span: Span,
) {
use rustc_span::DUMMY_SP;
let ty = self.fcx.resolve_vars_if_possible(ty);
debug!(
"attempting to record type ty={:?}; hir_id={:?}; scope={:?}; expr={:?}; source_span={:?}; expr_count={:?}",
ty, hir_id, scope, expr, source_span, self.expr_count,
);
let live_across_yield = scope
.map(|s| {
self.region_scope_tree.yield_in_scope(s).and_then(|yield_data| {
// If we are recording an expression that is the last yield
// in the scope, or that has a postorder CFG index larger
// than the one of all of the yields, then its value can't
// be storage-live (and therefore live) at any of the yields.
//
// See the mega-comment at `yield_in_scope` for a proof.
yield_data
.iter()
.find(|yield_data| {
debug!(
"comparing counts yield: {} self: {}, source_span = {:?}",
yield_data.expr_and_pat_count, self.expr_count, source_span
);
if self
.is_dropped_at_yield_location(hir_id, yield_data.expr_and_pat_count)
{
debug!("value is dropped at yield point; not recording");
return false;
}
// If it is a borrowing happening in the guard,
// it needs to be recorded regardless because they
// do live across this yield point.
yield_data.expr_and_pat_count >= self.expr_count
})
.cloned()
})
})
.unwrap_or_else(|| {
Some(YieldData { span: DUMMY_SP, expr_and_pat_count: 0, source: self.kind.into() })
});
if let Some(yield_data) = live_across_yield {
debug!(
"type in expr = {:?}, scope = {:?}, type = {:?}, count = {}, yield_span = {:?}",
expr, scope, ty, self.expr_count, yield_data.span
);
if let Some((unresolved_term, unresolved_type_span)) =
self.fcx.first_unresolved_const_or_ty_var(&ty)
{
// If unresolved type isn't a ty_var then unresolved_type_span is None
let span = self
.prev_unresolved_span
.unwrap_or_else(|| unresolved_type_span.unwrap_or(source_span));
// If we encounter an int/float variable, then inference fallback didn't
// finish due to some other error. Don't emit spurious additional errors.
if let Some(unresolved_ty) = unresolved_term.ty()
&& let ty::Infer(ty::InferTy::IntVar(_) | ty::InferTy::FloatVar(_)) = unresolved_ty.kind()
{
self.fcx
.tcx
.sess
.delay_span_bug(span, format!("Encountered var {unresolved_term:?}"));
} else {
let note = format!(
"the type is part of the {} because of this {}",
self.kind.descr(),
yield_data.source
);
self.fcx
.need_type_info_err_in_generator(self.kind, span, unresolved_term)
.span_note(yield_data.span, note)
.emit();
}
} else {
// Insert the type into the ordered set.
let scope_span = scope.map(|s| s.span(self.fcx.tcx, self.region_scope_tree));
if !self.linted_values.contains(&hir_id) {
check_must_not_suspend_ty(
self.fcx,
ty,
hir_id,
SuspendCheckData {
expr,
source_span,
yield_span: yield_data.span,
plural_len: 1,
..Default::default()
},
);
self.linted_values.insert(hir_id);
}
self.types.insert(ty::GeneratorInteriorTypeCause {
span: source_span,
ty,
scope_span,
yield_span: yield_data.span,
expr: expr.map(|e| e.hir_id),
});
}
} else {
debug!(
"no type in expr = {:?}, count = {:?}, span = {:?}",
expr,
self.expr_count,
expr.map(|e| e.span)
);
if let Some((unresolved_type, unresolved_type_span)) =
self.fcx.first_unresolved_const_or_ty_var(&ty)
{
debug!(
"remained unresolved_type = {:?}, unresolved_type_span: {:?}",
unresolved_type, unresolved_type_span
);
self.prev_unresolved_span = unresolved_type_span;
}
}
}
/// If drop tracking is enabled, consult drop_ranges to see if a value is
/// known to be dropped at a yield point and therefore can be omitted from
/// the generator witness.
fn is_dropped_at_yield_location(&self, value_hir_id: HirId, yield_location: usize) -> bool {
// short-circuit if drop tracking is not enabled.
