blob: 0ff9d874e29d5a1b3381e05f1b799b847bedbd01 [file] [log] [blame]
//! High level interface to certain symmetric ciphers.
//!
//! # Examples
//!
//! Encrypt data in AES128 CBC mode
//!
//! ```
//! use openssl::symm::{encrypt, Cipher};
//!
//! let cipher = Cipher::aes_128_cbc();
//! let data = b"Some Crypto Text";
//! let key = b"\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0A\x0B\x0C\x0D\x0E\x0F";
//! let iv = b"\x00\x01\x02\x03\x04\x05\x06\x07\x00\x01\x02\x03\x04\x05\x06\x07";
//! let ciphertext = encrypt(
//! cipher,
//! key,
//! Some(iv),
//! data).unwrap();
//!
//! assert_eq!(
//! b"\xB4\xB9\xE7\x30\xD6\xD6\xF7\xDE\x77\x3F\x1C\xFF\xB3\x3E\x44\x5A\x91\xD7\x27\x62\x87\x4D\
//! \xFB\x3C\x5E\xC4\x59\x72\x4A\xF4\x7C\xA1",
//! &ciphertext[..]);
//! ```
//!
//! Encrypting an asymmetric key with a symmetric cipher
//!
//! ```
//! use openssl::rsa::{Padding, Rsa};
//! use openssl::symm::Cipher;
//!
//! // Generate keypair and encrypt private key:
//! let keypair = Rsa::generate(2048).unwrap();
//! let cipher = Cipher::aes_256_cbc();
//! let pubkey_pem = keypair.public_key_to_pem_pkcs1().unwrap();
//! let privkey_pem = keypair.private_key_to_pem_passphrase(cipher, b"Rust").unwrap();
//! // pubkey_pem and privkey_pem could be written to file here.
//!
//! // Load private and public key from string:
//! let pubkey = Rsa::public_key_from_pem_pkcs1(&pubkey_pem).unwrap();
//! let privkey = Rsa::private_key_from_pem_passphrase(&privkey_pem, b"Rust").unwrap();
//!
//! // Use the asymmetric keys to encrypt and decrypt a short message:
//! let msg = b"Foo bar";
//! let mut encrypted = vec![0; pubkey.size() as usize];
//! let mut decrypted = vec![0; privkey.size() as usize];
//! let len = pubkey.public_encrypt(msg, &mut encrypted, Padding::PKCS1).unwrap();
//! assert!(len > msg.len());
//! let len = privkey.private_decrypt(&encrypted, &mut decrypted, Padding::PKCS1).unwrap();
//! let output_string = String::from_utf8(decrypted[..len].to_vec()).unwrap();
//! assert_eq!("Foo bar", output_string);
//! println!("Decrypted: '{}'", output_string);
//! ```
use crate::cipher::CipherRef;
use crate::cipher_ctx::{CipherCtx, CipherCtxRef};
use crate::error::ErrorStack;
use crate::nid::Nid;
use cfg_if::cfg_if;
use foreign_types::ForeignTypeRef;
#[derive(Copy, Clone)]
pub enum Mode {
Encrypt,
Decrypt,
}
/// Represents a particular cipher algorithm.
///
/// See OpenSSL doc at [`EVP_EncryptInit`] for more information on each algorithms.
///
/// [`EVP_EncryptInit`]: https://www.openssl.org/docs/manmaster/crypto/EVP_EncryptInit.html
#[derive(Copy, Clone, PartialEq, Eq)]
pub struct Cipher(*const ffi::EVP_CIPHER);
impl Cipher {
/// Looks up the cipher for a certain nid.
///
/// This corresponds to [`EVP_get_cipherbynid`]
///
/// [`EVP_get_cipherbynid`]: https://www.openssl.org/docs/manmaster/crypto/EVP_get_cipherbyname.html
pub fn from_nid(nid: Nid) -> Option<Cipher> {
let ptr = unsafe { ffi::EVP_get_cipherbyname(ffi::OBJ_nid2sn(nid.as_raw())) };
if ptr.is_null() {
None
} else {
Some(Cipher(ptr))
}
}
/// Returns the cipher's Nid.
///
/// This corresponds to [`EVP_CIPHER_nid`]
///
/// [`EVP_CIPHER_nid`]: https://www.openssl.org/docs/manmaster/crypto/EVP_CIPHER_nid.html
pub fn nid(&self) -> Nid {
let nid = unsafe { ffi::EVP_CIPHER_nid(self.0) };
Nid::from_raw(nid)
}
pub fn aes_128_ecb() -> Cipher {
unsafe { Cipher(ffi::EVP_aes_128_ecb()) }
}
pub fn aes_128_cbc() -> Cipher {
unsafe { Cipher(ffi::EVP_aes_128_cbc()) }
}
#[cfg(not(boringssl))]
pub fn aes_128_xts() -> Cipher {
unsafe { Cipher(ffi::EVP_aes_128_xts()) }
}
pub fn aes_128_ctr() -> Cipher {
unsafe { Cipher(ffi::EVP_aes_128_ctr()) }
}
#[cfg(not(boringssl))]
pub fn aes_128_cfb1() -> Cipher {
unsafe { Cipher(ffi::EVP_aes_128_cfb1()) }
}
pub fn aes_128_cfb128() -> Cipher {
unsafe { Cipher(ffi::EVP_aes_128_cfb128()) }
}
#[cfg(not(boringssl))]
pub fn aes_128_cfb8() -> Cipher {
unsafe { Cipher(ffi::EVP_aes_128_cfb8()) }
}
pub fn aes_128_gcm() -> Cipher {
unsafe { Cipher(ffi::EVP_aes_128_gcm()) }
}
#[cfg(not(boringssl))]
pub fn aes_128_ccm() -> Cipher {
unsafe { Cipher(ffi::EVP_aes_128_ccm()) }
}
pub fn aes_128_ofb() -> Cipher {
unsafe { Cipher(ffi::EVP_aes_128_ofb()) }
}
/// Requires OpenSSL 1.1.0 or newer.
