blob: e9591c7c8dbc6605dd727bfb1f3f481045ba59df [file] [log] [blame]
//! # Token Streams
//!
//! `TokenStream`s represent syntactic objects before they are converted into ASTs.
//! A `TokenStream` is, roughly speaking, a sequence of [`TokenTree`]s,
//! which are themselves a single [`Token`] or a `Delimited` subsequence of tokens.
//!
//! ## Ownership
//!
//! `TokenStream`s are persistent data structures constructed as ropes with reference
//! counted-children. In general, this means that calling an operation on a `TokenStream`
//! (such as `slice`) produces an entirely new `TokenStream` from the borrowed reference to
//! the original. This essentially coerces `TokenStream`s into "views" of their subparts,
//! and a borrowed `TokenStream` is sufficient to build an owned `TokenStream` without taking
//! ownership of the original.
use crate::ast::{AttrStyle, StmtKind};
use crate::ast_traits::{HasAttrs, HasSpan, HasTokens};
use crate::token::{self, Delimiter, Nonterminal, Token, TokenKind};
use crate::AttrVec;
use rustc_data_structures::stable_hasher::{HashStable, StableHasher};
use rustc_data_structures::sync::{self, Lrc};
use rustc_macros::HashStable_Generic;
use rustc_serialize::{Decodable, Decoder, Encodable, Encoder};
use rustc_span::{sym, Span, Symbol, DUMMY_SP};
use smallvec::{smallvec, SmallVec};
use std::borrow::Cow;
use std::{cmp, fmt, iter, mem};
/// When the main Rust parser encounters a syntax-extension invocation, it
/// parses the arguments to the invocation as a token tree. This is a very
/// loose structure, such that all sorts of different AST fragments can
/// be passed to syntax extensions using a uniform type.
///
/// If the syntax extension is an MBE macro, it will attempt to match its
/// LHS token tree against the provided token tree, and if it finds a
/// match, will transcribe the RHS token tree, splicing in any captured
/// `macro_parser::matched_nonterminals` into the `SubstNt`s it finds.
///
/// The RHS of an MBE macro is the only place `SubstNt`s are substituted.
/// Nothing special happens to misnamed or misplaced `SubstNt`s.
#[derive(Debug, Clone, PartialEq, Encodable, Decodable, HashStable_Generic)]
pub enum TokenTree {
/// A single token. Should never be `OpenDelim` or `CloseDelim`, because
/// delimiters are implicitly represented by `Delimited`.
Token(Token, Spacing),
/// A delimited sequence of token trees.
Delimited(DelimSpan, Delimiter, TokenStream),
}
// Ensure all fields of `TokenTree` are `DynSend` and `DynSync`.
#[cfg(parallel_compiler)]
fn _dummy()
where
Token: sync::DynSend + sync::DynSync,
Spacing: sync::DynSend + sync::DynSync,
DelimSpan: sync::DynSend + sync::DynSync,
Delimiter: sync::DynSend + sync::DynSync,
TokenStream: sync::DynSend + sync::DynSync,
{
}
impl TokenTree {
/// Checks if this `TokenTree` is equal to the other, regardless of span information.
pub fn eq_unspanned(&self, other: &TokenTree) -> bool {
match (self, other) {
(TokenTree::Token(token, _), TokenTree::Token(token2, _)) => token.kind == token2.kind,
(TokenTree::Delimited(_, delim, tts), TokenTree::Delimited(_, delim2, tts2)) => {
delim == delim2 && tts.eq_unspanned(tts2)
}
_ => false,
}
}
/// Retrieves the `TokenTree`'s span.
pub fn span(&self) -> Span {
match self {
TokenTree::Token(token, _) => token.span,
TokenTree::Delimited(sp, ..) => sp.entire(),
}
}
/// Modify the `TokenTree`'s span in-place.
pub fn set_span(&mut self, span: Span) {
match self {
TokenTree::Token(token, _) => token.span = span,
TokenTree::Delimited(dspan, ..) => *dspan = DelimSpan::from_single(span),
}
}
/// Create a `TokenTree::Token` with alone spacing.