if !self.fcx.sess().opts.unstable_opts.drop_tracking {
return false;
}
self.drop_ranges.is_dropped_at(value_hir_id, yield_location)
}
}
pub fn resolve_interior<'a, 'tcx>(
fcx: &'a FnCtxt<'a, 'tcx>,
def_id: DefId,
body_id: hir::BodyId,
interior: Ty<'tcx>,
kind: hir::GeneratorKind,
) {
let body = fcx.tcx.hir().body(body_id);
let typeck_results = fcx.inh.typeck_results.borrow();
let mut visitor = InteriorVisitor {
fcx,
types: FxIndexSet::default(),
region_scope_tree: fcx.tcx.region_scope_tree(def_id),
rvalue_scopes: &typeck_results.rvalue_scopes,
expr_count: 0,
kind,
prev_unresolved_span: None,
linted_values: <_>::default(),
drop_ranges: drop_ranges::compute_drop_ranges(fcx, def_id, body),
};
intravisit::walk_body(&mut visitor, body);
// Check that we visited the same amount of expressions as the RegionResolutionVisitor
let region_expr_count = fcx.tcx.region_scope_tree(def_id).body_expr_count(body_id).unwrap();
assert_eq!(region_expr_count, visitor.expr_count);
// The types are already kept in insertion order.
let types = visitor.types;
// The types in the generator interior contain lifetimes local to the generator itself,
// which should not be exposed outside of the generator. Therefore, we replace these
// lifetimes with existentially-bound lifetimes, which reflect the exact value of the
// lifetimes not being known by users.
//
// These lifetimes are used in auto trait impl checking (for example,
// if a Sync generator contains an &'α T, we need to check whether &'α T: Sync),
// so knowledge of the exact relationships between them isn't particularly important.
debug!("types in generator {:?}, span = {:?}", types, body.value.span);
// We want to deduplicate if the lifetimes are the same modulo some non-informative counter.
// So, we need to actually do two passes: first by type to anonymize (preserving information
// required for diagnostics), then a second pass over all captured types to reassign disjoint
// region indices.
let mut captured_tys = FxHashSet::default();
let type_causes: Vec<_> = types
.into_iter()
.filter_map(|mut cause| {
// Replace all regions inside the generator interior with late bound regions.
// Note that each region slot in the types gets a new fresh late bound region,
// which means that none of the regions inside relate to any other, even if
// typeck had previously found constraints that would cause them to be related.
let mut counter = 0;
let mut mk_bound_region = |kind| {
let var = ty::BoundVar::from_u32(counter);
counter += 1;
ty::BoundRegion { var, kind }
};
let ty = fcx.normalize(cause.span, cause.ty);
let ty = fcx.tcx.fold_regions(ty, |region, current_depth| {
let br = match region.kind() {
ty::ReVar(vid) => {
let origin = fcx.region_var_origin(vid);
match origin {
RegionVariableOrigin::EarlyBoundRegion(span, _) => {
mk_bound_region(ty::BrAnon(Some(span)))
}
_ => mk_bound_region(ty::BrAnon(None)),
}
}
ty::ReEarlyBound(region) => {
mk_bound_region(ty::BrNamed(region.def_id, region.name))
}
ty::ReLateBound(_, ty::BoundRegion { kind, .. })
| ty::ReFree(ty::FreeRegion { bound_region: kind, .. }) => match kind {
ty::BoundRegionKind::BrAnon(span) => mk_bound_region(ty::BrAnon(span)),
ty::BoundRegionKind::BrNamed(def_id, sym) => {
mk_bound_region(ty::BrNamed(def_id, sym))
}
ty::BoundRegionKind::BrEnv => mk_bound_region(ty::BrAnon(None)),
},
_ => mk_bound_region(ty::BrAnon(None)),
};
let r = ty::Region::new_late_bound(fcx.tcx, current_depth, br);
r
});
captured_tys.insert(ty).then(|| {
cause.ty = ty;
cause
})
})
.collect();
let mut bound_vars: SmallVec<[BoundVariableKind; 4]> = smallvec![];
let mut counter = 0;
// Optimization: If there is only one captured type, then we don't actually
// need to fold and reindex (since the first type doesn't change).
let type_causes = if captured_tys.len() > 0 {
// Optimization: Use `replace_escaping_bound_vars_uncached` instead of
// `fold_regions`, since we only have late bound regions, and it skips
// types without bound regions.
fcx.tcx.replace_escaping_bound_vars_uncached(
type_causes,
FnMutDelegate {
regions: &mut |br| {
let kind = br.kind;
let var = ty::BoundVar::from_usize(bound_vars.len());
bound_vars.push(ty::BoundVariableKind::Region(kind));
counter += 1;
ty::Region::new_late_bound(
fcx.tcx,
ty::INNERMOST,
ty::BoundRegion { var, kind },
)
},
types: &mut |b| bug!("unexpected bound ty in binder: {b:?}"),
consts: &mut |b, ty| bug!("unexpected bound ct in binder: {b:?} {ty}"),
},
)
} else {
type_causes
};
// Extract type components to build the witness type.