#[cfg(all(ossl110, not(osslconf = "OPENSSL_NO_OCB")))]
pub fn aes_128_ocb() -> Cipher {
unsafe { Cipher(ffi::EVP_aes_128_ocb()) }
}
pub fn aes_192_ecb() -> Cipher {
unsafe { Cipher(ffi::EVP_aes_192_ecb()) }
}
pub fn aes_192_cbc() -> Cipher {
unsafe { Cipher(ffi::EVP_aes_192_cbc()) }
}
pub fn aes_192_ctr() -> Cipher {
unsafe { Cipher(ffi::EVP_aes_192_ctr()) }
}
#[cfg(not(boringssl))]
pub fn aes_192_cfb1() -> Cipher {
unsafe { Cipher(ffi::EVP_aes_192_cfb1()) }
}
pub fn aes_192_cfb128() -> Cipher {
unsafe { Cipher(ffi::EVP_aes_192_cfb128()) }
}
#[cfg(not(boringssl))]
pub fn aes_192_cfb8() -> Cipher {
unsafe { Cipher(ffi::EVP_aes_192_cfb8()) }
}
pub fn aes_192_gcm() -> Cipher {
unsafe { Cipher(ffi::EVP_aes_192_gcm()) }
}
#[cfg(not(boringssl))]
pub fn aes_192_ccm() -> Cipher {
unsafe { Cipher(ffi::EVP_aes_192_ccm()) }
}
pub fn aes_192_ofb() -> Cipher {
unsafe { Cipher(ffi::EVP_aes_192_ofb()) }
}
/// Requires OpenSSL 1.1.0 or newer.
#[cfg(all(ossl110, not(osslconf = "OPENSSL_NO_OCB")))]
pub fn aes_192_ocb() -> Cipher {
unsafe { Cipher(ffi::EVP_aes_192_ocb()) }
}
pub fn aes_256_ecb() -> Cipher {
unsafe { Cipher(ffi::EVP_aes_256_ecb()) }
}
pub fn aes_256_cbc() -> Cipher {
unsafe { Cipher(ffi::EVP_aes_256_cbc()) }
}
#[cfg(not(boringssl))]
pub fn aes_256_xts() -> Cipher {
unsafe { Cipher(ffi::EVP_aes_256_xts()) }
}
pub fn aes_256_ctr() -> Cipher {
unsafe { Cipher(ffi::EVP_aes_256_ctr()) }
}
#[cfg(not(boringssl))]
pub fn aes_256_cfb1() -> Cipher {
unsafe { Cipher(ffi::EVP_aes_256_cfb1()) }
}
pub fn aes_256_cfb128() -> Cipher {
unsafe { Cipher(ffi::EVP_aes_256_cfb128()) }
}
#[cfg(not(boringssl))]
pub fn aes_256_cfb8() -> Cipher {
unsafe { Cipher(ffi::EVP_aes_256_cfb8()) }
}
pub fn aes_256_gcm() -> Cipher {
unsafe { Cipher(ffi::EVP_aes_256_gcm()) }
}
#[cfg(not(boringssl))]
pub fn aes_256_ccm() -> Cipher {
unsafe { Cipher(ffi::EVP_aes_256_ccm()) }
}
pub fn aes_256_ofb() -> Cipher {
unsafe { Cipher(ffi::EVP_aes_256_ofb()) }
}
/// Requires OpenSSL 1.1.0 or newer.
#[cfg(all(ossl110, not(osslconf = "OPENSSL_NO_OCB")))]
pub fn aes_256_ocb() -> Cipher {
unsafe { Cipher(ffi::EVP_aes_256_ocb()) }
}
#[cfg(not(osslconf = "OPENSSL_NO_BF"))]
pub fn bf_cbc() -> Cipher {
unsafe { Cipher(ffi::EVP_bf_cbc()) }
}
#[cfg(not(osslconf = "OPENSSL_NO_BF"))]
pub fn bf_ecb() -> Cipher {
unsafe { Cipher(ffi::EVP_bf_ecb()) }
}
#[cfg(not(osslconf = "OPENSSL_NO_BF"))]
pub fn bf_cfb64() -> Cipher {
unsafe { Cipher(ffi::EVP_bf_cfb64()) }
}
#[cfg(not(osslconf = "OPENSSL_NO_BF"))]
pub fn bf_ofb() -> Cipher {
unsafe { Cipher(ffi::EVP_bf_ofb()) }
}
pub fn des_cbc() -> Cipher {
unsafe { Cipher(ffi::EVP_des_cbc()) }
}
pub fn des_ecb() -> Cipher {
unsafe { Cipher(ffi::EVP_des_ecb()) }
}
pub fn des_ede3() -> Cipher {
unsafe { Cipher(ffi::EVP_des_ede3()) }
}
pub fn des_ede3_cbc() -> Cipher {
unsafe { Cipher(ffi::EVP_des_ede3_cbc()) }
}
pub fn des_ede3_ecb() -> Cipher {
unsafe { Cipher(ffi::EVP_des_ede3_ecb()) }
}
#[cfg(not(boringssl))]
pub fn des_ede3_cfb64() -> Cipher {
unsafe { Cipher(ffi::EVP_des_ede3_cfb64()) }
}
#[cfg(not(boringssl))]
pub fn des_ede3_cfb8() -> Cipher {
unsafe { Cipher(ffi::EVP_des_ede3_cfb8()) }
}
#[cfg(not(boringssl))]
pub fn des_ede3_ofb() -> Cipher {
unsafe { Cipher(ffi::EVP_des_ede3_ofb()) }
}
#[cfg(not(osslconf = "OPENSSL_NO_RC4"))]
pub fn rc4() -> Cipher {
unsafe { Cipher(ffi::EVP_rc4()) }
}
#[cfg(not(osslconf = "OPENSSL_NO_CAMELLIA"))]
pub fn camellia_128_cbc() -> Cipher {
unsafe { Cipher(ffi::EVP_camellia_128_cbc()) }
}
#[cfg(not(osslconf = "OPENSSL_NO_CAMELLIA"))]
pub fn camellia_128_ecb() -> Cipher {
unsafe { Cipher(ffi::EVP_camellia_128_ecb()) }
}
#[cfg(not(osslconf = "OPENSSL_NO_CAMELLIA"))]
pub fn camellia_128_ofb() -> Cipher {
unsafe { Cipher(ffi::EVP_camellia_128_ofb()) }
}
#[cfg(not(osslconf = "OPENSSL_NO_CAMELLIA"))]
pub fn camellia_128_cfb128() -> Cipher {
unsafe { Cipher(ffi::EVP_camellia_128_cfb128()) }
}
#[cfg(not(osslconf = "OPENSSL_NO_CAMELLIA"))]