pub fn token_alone(kind: TokenKind, span: Span) -> TokenTree {
TokenTree::Token(Token::new(kind, span), Spacing::Alone)
}
/// Create a `TokenTree::Token` with joint spacing.
pub fn token_joint(kind: TokenKind, span: Span) -> TokenTree {
TokenTree::Token(Token::new(kind, span), Spacing::Joint)
}
pub fn uninterpolate(&self) -> Cow<'_, TokenTree> {
match self {
TokenTree::Token(token, spacing) => match token.uninterpolate() {
Cow::Owned(token) => Cow::Owned(TokenTree::Token(token, *spacing)),
Cow::Borrowed(_) => Cow::Borrowed(self),
},
_ => Cow::Borrowed(self),
}
}
}
impl<CTX> HashStable<CTX> for TokenStream
where
CTX: crate::HashStableContext,
{
fn hash_stable(&self, hcx: &mut CTX, hasher: &mut StableHasher) {
for sub_tt in self.trees() {
sub_tt.hash_stable(hcx, hasher);
}
}
}
pub trait ToAttrTokenStream: sync::DynSend + sync::DynSync {
fn to_attr_token_stream(&self) -> AttrTokenStream;
}
impl ToAttrTokenStream for AttrTokenStream {
fn to_attr_token_stream(&self) -> AttrTokenStream {
self.clone()
}
}
/// A lazy version of [`TokenStream`], which defers creation
/// of an actual `TokenStream` until it is needed.
/// `Box` is here only to reduce the structure size.
#[derive(Clone)]
pub struct LazyAttrTokenStream(Lrc<Box<dyn ToAttrTokenStream>>);
impl LazyAttrTokenStream {
pub fn new(inner: impl ToAttrTokenStream + 'static) -> LazyAttrTokenStream {
LazyAttrTokenStream(Lrc::new(Box::new(inner)))
}
pub fn to_attr_token_stream(&self) -> AttrTokenStream {
self.0.to_attr_token_stream()
}
}
impl fmt::Debug for LazyAttrTokenStream {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "LazyAttrTokenStream({:?})", self.to_attr_token_stream())
}
}
impl<S: Encoder> Encodable<S> for LazyAttrTokenStream {
fn encode(&self, s: &mut S) {
// Used by AST json printing.
Encodable::encode(&self.to_attr_token_stream(), s);
}
}
impl<D: Decoder> Decodable<D> for LazyAttrTokenStream {
fn decode(_d: &mut D) -> Self {
panic!("Attempted to decode LazyAttrTokenStream");
}
}
impl<CTX> HashStable<CTX> for LazyAttrTokenStream {
fn hash_stable(&self, _hcx: &mut CTX, _hasher: &mut StableHasher) {
panic!("Attempted to compute stable hash for LazyAttrTokenStream");
}
}
/// An `AttrTokenStream` is similar to a `TokenStream`, but with extra
/// information about the tokens for attribute targets. This is used
/// during expansion to perform early cfg-expansion, and to process attributes
/// during proc-macro invocations.
#[derive(Clone, Debug, Default, Encodable, Decodable)]
pub struct AttrTokenStream(pub Lrc<Vec<AttrTokenTree>>);
/// Like `TokenTree`, but for `AttrTokenStream`.
#[derive(Clone, Debug, Encodable, Decodable)]
pub enum AttrTokenTree {
Token(Token, Spacing),
Delimited(DelimSpan, Delimiter, AttrTokenStream),
/// Stores the attributes for an attribute target,
/// along with the tokens for that attribute target.
/// See `AttributesData` for more information
Attributes(AttributesData),
}
impl AttrTokenStream {
pub fn new(tokens: Vec<AttrTokenTree>) -> AttrTokenStream {
AttrTokenStream(Lrc::new(tokens))
}
/// Converts this `AttrTokenStream` to a plain `TokenStream`.