let type_list = fcx.tcx.mk_type_list_from_iter(type_causes.iter().map(|cause| cause.ty));
let bound_vars = fcx.tcx.mk_bound_variable_kinds(&bound_vars);
let witness =
Ty::new_generator_witness(fcx.tcx, ty::Binder::bind_with_vars(type_list, bound_vars));
drop(typeck_results);
// Store the generator types and spans into the typeck results for this generator.
fcx.inh.typeck_results.borrow_mut().generator_interior_types =
ty::Binder::bind_with_vars(type_causes, bound_vars);
debug!(
"types in generator after region replacement {:?}, span = {:?}",
witness, body.value.span
);
// Unify the type variable inside the generator with the new witness
match fcx.at(&fcx.misc(body.value.span), fcx.param_env).eq(
DefineOpaqueTypes::No,
interior,
witness,
) {
Ok(ok) => fcx.register_infer_ok_obligations(ok),
_ => bug!("failed to relate {interior} and {witness}"),
}
}
// This visitor has to have the same visit_expr calls as RegionResolutionVisitor in
// librustc_middle/middle/region.rs since `expr_count` is compared against the results
// there.
impl<'a, 'tcx> Visitor<'tcx> for InteriorVisitor<'a, 'tcx> {
fn visit_arm(&mut self, arm: &'tcx Arm<'tcx>) {
let Arm { guard, pat, body, .. } = arm;
self.visit_pat(pat);
if let Some(ref g) = guard {
{
// If there is a guard, we need to count all variables bound in the pattern as
// borrowed for the entire guard body, regardless of whether they are accessed.
// We do this by walking the pattern bindings and recording `&T` for any `x: T`
// that is bound.
struct ArmPatCollector<'a, 'b, 'tcx> {
interior_visitor: &'a mut InteriorVisitor<'b, 'tcx>,
scope: Scope,
}
impl<'a, 'b, 'tcx> Visitor<'tcx> for ArmPatCollector<'a, 'b, 'tcx> {
fn visit_pat(&mut self, pat: &'tcx Pat<'tcx>) {
intravisit::walk_pat(self, pat);
if let PatKind::Binding(_, id, ident, ..) = pat.kind {
let ty =
self.interior_visitor.fcx.typeck_results.borrow().node_type(id);
let tcx = self.interior_visitor.fcx.tcx;
let ty = Ty::new_ref(
tcx,
// Use `ReErased` as `resolve_interior` is going to replace all the
// regions anyway.
tcx.lifetimes.re_erased,
ty::TypeAndMut { ty, mutbl: hir::Mutability::Not },
);
self.interior_visitor.record(
ty,
id,
Some(self.scope),
None,
ident.span,
);
}
}
}
ArmPatCollector {
interior_visitor: self,
scope: Scope { id: g.body().hir_id.local_id, data: ScopeData::Node },
}
.visit_pat(pat);
}
match g {
Guard::If(ref e) => {
self.visit_expr(e);
}
Guard::IfLet(ref l) => {
self.visit_let_expr(l);
}
}
}
self.visit_expr(body);
}
fn visit_pat(&mut self, pat: &'tcx Pat<'tcx>) {
intravisit::walk_pat(self, pat);
self.expr_count += 1;
if let PatKind::Binding(..) = pat.kind {
let scope = self.region_scope_tree.var_scope(pat.hir_id.local_id).unwrap();
let ty = self.fcx.typeck_results.borrow().pat_ty(pat);
self.record(ty, pat.hir_id, Some(scope), None, pat.span);
}
}
fn visit_expr(&mut self, expr: &'tcx Expr<'tcx>) {
match &expr.kind {
ExprKind::Call(callee, args) => match &callee.kind {
ExprKind::Path(qpath) => {
let res = self.fcx.typeck_results.borrow().qpath_res(qpath, callee.hir_id);
match res {
// Direct calls never need to keep the callee `ty::FnDef`
// ZST in a temporary, so skip its type, just in case it
// can significantly complicate the generator type.
Res::Def(
DefKind::Fn | DefKind::AssocFn | DefKind::Ctor(_, CtorKind::Fn),
_,
) => {
// NOTE(eddyb) this assumes a path expression has
// no nested expressions to keep track of.
self.expr_count += 1;
// Record the rest of the call expression normally.
for arg in *args {
self.visit_expr(arg);
}
}
_ => intravisit::walk_expr(self, expr),
}
}
_ => intravisit::walk_expr(self, expr),
},
_ => intravisit::walk_expr(self, expr),
}
self.expr_count += 1;
debug!("is_borrowed_temporary: {:?}", self.drop_ranges.is_borrowed_temporary(expr));
let ty = self.fcx.typeck_results.borrow().expr_ty_adjusted_opt(expr);
// Typically, the value produced by an expression is consumed by its parent in some way,
// so we only have to check if the parent contains a yield (note that the parent may, for
// example, store the value into a local variable, but then we already consider local
// variables to be live across their scope).