pub fn camellia_192_cbc() -> Cipher {
unsafe { Cipher(ffi::EVP_camellia_192_cbc()) }
}
#[cfg(not(osslconf = "OPENSSL_NO_CAMELLIA"))]
pub fn camellia_192_ecb() -> Cipher {
unsafe { Cipher(ffi::EVP_camellia_192_ecb()) }
}
#[cfg(not(osslconf = "OPENSSL_NO_CAMELLIA"))]
pub fn camellia_192_ofb() -> Cipher {
unsafe { Cipher(ffi::EVP_camellia_192_ofb()) }
}
#[cfg(not(osslconf = "OPENSSL_NO_CAMELLIA"))]
pub fn camellia_192_cfb128() -> Cipher {
unsafe { Cipher(ffi::EVP_camellia_192_cfb128()) }
}
#[cfg(not(osslconf = "OPENSSL_NO_CAMELLIA"))]
pub fn camellia_256_cbc() -> Cipher {
unsafe { Cipher(ffi::EVP_camellia_256_cbc()) }
}
#[cfg(not(osslconf = "OPENSSL_NO_CAMELLIA"))]
pub fn camellia_256_ecb() -> Cipher {
unsafe { Cipher(ffi::EVP_camellia_256_ecb()) }
}
#[cfg(not(osslconf = "OPENSSL_NO_CAMELLIA"))]
pub fn camellia_256_ofb() -> Cipher {
unsafe { Cipher(ffi::EVP_camellia_256_ofb()) }
}
#[cfg(not(osslconf = "OPENSSL_NO_CAMELLIA"))]
pub fn camellia_256_cfb128() -> Cipher {
unsafe { Cipher(ffi::EVP_camellia_256_cfb128()) }
}
#[cfg(not(osslconf = "OPENSSL_NO_CAST"))]
pub fn cast5_cbc() -> Cipher {
unsafe { Cipher(ffi::EVP_cast5_cbc()) }
}
#[cfg(not(osslconf = "OPENSSL_NO_CAST"))]
pub fn cast5_ecb() -> Cipher {
unsafe { Cipher(ffi::EVP_cast5_ecb()) }
}
#[cfg(not(osslconf = "OPENSSL_NO_CAST"))]
pub fn cast5_ofb() -> Cipher {
unsafe { Cipher(ffi::EVP_cast5_ofb()) }
}
#[cfg(not(osslconf = "OPENSSL_NO_CAST"))]
pub fn cast5_cfb64() -> Cipher {
unsafe { Cipher(ffi::EVP_cast5_cfb64()) }
}
/// Requires OpenSSL 1.1.0 or newer.
#[cfg(all(any(ossl110, libressl310), not(osslconf = "OPENSSL_NO_CHACHA")))]
pub fn chacha20() -> Cipher {
unsafe { Cipher(ffi::EVP_chacha20()) }
}
/// Requires OpenSSL 1.1.0 or newer.
#[cfg(all(any(ossl110, libressl360), not(osslconf = "OPENSSL_NO_CHACHA")))]
pub fn chacha20_poly1305() -> Cipher {
unsafe { Cipher(ffi::EVP_chacha20_poly1305()) }
}
#[cfg(not(osslconf = "OPENSSL_NO_IDEA"))]
pub fn idea_cbc() -> Cipher {
unsafe { Cipher(ffi::EVP_idea_cbc()) }
}
#[cfg(not(osslconf = "OPENSSL_NO_IDEA"))]
pub fn idea_ecb() -> Cipher {
unsafe { Cipher(ffi::EVP_idea_ecb()) }
}
#[cfg(not(osslconf = "OPENSSL_NO_IDEA"))]
pub fn idea_ofb() -> Cipher {
unsafe { Cipher(ffi::EVP_idea_ofb()) }
}
#[cfg(not(osslconf = "OPENSSL_NO_IDEA"))]
pub fn idea_cfb64() -> Cipher {
unsafe { Cipher(ffi::EVP_idea_cfb64()) }
}
#[cfg(not(osslconf = "OPENSSL_NO_SEED"))]
pub fn seed_cbc() -> Cipher {
unsafe { Cipher(ffi::EVP_seed_cbc()) }
}
#[cfg(not(osslconf = "OPENSSL_NO_SEED"))]
pub fn seed_cfb128() -> Cipher {
unsafe { Cipher(ffi::EVP_seed_cfb128()) }
}
#[cfg(not(osslconf = "OPENSSL_NO_SEED"))]
pub fn seed_ecb() -> Cipher {
unsafe { Cipher(ffi::EVP_seed_ecb()) }
}
#[cfg(not(osslconf = "OPENSSL_NO_SEED"))]
pub fn seed_ofb() -> Cipher {
unsafe { Cipher(ffi::EVP_seed_ofb()) }
}
#[cfg(all(any(ossl111, libressl291), not(osslconf = "OPENSSL_NO_SM4")))]
pub fn sm4_ecb() -> Cipher {
unsafe { Cipher(ffi::EVP_sm4_ecb()) }
}
#[cfg(all(any(ossl111, libressl291), not(osslconf = "OPENSSL_NO_SM4")))]
pub fn sm4_cbc() -> Cipher {
unsafe { Cipher(ffi::EVP_sm4_cbc()) }
}
#[cfg(all(any(ossl111, libressl291), not(osslconf = "OPENSSL_NO_SM4")))]
pub fn sm4_ctr() -> Cipher {
unsafe { Cipher(ffi::EVP_sm4_ctr()) }
}
#[cfg(all(any(ossl111, libressl291), not(osslconf = "OPENSSL_NO_SM4")))]
pub fn sm4_cfb128() -> Cipher {
unsafe { Cipher(ffi::EVP_sm4_cfb128()) }
}
#[cfg(all(any(ossl111, libressl291), not(osslconf = "OPENSSL_NO_SM4")))]
pub fn sm4_ofb() -> Cipher {
unsafe { Cipher(ffi::EVP_sm4_ofb()) }
}
/// Creates a `Cipher` from a raw pointer to its OpenSSL type.
///
/// # Safety
///
/// The caller must ensure the pointer is valid for the `'static` lifetime.
pub unsafe fn from_ptr(ptr: *const ffi::EVP_CIPHER) -> Cipher {
Cipher(ptr)
}
#[allow(clippy::trivially_copy_pass_by_ref)]
pub fn as_ptr(&self) -> *const ffi::EVP_CIPHER {
self.0
}
/// Returns the length of keys used with this cipher.