/// During conversion, `AttrTokenTree::Attributes` get 'flattened'
/// back to a `TokenStream` of the form `outer_attr attr_target`.
/// If there are inner attributes, they are inserted into the proper
/// place in the attribute target tokens.
pub fn to_tokenstream(&self) -> TokenStream {
let trees: Vec<_> = self
.0
.iter()
.flat_map(|tree| match &tree {
AttrTokenTree::Token(inner, spacing) => {
smallvec![TokenTree::Token(inner.clone(), *spacing)].into_iter()
}
AttrTokenTree::Delimited(span, delim, stream) => {
smallvec![TokenTree::Delimited(*span, *delim, stream.to_tokenstream()),]
.into_iter()
}
AttrTokenTree::Attributes(data) => {
let mut outer_attrs = Vec::new();
let mut inner_attrs = Vec::new();
for attr in &data.attrs {
match attr.style {
crate::AttrStyle::Outer => outer_attrs.push(attr),
crate::AttrStyle::Inner => inner_attrs.push(attr),
}
}
let mut target_tokens: Vec<_> = data
.tokens
.to_attr_token_stream()
.to_tokenstream()
.0
.iter()
.cloned()
.collect();
if !inner_attrs.is_empty() {
let mut found = false;
// Check the last two trees (to account for a trailing semi)
for tree in target_tokens.iter_mut().rev().take(2) {
if let TokenTree::Delimited(span, delim, delim_tokens) = tree {
// Inner attributes are only supported on extern blocks, functions,
// impls, and modules. All of these have their inner attributes
// placed at the beginning of the rightmost outermost braced group:
// e.g. fn foo() { #![my_attr} }
//
// Therefore, we can insert them back into the right location
// without needing to do any extra position tracking.
//
// Note: Outline modules are an exception - they can
// have attributes like `#![my_attr]` at the start of a file.
// Support for custom attributes in this position is not
// properly implemented - we always synthesize fake tokens,
// so we never reach this code.
let mut stream = TokenStream::default();
for inner_attr in inner_attrs {
stream.push_stream(inner_attr.tokens());
}
stream.push_stream(delim_tokens.clone());
*tree = TokenTree::Delimited(*span, *delim, stream);
found = true;
break;
}
}
assert!(
found,
"Failed to find trailing delimited group in: {target_tokens:?}"
);
}
let mut flat: SmallVec<[_; 1]> = SmallVec::new();
for attr in outer_attrs {
// FIXME: Make this more efficient
flat.extend(attr.tokens().0.clone().iter().cloned());
}
flat.extend(target_tokens);
flat.into_iter()
}
})
.collect();
TokenStream::new(trees)
}
}
/// Stores the tokens for an attribute target, along
/// with its attributes.
///
/// This is constructed during parsing when we need to capture
/// tokens.
///
/// For example, `#[cfg(FALSE)] struct Foo {}` would
/// have an `attrs` field containing the `#[cfg(FALSE)]` attr,
/// and a `tokens` field storing the (unparsed) tokens `struct Foo {}`
#[derive(Clone, Debug, Encodable, Decodable)]
pub struct AttributesData {
/// Attributes, both outer and inner.
/// These are stored in the original order that they were parsed in.
pub attrs: AttrVec,
/// The underlying tokens for the attribute target that `attrs`
/// are applied to
pub tokens: LazyAttrTokenStream,
}
/// A `TokenStream` is an abstract sequence of tokens, organized into [`TokenTree`]s.
///
/// The goal is for procedural macros to work with `TokenStream`s and `TokenTree`s
/// instead of a representation of the abstract syntax tree.
/// Today's `TokenTree`s can still contain AST via `token::Interpolated` for
/// backwards compatibility.
#[derive(Clone, Debug, Default, Encodable, Decodable)]
pub struct TokenStream(pub(crate) Lrc<Vec<TokenTree>>);
/// Similar to `proc_macro::Spacing`, but for tokens.