//
// However, in the case of temporary values, we are going to store the value into a
// temporary on the stack that is live for the current temporary scope and then return a
// reference to it. That value may be live across the entire temporary scope.
//
// There's another subtlety: if the type has an observable drop, it must be dropped after
// the yield, even if it's not borrowed or referenced after the yield. Ideally this would
// *only* happen for types with observable drop, not all types which wrap them, but that
// doesn't match the behavior of MIR borrowck and causes ICEs. See the FIXME comment in
// tests/ui/generator/drop-tracking-parent-expression.rs.
let scope = if self.drop_ranges.is_borrowed_temporary(expr)
|| ty.map_or(true, |ty| {
// Avoid ICEs in needs_drop.
let ty = self.fcx.resolve_vars_if_possible(ty);
let ty = self.fcx.tcx.erase_regions(ty);
if ty.has_infer() {
self.fcx
.tcx
.sess
.delay_span_bug(expr.span, format!("inference variables in {ty}"));
true
} else {
ty.needs_drop(self.fcx.tcx, self.fcx.param_env)
}
}) {
self.rvalue_scopes.temporary_scope(self.region_scope_tree, expr.hir_id.local_id)
} else {
let parent_expr = self
.fcx
.tcx
.hir()
.parent_iter(expr.hir_id)
.find(|(_, node)| matches!(node, hir::Node::Expr(_)))
.map(|(id, _)| id);
debug!("parent_expr: {:?}", parent_expr);
match parent_expr {
Some(parent) => Some(Scope { id: parent.local_id, data: ScopeData::Node }),
None => {
self.rvalue_scopes.temporary_scope(self.region_scope_tree, expr.hir_id.local_id)
}
}
};
// If there are adjustments, then record the final type --
// this is the actual value that is being produced.
if let Some(adjusted_ty) = ty {
self.record(adjusted_ty, expr.hir_id, scope, Some(expr), expr.span);
}
// Also record the unadjusted type (which is the only type if
// there are no adjustments). The reason for this is that the
// unadjusted value is sometimes a "temporary" that would wind
// up in a MIR temporary.
//
// As an example, consider an expression like `vec![].push(x)`.
// Here, the `vec![]` would wind up MIR stored into a
// temporary variable `t` which we can borrow to invoke
// `<Vec<_>>::push(&mut t, x)`.
//
// Note that an expression can have many adjustments, and we
// are just ignoring those intermediate types. This is because
// those intermediate values are always linearly "consumed" by
// the other adjustments, and hence would never be directly
// captured in the MIR.
//
// (Note that this partly relies on the fact that the `Deref`
// traits always return references, which means their content
// can be reborrowed without needing to spill to a temporary.
// If this were not the case, then we could conceivably have
// to create intermediate temporaries.)
//
// The type table might not have information for this expression
// if it is in a malformed scope. (#66387)
if let Some(ty) = self.fcx.typeck_results.borrow().expr_ty_opt(expr) {
self.record(ty, expr.hir_id, scope, Some(expr), expr.span);
} else {
self.fcx.tcx.sess.delay_span_bug(expr.span, "no type for node");
}
}
}
#[derive(Default)]
struct SuspendCheckData<'a, 'tcx> {
expr: Option<&'tcx Expr<'tcx>>,
source_span: Span,
yield_span: Span,
descr_pre: &'a str,
descr_post: &'a str,
plural_len: usize,
}
// Returns whether it emitted a diagnostic or not
// Note that this fn and the proceeding one are based on the code
// for creating must_use diagnostics
//
// Note that this technique was chosen over things like a `Suspend` marker trait
// as it is simpler and has precedent in the compiler
fn check_must_not_suspend_ty<'tcx>(
fcx: &FnCtxt<'_, 'tcx>,
ty: Ty<'tcx>,
hir_id: HirId,
data: SuspendCheckData<'_, 'tcx>,
) -> bool {
if ty.is_unit()
// FIXME: should this check `Ty::is_inhabited_from`. This query is not available in this stage
// of typeck (before ReVar and RePlaceholder are removed), but may remove noise, like in
// `must_use`
// || !ty.is_inhabited_from(fcx.tcx, fcx.tcx.parent_module(hir_id).to_def_id(), fcx.param_env)
{
return false;
}
let plural_suffix = pluralize!(data.plural_len);
debug!("Checking must_not_suspend for {}", ty);
match *ty.kind() {
ty::Adt(..) if ty.is_box() => {
let boxed_ty = ty.boxed_ty();
let descr_pre = &format!("{}boxed ", data.descr_pre);
check_must_not_suspend_ty(fcx, boxed_ty, hir_id, SuspendCheckData { descr_pre, ..data })
}
ty::Adt(def, _) => check_must_not_suspend_def(fcx.tcx, def.did(), hir_id, data),
// FIXME: support adding the attribute to TAITs
ty::Alias(ty::Opaque, ty::AliasTy { def_id: def, .. }) => {
let mut has_emitted = false;
for &(predicate, _) in fcx.tcx.explicit_item_bounds(def).skip_binder() {
// We only look at the `DefId`, so it is safe to skip the binder here.