#[allow(clippy::trivially_copy_pass_by_ref)]
pub fn key_len(&self) -> usize {
unsafe { EVP_CIPHER_key_length(self.0) as usize }
}
/// Returns the length of the IV used with this cipher, or `None` if the
/// cipher does not use an IV.
#[allow(clippy::trivially_copy_pass_by_ref)]
pub fn iv_len(&self) -> Option<usize> {
unsafe {
let len = EVP_CIPHER_iv_length(self.0) as usize;
if len == 0 {
None
} else {
Some(len)
}
}
}
/// Returns the block size of the cipher.
///
/// # Note
///
/// Stream ciphers such as RC4 have a block size of 1.
#[allow(clippy::trivially_copy_pass_by_ref)]
pub fn block_size(&self) -> usize {
unsafe { EVP_CIPHER_block_size(self.0) as usize }
}
/// Determines whether the cipher is using CCM mode
#[cfg(not(boringssl))]
fn is_ccm(self) -> bool {
// NOTE: OpenSSL returns pointers to static structs, which makes this work as expected
self == Cipher::aes_128_ccm() || self == Cipher::aes_256_ccm()
}
#[cfg(boringssl)]
fn is_ccm(self) -> bool {
false
}
/// Determines whether the cipher is using OCB mode
#[cfg(all(ossl110, not(osslconf = "OPENSSL_NO_OCB")))]
fn is_ocb(self) -> bool {
self == Cipher::aes_128_ocb()
|| self == Cipher::aes_192_ocb()
|| self == Cipher::aes_256_ocb()
}
#[cfg(any(not(ossl110), osslconf = "OPENSSL_NO_OCB"))]
const fn is_ocb(self) -> bool {
false
}
}
unsafe impl Sync for Cipher {}
unsafe impl Send for Cipher {}
/// Represents a symmetric cipher context.
///
/// Padding is enabled by default.
///
/// # Examples
///
/// Encrypt some plaintext in chunks, then decrypt the ciphertext back into plaintext, in AES 128
/// CBC mode.
///
/// ```
/// use openssl::symm::{Cipher, Mode, Crypter};
///
/// let plaintexts: [&[u8]; 2] = [b"Some Stream of", b" Crypto Text"];
/// let key = b"\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0A\x0B\x0C\x0D\x0E\x0F";
/// let iv = b"\x00\x01\x02\x03\x04\x05\x06\x07\x00\x01\x02\x03\x04\x05\x06\x07";
/// let data_len = plaintexts.iter().fold(0, |sum, x| sum + x.len());
///
/// // Create a cipher context for encryption.
/// let mut encrypter = Crypter::new(
/// Cipher::aes_128_cbc(),
/// Mode::Encrypt,
/// key,
/// Some(iv)).unwrap();
///
/// let block_size = Cipher::aes_128_cbc().block_size();
/// let mut ciphertext = vec![0; data_len + block_size];
///
/// // Encrypt 2 chunks of plaintexts successively.
/// let mut count = encrypter.update(plaintexts[0], &mut ciphertext).unwrap();
/// count += encrypter.update(plaintexts[1], &mut ciphertext[count..]).unwrap();
/// count += encrypter.finalize(&mut ciphertext[count..]).unwrap();
/// ciphertext.truncate(count);
///
/// assert_eq!(
/// b"\x0F\x21\x83\x7E\xB2\x88\x04\xAF\xD9\xCC\xE2\x03\x49\xB4\x88\xF6\xC4\x61\x0E\x32\x1C\xF9\
/// \x0D\x66\xB1\xE6\x2C\x77\x76\x18\x8D\x99",
/// &ciphertext[..]
/// );
///
///
/// // Let's pretend we don't know the plaintext, and now decrypt the ciphertext.
/// let data_len = ciphertext.len();
/// let ciphertexts = [&ciphertext[..9], &ciphertext[9..]];
///
/// // Create a cipher context for decryption.
/// let mut decrypter = Crypter::new(
/// Cipher::aes_128_cbc(),
/// Mode::Decrypt,
/// key,
/// Some(iv)).unwrap();
/// let mut plaintext = vec![0; data_len + block_size];
///
/// // Decrypt 2 chunks of ciphertexts successively.
/// let mut count = decrypter.update(ciphertexts[0], &mut plaintext).unwrap();
/// count += decrypter.update(ciphertexts[1], &mut plaintext[count..]).unwrap();
/// count += decrypter.finalize(&mut plaintext[count..]).unwrap();
/// plaintext.truncate(count);
///
/// assert_eq!(b"Some Stream of Crypto Text", &plaintext[..]);
/// ```
pub struct Crypter {
ctx: CipherCtx,
}
impl Crypter {
/// Creates a new `Crypter`. The initialisation vector, `iv`, is not necessary for certain
/// types of `Cipher`.
///
/// # Panics
///
/// Panics if an IV is required by the cipher but not provided. Also make sure that the key
/// and IV size are appropriate for your cipher.
pub fn new(
t: Cipher,
mode: Mode,
key: &[u8],
iv: Option<&[u8]>,
) -> Result<Crypter, ErrorStack> {
let mut ctx = CipherCtx::new()?;
let f = match mode {
Mode::Encrypt => CipherCtxRef::encrypt_init,
Mode::Decrypt => CipherCtxRef::decrypt_init,
};
f(
&mut ctx,
Some(unsafe { CipherRef::from_ptr(t.as_ptr() as *mut _) }),
None,
None,
)?;
ctx.set_key_length(key.len())?;
if let (Some(iv), Some(iv_len)) = (iv, t.iv_len()) {
if iv.len() != iv_len {
ctx.set_iv_length(iv.len())?;
}
}
f(&mut ctx, None, Some(key), iv)?;
Ok(Crypter { ctx })
}
/// Enables or disables padding.
///
/// If padding is disabled, total amount of data encrypted/decrypted must
/// be a multiple of the cipher's block size.
pub fn pad(&mut self, padding: bool) {
self.ctx.set_padding(padding)
}
/// Sets the tag used to authenticate ciphertext in AEAD ciphers such as AES GCM.
///
/// When decrypting cipher text using an AEAD cipher, this must be called before `finalize`.
pub fn set_tag(&mut self, tag: &[u8]) -> Result<(), ErrorStack> {
self.ctx.set_tag(tag)
}
/// Sets the length of the authentication tag to generate in AES CCM.