///
/// Note that all `ast::TokenTree::Token` instances have a `Spacing`, but when
/// we convert to `proc_macro::TokenTree` for proc macros only `Punct`
/// `TokenTree`s have a `proc_macro::Spacing`.
#[derive(Clone, Copy, Debug, PartialEq, Encodable, Decodable, HashStable_Generic)]
pub enum Spacing {
/// The token is not immediately followed by an operator token (as
/// determined by `Token::is_op`). E.g. a `+` token is `Alone` in `+ =`,
/// `+/*foo*/=`, `+ident`, and `+()`.
Alone,
/// The token is immediately followed by an operator token. E.g. a `+`
/// token is `Joint` in `+=` and `++`.
Joint,
}
impl TokenStream {
/// Given a `TokenStream` with a `Stream` of only two arguments, return a new `TokenStream`
/// separating the two arguments with a comma for diagnostic suggestions.
pub fn add_comma(&self) -> Option<(TokenStream, Span)> {
// Used to suggest if a user writes `foo!(a b);`
let mut suggestion = None;
let mut iter = self.0.iter().enumerate().peekable();
while let Some((pos, ts)) = iter.next() {
if let Some((_, next)) = iter.peek() {
let sp = match (&ts, &next) {
(_, TokenTree::Token(Token { kind: token::Comma, .. }, _)) => continue,
(
TokenTree::Token(token_left, Spacing::Alone),
TokenTree::Token(token_right, _),
) if ((token_left.is_ident() && !token_left.is_reserved_ident())
|| token_left.is_lit())
&& ((token_right.is_ident() && !token_right.is_reserved_ident())
|| token_right.is_lit()) =>
{
token_left.span
}
(TokenTree::Delimited(sp, ..), _) => sp.entire(),
_ => continue,
};
let sp = sp.shrink_to_hi();
let comma = TokenTree::token_alone(token::Comma, sp);
suggestion = Some((pos, comma, sp));
}
}
if let Some((pos, comma, sp)) = suggestion {
let mut new_stream = Vec::with_capacity(self.0.len() + 1);
let parts = self.0.split_at(pos + 1);
new_stream.extend_from_slice(parts.0);
new_stream.push(comma);
new_stream.extend_from_slice(parts.1);
return Some((TokenStream::new(new_stream), sp));
}
None
}
}
impl FromIterator<TokenTree> for TokenStream {
fn from_iter<I: IntoIterator<Item = TokenTree>>(iter: I) -> Self {
TokenStream::new(iter.into_iter().collect::<Vec<TokenTree>>())
}
}
impl Eq for TokenStream {}
impl PartialEq<TokenStream> for TokenStream {
fn eq(&self, other: &TokenStream) -> bool {
self.trees().eq(other.trees())
}
}
impl TokenStream {
pub fn new(streams: Vec<TokenTree>) -> TokenStream {
TokenStream(Lrc::new(streams))
}
pub fn is_empty(&self) -> bool {
self.0.is_empty()
}
pub fn len(&self) -> usize {
self.0.len()
}
pub fn trees(&self) -> RefTokenTreeCursor<'_> {
RefTokenTreeCursor::new(self)
}
pub fn into_trees(self) -> TokenTreeCursor {
TokenTreeCursor::new(self)
}
/// Compares two `TokenStream`s, checking equality without regarding span information.
pub fn eq_unspanned(&self, other: &TokenStream) -> bool {
let mut t1 = self.trees();
let mut t2 = other.trees();
for (t1, t2) in iter::zip(&mut t1, &mut t2) {
if !t1.eq_unspanned(t2) {
return false;
}
}
t1.next().is_none() && t2.next().is_none()
}
/// Applies the supplied function to each `TokenTree` and its index in `self`, returning a new `TokenStream`
///
/// It is equivalent to `TokenStream::new(self.trees().cloned().enumerate().map(|(i, tt)| f(i, tt)).collect())`.