if let ty::ClauseKind::Trait(ref poly_trait_predicate) =
predicate.kind().skip_binder()
{
let def_id = poly_trait_predicate.trait_ref.def_id;
let descr_pre = &format!("{}implementer{} of ", data.descr_pre, plural_suffix);
if check_must_not_suspend_def(
fcx.tcx,
def_id,
hir_id,
SuspendCheckData { descr_pre, ..data },
) {
has_emitted = true;
break;
}
}
}
has_emitted
}
ty::Dynamic(binder, _, _) => {
let mut has_emitted = false;
for predicate in binder.iter() {
if let ty::ExistentialPredicate::Trait(ref trait_ref) = predicate.skip_binder() {
let def_id = trait_ref.def_id;
let descr_post = &format!(" trait object{}{}", plural_suffix, data.descr_post);
if check_must_not_suspend_def(
fcx.tcx,
def_id,
hir_id,
SuspendCheckData { descr_post, ..data },
) {
has_emitted = true;
break;
}
}
}
has_emitted
}
ty::Tuple(fields) => {
let mut has_emitted = false;
let comps = match data.expr.map(|e| &e.kind) {
Some(hir::ExprKind::Tup(comps)) if comps.len() == fields.len() => Some(comps),
_ => None,
};
for (i, ty) in fields.iter().enumerate() {
let descr_post = &format!(" in tuple element {i}");
let span = comps.and_then(|c| c.get(i)).map(|e| e.span).unwrap_or(data.source_span);
if check_must_not_suspend_ty(
fcx,
ty,
hir_id,
SuspendCheckData {
descr_post,
expr: comps.and_then(|comps| comps.get(i)),
source_span: span,
..data
},
) {
has_emitted = true;
}
}
has_emitted
}
ty::Array(ty, len) => {
let descr_pre = &format!("{}array{} of ", data.descr_pre, plural_suffix);
check_must_not_suspend_ty(
fcx,
ty,
hir_id,
SuspendCheckData {
descr_pre,
plural_len: len.try_eval_target_usize(fcx.tcx, fcx.param_env).unwrap_or(0)
as usize
+ 1,
..data
},
)
}
// If drop tracking is enabled, we want to look through references, since the referent
// may not be considered live across the await point.
ty::Ref(_region, ty, _mutability) if fcx.sess().opts.unstable_opts.drop_tracking => {
let descr_pre = &format!("{}reference{} to ", data.descr_pre, plural_suffix);
check_must_not_suspend_ty(fcx, ty, hir_id, SuspendCheckData { descr_pre, ..data })
}
_ => false,
}
}
fn check_must_not_suspend_def(
tcx: TyCtxt<'_>,
def_id: DefId,
hir_id: HirId,
data: SuspendCheckData<'_, '_>,
) -> bool {
if let Some(attr) = tcx.get_attr(def_id, sym::must_not_suspend) {
tcx.struct_span_lint_hir(
rustc_session::lint::builtin::MUST_NOT_SUSPEND,
hir_id,
data.source_span,
DelayDm(|| {
format!(
"{}`{}`{} held across a suspend point, but should not be",
data.descr_pre,
tcx.def_path_str(def_id),
data.descr_post,
)
}),
|lint| {
// add span pointing to the offending yield/await
lint.span_label(data.yield_span, "the value is held across this suspend point");
// Add optional reason note
if let Some(note) = attr.value_str() {
// FIXME(guswynn): consider formatting this better
lint.span_note(data.source_span, note.to_string());
}
// Add some quick suggestions on what to do
// FIXME: can `drop` work as a suggestion here as well?
lint.span_help(
data.source_span,
"consider using a block (`{ ... }`) \
to shrink the value's scope, ending before the suspend point",
);
lint
},
);
true
} else {
false
}
}