///
/// When encrypting with AES CCM, the tag length needs to be explicitly set in order
/// to use a value different than the default 12 bytes.
pub fn set_tag_len(&mut self, tag_len: usize) -> Result<(), ErrorStack> {
self.ctx.set_tag_length(tag_len)
}
/// Feeds total plaintext length to the cipher.
///
/// The total plaintext or ciphertext length MUST be passed to the cipher when it operates in
/// CCM mode.
pub fn set_data_len(&mut self, data_len: usize) -> Result<(), ErrorStack> {
self.ctx.set_data_len(data_len)
}
/// Feeds Additional Authenticated Data (AAD) through the cipher.
///
/// This can only be used with AEAD ciphers such as AES GCM. Data fed in is not encrypted, but
/// is factored into the authentication tag. It must be called before the first call to
/// `update`.
pub fn aad_update(&mut self, input: &[u8]) -> Result<(), ErrorStack> {
self.ctx.cipher_update(input, None)?;
Ok(())
}
/// Feeds data from `input` through the cipher, writing encrypted/decrypted
/// bytes into `output`.
///
/// The number of bytes written to `output` is returned. Note that this may
/// not be equal to the length of `input`.
///
/// # Panics
///
/// Panics for stream ciphers if `output.len() < input.len()`.
///
/// Panics for block ciphers if `output.len() < input.len() + block_size`,
/// where `block_size` is the block size of the cipher (see `Cipher::block_size`).
///
/// Panics if `output.len() > c_int::max_value()`.
pub fn update(&mut self, input: &[u8], output: &mut [u8]) -> Result<usize, ErrorStack> {
self.ctx.cipher_update(input, Some(output))
}
/// Feeds data from `input` through the cipher, writing encrypted/decrypted
/// bytes into `output`.
///
/// The number of bytes written to `output` is returned. Note that this may
/// not be equal to the length of `input`.
///
/// # Safety
///
/// The caller must provide an `output` buffer large enough to contain
/// correct number of bytes. For streaming ciphers the output buffer size
/// should be at least as big as the input buffer. For block ciphers the
/// size of the output buffer depends on the state of partially updated
/// blocks.
pub unsafe fn update_unchecked(
&mut self,
input: &[u8],
output: &mut [u8],
) -> Result<usize, ErrorStack> {
self.ctx.cipher_update_unchecked(input, Some(output))
}
/// Finishes the encryption/decryption process, writing any remaining data
/// to `output`.
///
/// The number of bytes written to `output` is returned.
///
/// `update` should not be called after this method.
///
/// # Panics
///
/// Panics for block ciphers if `output.len() < block_size`,
/// where `block_size` is the block size of the cipher (see `Cipher::block_size`).
pub fn finalize(&mut self, output: &mut [u8]) -> Result<usize, ErrorStack> {
self.ctx.cipher_final(output)
}
/// Retrieves the authentication tag used to authenticate ciphertext in AEAD ciphers such
/// as AES GCM.
///
/// When encrypting data with an AEAD cipher, this must be called after `finalize`.
///
/// The size of the buffer indicates the required size of the tag. While some ciphers support a
/// range of tag sizes, it is recommended to pick the maximum size. For AES GCM, this is 16
/// bytes, for example.
pub fn get_tag(&self, tag: &mut [u8]) -> Result<(), ErrorStack> {
self.ctx.tag(tag)
}
}
/// Encrypts data in one go, and returns the encrypted data.
///
/// Data is encrypted using the specified cipher type `t` in encrypt mode with the specified `key`
/// and initialization vector `iv`. Padding is enabled.
///
/// This is a convenient interface to `Crypter` to encrypt all data in one go. To encrypt a stream
/// of data incrementally , use `Crypter` instead.
///
/// # Examples
///
/// Encrypt data in AES128 CBC mode
///
/// ```
/// use openssl::symm::{encrypt, Cipher};
///
/// let cipher = Cipher::aes_128_cbc();
/// let data = b"Some Crypto Text";
/// let key = b"\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0A\x0B\x0C\x0D\x0E\x0F";
/// let iv = b"\x00\x01\x02\x03\x04\x05\x06\x07\x00\x01\x02\x03\x04\x05\x06\x07";
/// let ciphertext = encrypt(
/// cipher,
/// key,
/// Some(iv),
/// data).unwrap();
///
/// assert_eq!(
/// b"\xB4\xB9\xE7\x30\xD6\xD6\xF7\xDE\x77\x3F\x1C\xFF\xB3\x3E\x44\x5A\x91\xD7\x27\x62\x87\x4D\
/// \xFB\x3C\x5E\xC4\x59\x72\x4A\xF4\x7C\xA1",
/// &ciphertext[..]);
/// ```
pub fn encrypt(
t: Cipher,
key: &[u8],
iv: Option<&[u8]>,
data: &[u8],
) -> Result<Vec<u8>, ErrorStack> {
cipher(t, Mode::Encrypt, key, iv, data)
}
/// Decrypts data in one go, and returns the decrypted data.
///
/// Data is decrypted using the specified cipher type `t` in decrypt mode with the specified `key`
/// and initialization vector `iv`. Padding is enabled.
///
/// This is a convenient interface to `Crypter` to decrypt all data in one go. To decrypt a stream
/// of data incrementally , use `Crypter` instead.
///
/// # Examples
///
/// Decrypt data in AES128 CBC mode
///
/// ```
/// use openssl::symm::{decrypt, Cipher};
///
/// let cipher = Cipher::aes_128_cbc();
/// let data = b"\xB4\xB9\xE7\x30\xD6\xD6\xF7\xDE\x77\x3F\x1C\xFF\xB3\x3E\x44\x5A\x91\xD7\x27\x62\
/// \x87\x4D\xFB\x3C\x5E\xC4\x59\x72\x4A\xF4\x7C\xA1";
/// let key = b"\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0A\x0B\x0C\x0D\x0E\x0F";
/// let iv = b"\x00\x01\x02\x03\x04\x05\x06\x07\x00\x01\x02\x03\x04\x05\x06\x07";
/// let ciphertext = decrypt(
/// cipher,
/// key,
/// Some(iv),
/// data).unwrap();
///
/// assert_eq!(
/// b"Some Crypto Text",
/// &ciphertext[..]);
/// ```
pub fn decrypt(
t: Cipher,
key: &[u8],
iv: Option<&[u8]>,
data: &[u8],
) -> Result<Vec<u8>, ErrorStack> {
cipher(t, Mode::Decrypt, key, iv, data)
}
fn cipher(
t: Cipher,
mode: Mode,
key: &[u8],
iv: Option<&[u8]>,
data: &[u8],
) -> Result<Vec<u8>, ErrorStack> {
let mut c = Crypter::new(t, mode, key, iv)?;
let mut out = vec![0; data.len() + t.block_size()];
let count = c.update(data, &mut out)?;
let rest = c.finalize(&mut out[count..])?;
out.truncate(count + rest);
Ok(out)
}
/// Like `encrypt`, but for AEAD ciphers such as AES GCM.