pub fn map_enumerated_owned(
mut self,
mut f: impl FnMut(usize, TokenTree) -> TokenTree,
) -> TokenStream {
let owned = Lrc::make_mut(&mut self.0); // clone if necessary
// rely on vec's in-place optimizations to avoid another allocation
*owned = mem::take(owned).into_iter().enumerate().map(|(i, tree)| f(i, tree)).collect();
self
}
/// Create a token stream containing a single token with alone spacing.
pub fn token_alone(kind: TokenKind, span: Span) -> TokenStream {
TokenStream::new(vec![TokenTree::token_alone(kind, span)])
}
/// Create a token stream containing a single token with joint spacing.
pub fn token_joint(kind: TokenKind, span: Span) -> TokenStream {
TokenStream::new(vec![TokenTree::token_joint(kind, span)])
}
/// Create a token stream containing a single `Delimited`.
pub fn delimited(span: DelimSpan, delim: Delimiter, tts: TokenStream) -> TokenStream {
TokenStream::new(vec![TokenTree::Delimited(span, delim, tts)])
}
pub fn from_ast(node: &(impl HasAttrs + HasSpan + HasTokens + fmt::Debug)) -> TokenStream {
let Some(tokens) = node.tokens() else {
panic!("missing tokens for node at {:?}: {:?}", node.span(), node);
};
let attrs = node.attrs();
let attr_stream = if attrs.is_empty() {
tokens.to_attr_token_stream()
} else {
let attr_data =
AttributesData { attrs: attrs.iter().cloned().collect(), tokens: tokens.clone() };
AttrTokenStream::new(vec![AttrTokenTree::Attributes(attr_data)])
};
attr_stream.to_tokenstream()
}
pub fn from_nonterminal_ast(nt: &Nonterminal) -> TokenStream {
match nt {
Nonterminal::NtIdent(ident, is_raw) => {
TokenStream::token_alone(token::Ident(ident.name, *is_raw), ident.span)
}
Nonterminal::NtLifetime(ident) => {
TokenStream::token_alone(token::Lifetime(ident.name), ident.span)
}
Nonterminal::NtItem(item) => TokenStream::from_ast(item),
Nonterminal::NtBlock(block) => TokenStream::from_ast(block),
Nonterminal::NtStmt(stmt) if let StmtKind::Empty = stmt.kind => {
// FIXME: Properly collect tokens for empty statements.
TokenStream::token_alone(token::Semi, stmt.span)
}
Nonterminal::NtStmt(stmt) => TokenStream::from_ast(stmt),
Nonterminal::NtPat(pat) => TokenStream::from_ast(pat),
Nonterminal::NtTy(ty) => TokenStream::from_ast(ty),
Nonterminal::NtMeta(attr) => TokenStream::from_ast(attr),
Nonterminal::NtPath(path) => TokenStream::from_ast(path),
Nonterminal::NtVis(vis) => TokenStream::from_ast(vis),
Nonterminal::NtExpr(expr) | Nonterminal::NtLiteral(expr) => TokenStream::from_ast(expr),
}
}
fn flatten_token(token: &Token, spacing: Spacing) -> TokenTree {
match &token.kind {
token::Interpolated(nt) if let token::NtIdent(ident, is_raw) = **nt => {
TokenTree::Token(Token::new(token::Ident(ident.name, is_raw), ident.span), spacing)
}
token::Interpolated(nt) => TokenTree::Delimited(
DelimSpan::from_single(token.span),
Delimiter::Invisible,
TokenStream::from_nonterminal_ast(nt).flattened(),
),
_ => TokenTree::Token(token.clone(), spacing),
}
}
fn flatten_token_tree(tree: &TokenTree) -> TokenTree {
match tree {
TokenTree::Token(token, spacing) => TokenStream::flatten_token(token, *spacing),
TokenTree::Delimited(span, delim, tts) => {
TokenTree::Delimited(*span, *delim, tts.flattened())
}
}
}
#[must_use]
pub fn flattened(&self) -> TokenStream {
fn can_skip(stream: &TokenStream) -> bool {
stream.trees().all(|tree| match tree {
TokenTree::Token(token, _) => !matches!(token.kind, token::Interpolated(_)),
TokenTree::Delimited(_, _, inner) => can_skip(inner),
})
}
if can_skip(self) {
return self.clone();
}
self.trees().map(|tree| TokenStream::flatten_token_tree(tree)).collect()
}
// If `vec` is not empty, try to glue `tt` onto its last token. The return
// value indicates if gluing took place.