///
/// Additional Authenticated Data can be provided in the `aad` field, and the authentication tag
/// will be copied into the `tag` field.
///
/// The size of the `tag` buffer indicates the required size of the tag. While some ciphers support
/// a range of tag sizes, it is recommended to pick the maximum size. For AES GCM, this is 16 bytes,
/// for example.
pub fn encrypt_aead(
t: Cipher,
key: &[u8],
iv: Option<&[u8]>,
aad: &[u8],
data: &[u8],
tag: &mut [u8],
) -> Result<Vec<u8>, ErrorStack> {
let mut c = Crypter::new(t, Mode::Encrypt, key, iv)?;
let mut out = vec![0; data.len() + t.block_size()];
let is_ccm = t.is_ccm();
if is_ccm || t.is_ocb() {
c.set_tag_len(tag.len())?;
if is_ccm {
c.set_data_len(data.len())?;
}
}
c.aad_update(aad)?;
let count = c.update(data, &mut out)?;
let rest = c.finalize(&mut out[count..])?;
c.get_tag(tag)?;
out.truncate(count + rest);
Ok(out)
}
/// Like `decrypt`, but for AEAD ciphers such as AES GCM.
///
/// Additional Authenticated Data can be provided in the `aad` field, and the authentication tag
/// should be provided in the `tag` field.
pub fn decrypt_aead(
t: Cipher,
key: &[u8],
iv: Option<&[u8]>,
aad: &[u8],
data: &[u8],
tag: &[u8],
) -> Result<Vec<u8>, ErrorStack> {
let mut c = Crypter::new(t, Mode::Decrypt, key, iv)?;
let mut out = vec![0; data.len() + t.block_size()];
let is_ccm = t.is_ccm();
if is_ccm || t.is_ocb() {
c.set_tag(tag)?;
if is_ccm {
c.set_data_len(data.len())?;
}
}
c.aad_update(aad)?;
let count = c.update(data, &mut out)?;
let rest = if t.is_ccm() {
0
} else {
c.set_tag(tag)?;
c.finalize(&mut out[count..])?
};
out.truncate(count + rest);
Ok(out)
}
cfg_if! {
if #[cfg(any(boringssl, ossl110, libressl273))] {
use ffi::{EVP_CIPHER_block_size, EVP_CIPHER_iv_length, EVP_CIPHER_key_length};
} else {
use crate::LenType;
#[allow(bad_style)]
pub unsafe fn EVP_CIPHER_iv_length(ptr: *const ffi::EVP_CIPHER) -> LenType {
(*ptr).iv_len
}
#[allow(bad_style)]
pub unsafe fn EVP_CIPHER_block_size(ptr: *const ffi::EVP_CIPHER) -> LenType {
(*ptr).block_size
}
#[allow(bad_style)]
pub unsafe fn EVP_CIPHER_key_length(ptr: *const ffi::EVP_CIPHER) -> LenType {
(*ptr).key_len
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use hex::{self, FromHex};
#[test]
fn test_stream_cipher_output() {
let key = [0u8; 16];
let iv = [0u8; 16];
let mut c = super::Crypter::new(
super::Cipher::aes_128_ctr(),
super::Mode::Encrypt,
&key,
Some(&iv),
)
.unwrap();
assert_eq!(c.update(&[0u8; 15], &mut [0u8; 15]).unwrap(), 15);
assert_eq!(c.update(&[0u8; 1], &mut [0u8; 1]).unwrap(), 1);
assert_eq!(c.finalize(&mut [0u8; 0]).unwrap(), 0);
}
// Test vectors from FIPS-197:
// http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
#[test]
fn test_aes_256_ecb() {
let k0 = [
0x00u8, 0x01u8, 0x02u8, 0x03u8, 0x04u8, 0x05u8, 0x06u8, 0x07u8, 0x08u8, 0x09u8, 0x0au8,
0x0bu8, 0x0cu8, 0x0du8, 0x0eu8, 0x0fu8, 0x10u8, 0x11u8, 0x12u8, 0x13u8, 0x14u8, 0x15u8,
0x16u8, 0x17u8, 0x18u8, 0x19u8, 0x1au8, 0x1bu8, 0x1cu8, 0x1du8, 0x1eu8, 0x1fu8,
];
let p0 = [
0x00u8, 0x11u8, 0x22u8, 0x33u8, 0x44u8, 0x55u8, 0x66u8, 0x77u8, 0x88u8, 0x99u8, 0xaau8,
0xbbu8, 0xccu8, 0xddu8, 0xeeu8, 0xffu8,
];
let c0 = [
0x8eu8, 0xa2u8, 0xb7u8, 0xcau8, 0x51u8, 0x67u8, 0x45u8, 0xbfu8, 0xeau8, 0xfcu8, 0x49u8,
0x90u8, 0x4bu8, 0x49u8, 0x60u8, 0x89u8,
];
let mut c = super::Crypter::new(
super::Cipher::aes_256_ecb(),
super::Mode::Encrypt,
&k0,
None,
)
.unwrap();
c.pad(false);
let mut r0 = vec![0; c0.len() + super::Cipher::aes_256_ecb().block_size()];
let count = c.update(&p0, &mut r0).unwrap();
let rest = c.finalize(&mut r0[count..]).unwrap();
r0.truncate(count + rest);
assert_eq!(hex::encode(&r0), hex::encode(c0));
let mut c = super::Crypter::new(
super::Cipher::aes_256_ecb(),
super::Mode::Decrypt,
&k0,
None,
)
.unwrap();
c.pad(false);
let mut p1 = vec![0; r0.len() + super::Cipher::aes_256_ecb().block_size()];
let count = c.update(&r0, &mut p1).unwrap();
let rest = c.finalize(&mut p1[count..]).unwrap();
p1.truncate(count + rest);
assert_eq!(hex::encode(p1), hex::encode(p0));
}
#[test]
fn test_aes_256_cbc_decrypt() {
let iv = [
4_u8, 223_u8, 153_u8, 219_u8, 28_u8, 142_u8, 234_u8, 68_u8, 227_u8, 69_u8, 98_u8,
107_u8, 208_u8, 14_u8, 236_u8, 60_u8,
];
let data = [
143_u8, 210_u8, 75_u8, 63_u8, 214_u8, 179_u8, 155_u8, 241_u8, 242_u8, 31_u8, 154_u8,
56_u8, 198_u8, 145_u8, 192_u8, 64_u8, 2_u8, 245_u8, 167_u8, 220_u8, 55_u8, 119_u8,
233_u8, 136_u8, 139_u8, 27_u8, 71_u8, 242_u8, 119_u8, 175_u8, 65_u8, 207_u8,
];
let ciphered_data = [
0x4a_u8, 0x2e_u8, 0xe5_u8, 0x6_u8, 0xbf_u8, 0xcf_u8, 0xf2_u8, 0xd7_u8, 0xea_u8,
0x2d_u8, 0xb1_u8, 0x85_u8, 0x6c_u8, 0x93_u8, 0x65_u8, 0x6f_u8,
];
let mut cr = super::Crypter::new(
super::Cipher::aes_256_cbc(),
super::Mode::Decrypt,
&data,
Some(&iv),
)
.unwrap();
cr.pad(false);
let mut unciphered_data = vec![0; data.len() + super::Cipher::aes_256_cbc().block_size()];
let count = cr.update(&ciphered_data, &mut unciphered_data).unwrap();
let rest = cr.finalize(&mut unciphered_data[count..]).unwrap();
unciphered_data.truncate(count + rest);
let expected_unciphered_data = b"I love turtles.\x01";
assert_eq!(&unciphered_data, expected_unciphered_data);
}
fn cipher_test(ciphertype: super::Cipher, pt: &str, ct: &str, key: &str, iv: &str) {
let pt = Vec::from_hex(pt).unwrap();
let ct = Vec::from_hex(ct).unwrap();
let key = Vec::from_hex(key).unwrap();
let iv = Vec::from_hex(iv).unwrap();
let computed = super::decrypt(ciphertype, &key, Some(&iv), &ct).unwrap();
let expected = pt;
if computed != expected {
println!("Computed: {}", hex::encode(&computed));
println!("Expected: {}", hex::encode(&expected));
if computed.len() != expected.len() {
println!(
"Lengths differ: {} in computed vs {} expected",
computed.len(),
expected.len()
);
}
panic!("test failure");
}
}
#[cfg(not(boringssl))]
fn cipher_test_nopad(ciphertype: super::Cipher, pt: &str, ct: &str, key: &str, iv: &str) {
let pt = Vec::from_hex(pt).unwrap();
let ct = Vec::from_hex(ct).unwrap();
let key = Vec::from_hex(key).unwrap();
let iv = Vec::from_hex(iv).unwrap();
let computed = {
let mut c = Crypter::new(ciphertype, Mode::Decrypt, &key, Some(&iv)).unwrap();
c.pad(false);
let mut out = vec![0; ct.len() + ciphertype.block_size()];
let count = c.update(&ct, &mut out).unwrap();
let rest = c.finalize(&mut out[count..]).unwrap();
out.truncate(count + rest);
out
};
let expected = pt;
if computed != expected {
println!("Computed: {}", hex::encode(&computed));
println!("Expected: {}", hex::encode(&expected));
if computed.len() != expected.len() {
println!(
"Lengths differ: {} in computed vs {} expected",
computed.len(),
expected.len()
);
}
panic!("test failure");
}
}
#[test]
fn test_rc4() {
#[cfg(ossl300)]
let _provider = crate::provider::Provider::try_load(None, "legacy", true).unwrap();
let pt = "0000000000000000000000000000000000000000000000000000000000000000000000000000";
let ct = "A68686B04D686AA107BD8D4CAB191A3EEC0A6294BC78B60F65C25CB47BD7BB3A48EFC4D26BE4";
let key = "97CD440324DA5FD1F7955C1C13B6B466";
let iv = "";
cipher_test(super::Cipher::rc4(), pt, ct, key, iv);
}
#[test]
#[cfg(not(boringssl))]
fn test_aes256_xts() {
// Test case 174 from
// http://csrc.nist.gov/groups/STM/cavp/documents/aes/XTSTestVectors.zip
let pt = "77f4ef63d734ebd028508da66c22cdebdd52ecd6ee2ab0a50bc8ad0cfd692ca5fcd4e6dedc45df7f\
6503f462611dc542";
let ct = "ce7d905a7776ac72f240d22aafed5e4eb7566cdc7211220e970da634ce015f131a5ecb8d400bc9e8\
4f0b81d8725dbbc7";
let key = "b6bfef891f83b5ff073f2231267be51eb084b791fa19a154399c0684c8b2dfcb37de77d28bbda3b\
4180026ad640b74243b3133e7b9fae629403f6733423dae28";
let iv = "db200efb7eaaa737dbdf40babb68953f";
cipher_test(super::Cipher::aes_256_xts(), pt, ct, key, iv);
}
#[test]
fn test_aes128_ctr() {
let pt = "6BC1BEE22E409F96E93D7E117393172AAE2D8A571E03AC9C9EB76FAC45AF8E5130C81C46A35CE411\
E5FBC1191A0A52EFF69F2445DF4F9B17AD2B417BE66C3710";
let ct = "874D6191B620E3261BEF6864990DB6CE9806F66B7970FDFF8617187BB9FFFDFF5AE4DF3EDBD5D35E\
5B4F09020DB03EAB1E031DDA2FBE03D1792170A0F3009CEE";
let key = "2B7E151628AED2A6ABF7158809CF4F3C";
let iv = "F0F1F2F3F4F5F6F7F8F9FAFBFCFDFEFF";
cipher_test(super::Cipher::aes_128_ctr(), pt, ct, key, iv);
}
#[test]
#[cfg(not(boringssl))]
fn test_aes128_cfb1() {
// Lifted from http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
let pt = "6bc1";
let ct = "68b3";
let key = "2b7e151628aed2a6abf7158809cf4f3c";
let iv = "000102030405060708090a0b0c0d0e0f";
cipher_test(super::Cipher::aes_128_cfb1(), pt, ct, key, iv);
}
#[test]
#[cfg(not(boringssl))]
fn test_aes128_cfb128() {
let pt = "6bc1bee22e409f96e93d7e117393172a";
let ct = "3b3fd92eb72dad20333449f8e83cfb4a";
let key = "2b7e151628aed2a6abf7158809cf4f3c";
let iv = "000102030405060708090a0b0c0d0e0f";
cipher_test(super::Cipher::aes_128_cfb128(), pt, ct, key, iv);
}
#[test]
#[cfg(not(boringssl))]