fn try_glue_to_last(vec: &mut Vec<TokenTree>, tt: &TokenTree) -> bool {
if let Some(TokenTree::Token(last_tok, Spacing::Joint)) = vec.last()
&& let TokenTree::Token(tok, spacing) = tt
&& let Some(glued_tok) = last_tok.glue(tok)
{
// ...then overwrite the last token tree in `vec` with the
// glued token, and skip the first token tree from `stream`.
*vec.last_mut().unwrap() = TokenTree::Token(glued_tok, *spacing);
true
} else {
false
}
}
/// Push `tt` onto the end of the stream, possibly gluing it to the last
/// token. Uses `make_mut` to maximize efficiency.
pub fn push_tree(&mut self, tt: TokenTree) {
let vec_mut = Lrc::make_mut(&mut self.0);
if Self::try_glue_to_last(vec_mut, &tt) {
// nothing else to do
} else {
vec_mut.push(tt);
}
}
/// Push `stream` onto the end of the stream, possibly gluing the first
/// token tree to the last token. (No other token trees will be glued.)
/// Uses `make_mut` to maximize efficiency.
pub fn push_stream(&mut self, stream: TokenStream) {
let vec_mut = Lrc::make_mut(&mut self.0);
let stream_iter = stream.0.iter().cloned();
if let Some(first) = stream.0.first() && Self::try_glue_to_last(vec_mut, first) {
// Now skip the first token tree from `stream`.
vec_mut.extend(stream_iter.skip(1));
} else {
// Append all of `stream`.
vec_mut.extend(stream_iter);
}
}
pub fn chunks(&self, chunk_size: usize) -> core::slice::Chunks<'_, TokenTree> {
self.0.chunks(chunk_size)
}
/// Desugar doc comments like `/// foo` in the stream into `#[doc =
/// r"foo"]`. Modifies the `TokenStream` via `Lrc::make_mut`, but as little
/// as possible.
pub fn desugar_doc_comments(&mut self) {
if let Some(desugared_stream) = desugar_inner(self.clone()) {
*self = desugared_stream;
}
// The return value is `None` if nothing in `stream` changed.
fn desugar_inner(mut stream: TokenStream) -> Option<TokenStream> {
let mut i = 0;
let mut modified = false;
while let Some(tt) = stream.0.get(i) {
match tt {
&TokenTree::Token(
Token { kind: token::DocComment(_, attr_style, data), span },
_spacing,
) => {
let desugared = desugared_tts(attr_style, data, span);
let desugared_len = desugared.len();
Lrc::make_mut(&mut stream.0).splice(i..i + 1, desugared);
modified = true;
i += desugared_len;
}
&TokenTree::Token(..) => i += 1,
&TokenTree::Delimited(sp, delim, ref delim_stream) => {
if let Some(desugared_delim_stream) = desugar_inner(delim_stream.clone()) {
let new_tt = TokenTree::Delimited(sp, delim, desugared_delim_stream);
Lrc::make_mut(&mut stream.0)[i] = new_tt;
modified = true;
}
i += 1;
}
}
}
if modified { Some(stream) } else { None }
}
fn desugared_tts(attr_style: AttrStyle, data: Symbol, span: Span) -> Vec<TokenTree> {
// Searches for the occurrences of `"#*` and returns the minimum number of `#`s
// required to wrap the text. E.g.
// - `abc d` is wrapped as `r"abc d"` (num_of_hashes = 0)
// - `abc "d"` is wrapped as `r#"abc "d""#` (num_of_hashes = 1)
// - `abc "##d##"` is wrapped as `r###"abc ##"d"##"###` (num_of_hashes = 3)
let mut num_of_hashes = 0;
let mut count = 0;
for ch in data.as_str().chars() {
count = match ch {
'"' => 1,
'#' if count > 0 => count + 1,
_ => 0,
};
num_of_hashes = cmp::max(num_of_hashes, count);
}
// `/// foo` becomes `doc = r"foo"`.
let delim_span = DelimSpan::from_single(span);
let body = TokenTree::Delimited(
delim_span,
Delimiter::Bracket,
[
TokenTree::token_alone(token::Ident(sym::doc, false), span),
TokenTree::token_alone(token::Eq, span),
TokenTree::token_alone(
TokenKind::lit(token::StrRaw(num_of_hashes), data, None),
span,
),
]
.into_iter()
.collect::<TokenStream>(),
);
if attr_style == AttrStyle::Inner {
vec![
TokenTree::token_alone(token::Pound, span),
TokenTree::token_alone(token::Not, span),
body,
]
} else {
vec![TokenTree::token_alone(token::Pound, span), body]
}
}
}
}
/// By-reference iterator over a [`TokenStream`], that produces `&TokenTree`
/// items.
#[derive(Clone)]
pub struct RefTokenTreeCursor<'t> {
stream: &'t TokenStream,
index: usize,
}
impl<'t> RefTokenTreeCursor<'t> {
fn new(stream: &'t TokenStream) -> Self {
RefTokenTreeCursor { stream, index: 0 }
}
pub fn look_ahead(&self, n: usize) -> Option<&TokenTree> {
self.stream.0.get(self.index + n)
}
}
impl<'t> Iterator for RefTokenTreeCursor<'t> {
type Item = &'t TokenTree;
fn next(&mut self) -> Option<&'t TokenTree> {
self.stream.0.get(self.index).map(|tree| {
self.index += 1;
tree
})
}
}
/// Owning by-value iterator over a [`TokenStream`], that produces `&TokenTree`
/// items.
///
/// Doesn't impl `Iterator` because Rust doesn't permit an owning iterator to
/// return `&T` from `next`; the need for an explicit lifetime in the `Item`
/// associated type gets in the way. Instead, use `next_ref` (which doesn't
/// involve associated types) for getting individual elements, or
/// `RefTokenTreeCursor` if you really want an `Iterator`, e.g. in a `for`
/// loop.
#[derive(Clone)]
pub struct TokenTreeCursor {
pub stream: TokenStream,
index: usize,
}
impl TokenTreeCursor {
fn new(stream: TokenStream) -> Self {
TokenTreeCursor { stream, index: 0 }
}
#[inline]
pub fn next_ref(&mut self) -> Option<&TokenTree> {
self.stream.0.get(self.index).map(|tree| {
self.index += 1;
tree
})
}
pub fn look_ahead(&self, n: usize) -> Option<&TokenTree> {
self.stream.0.get(self.index + n)
}
}
#[derive(Debug, Copy, Clone, PartialEq, Encodable, Decodable, HashStable_Generic)]
pub struct DelimSpan {
pub open: Span,
pub close: Span,
}
impl DelimSpan {
pub fn from_single(sp: Span) -> Self {
DelimSpan { open: sp, close: sp }
}
pub fn from_pair(open: Span, close: Span) -> Self {
DelimSpan { open, close }
}
pub fn dummy() -> Self {
Self::from_single(DUMMY_SP)
}
pub fn entire(self) -> Span {
self.open.with_hi(self.close.hi())
}
}
// Some types are used a lot. Make sure they don't unintentionally get bigger.
#[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))]
mod size_asserts {
use super::*;
use rustc_data_structures::static_assert_size;
// tidy-alphabetical-start
static_assert_size!(AttrTokenStream, 8);
static_assert_size!(AttrTokenTree, 32);
static_assert_size!(LazyAttrTokenStream, 8);
static_assert_size!(TokenStream, 8);
static_assert_size!(TokenTree, 32);
// tidy-alphabetical-end
}