fn test_aes128_cfb8() {
let pt = "6bc1bee22e409f96e93d7e117393172aae2d";
let ct = "3b79424c9c0dd436bace9e0ed4586a4f32b9";
let key = "2b7e151628aed2a6abf7158809cf4f3c";
let iv = "000102030405060708090a0b0c0d0e0f";
cipher_test(super::Cipher::aes_128_cfb8(), pt, ct, key, iv);
}
#[test]
fn test_aes128_ofb() {
// Lifted from http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
let pt = "6bc1bee22e409f96e93d7e117393172aae2d8a571e03ac9c9eb76fac45af8e5130c81c46a35ce411e5fbc1191a0a52eff69f2445df4f9b17ad2b417be66c3710";
let ct = "3b3fd92eb72dad20333449f8e83cfb4a7789508d16918f03f53c52dac54ed8259740051e9c5fecf64344f7a82260edcc304c6528f659c77866a510d9c1d6ae5e";
let key = "2b7e151628aed2a6abf7158809cf4f3c";
let iv = "000102030405060708090a0b0c0d0e0f";
cipher_test(super::Cipher::aes_128_ofb(), pt, ct, key, iv);
}
#[test]
fn test_aes192_ctr() {
// Lifted from http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
let pt = "6bc1bee22e409f96e93d7e117393172aae2d8a571e03ac9c9eb76fac45af8e5130c81c46a35ce411e5fbc1191a0a52eff69f2445df4f9b17ad2b417be66c3710";
let ct = "1abc932417521ca24f2b0459fe7e6e0b090339ec0aa6faefd5ccc2c6f4ce8e941e36b26bd1ebc670d1bd1d665620abf74f78a7f6d29809585a97daec58c6b050";
let key = "8e73b0f7da0e6452c810f32b809079e562f8ead2522c6b7b";
let iv = "f0f1f2f3f4f5f6f7f8f9fafbfcfdfeff";
cipher_test(super::Cipher::aes_192_ctr(), pt, ct, key, iv);
}
#[test]
#[cfg(not(boringssl))]
fn test_aes192_cfb1() {
// Lifted from http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
let pt = "6bc1";
let ct = "9359";
let key = "8e73b0f7da0e6452c810f32b809079e562f8ead2522c6b7b";
let iv = "000102030405060708090a0b0c0d0e0f";
cipher_test(super::Cipher::aes_192_cfb1(), pt, ct, key, iv);
}
#[test]
#[cfg(not(boringssl))]
fn test_aes192_cfb128() {
// Lifted from http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
let pt = "6bc1bee22e409f96e93d7e117393172aae2d8a571e03ac9c9eb76fac45af8e5130c81c46a35ce411e5fbc1191a0a52eff69f2445df4f9b17ad2b417be66c3710";
let ct = "cdc80d6fddf18cab34c25909c99a417467ce7f7f81173621961a2b70171d3d7a2e1e8a1dd59b88b1c8e60fed1efac4c9c05f9f9ca9834fa042ae8fba584b09ff";
let key = "8e73b0f7da0e6452c810f32b809079e562f8ead2522c6b7b";
let iv = "000102030405060708090a0b0c0d0e0f";
cipher_test(super::Cipher::aes_192_cfb128(), pt, ct, key, iv);
}
#[test]
#[cfg(not(boringssl))]
fn test_aes192_cfb8() {
// Lifted from http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
let pt = "6bc1bee22e409f96e93d7e117393172aae2d";
let ct = "cda2521ef0a905ca44cd057cbf0d47a0678a";
let key = "8e73b0f7da0e6452c810f32b809079e562f8ead2522c6b7b";
let iv = "000102030405060708090a0b0c0d0e0f";
cipher_test(super::Cipher::aes_192_cfb8(), pt, ct, key, iv);
}
#[test]
fn test_aes192_ofb() {
// Lifted from http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
let pt = "6bc1bee22e409f96e93d7e117393172aae2d8a571e03ac9c9eb76fac45af8e5130c81c46a35ce411e5fbc1191a0a52eff69f2445df4f9b17ad2b417be66c3710";
let ct = "cdc80d6fddf18cab34c25909c99a4174fcc28b8d4c63837c09e81700c11004018d9a9aeac0f6596f559c6d4daf59a5f26d9f200857ca6c3e9cac524bd9acc92a";
let key = "8e73b0f7da0e6452c810f32b809079e562f8ead2522c6b7b";
let iv = "000102030405060708090a0b0c0d0e0f";
cipher_test(super::Cipher::aes_192_ofb(), pt, ct, key, iv);
}
#[test]
#[cfg(not(boringssl))]
fn test_aes256_cfb1() {
let pt = "6bc1";
let ct = "9029";
let key = "603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4";
let iv = "000102030405060708090a0b0c0d0e0f";
cipher_test(super::Cipher::aes_256_cfb1(), pt, ct, key, iv);
}
#[test]
#[cfg(not(boringssl))]
fn test_aes256_cfb128() {
let pt = "6bc1bee22e409f96e93d7e117393172a";
let ct = "dc7e84bfda79164b7ecd8486985d3860";
let key = "603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4";
let iv = "000102030405060708090a0b0c0d0e0f";
cipher_test(super::Cipher::aes_256_cfb128(), pt, ct, key, iv);
}
#[test]
#[cfg(not(boringssl))]
fn test_aes256_cfb8() {
let pt = "6bc1bee22e409f96e93d7e117393172aae2d";
let ct = "dc1f1a8520a64db55fcc8ac554844e889700";
let key = "603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4";
let iv = "000102030405060708090a0b0c0d0e0f";
cipher_test(super::Cipher::aes_256_cfb8(), pt, ct, key, iv);
}
#[test]
fn test_aes256_ofb() {
// Lifted from http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
let pt = "6bc1bee22e409f96e93d7e117393172aae2d8a571e03ac9c9eb76fac45af8e5130c81c46a35ce411e5fbc1191a0a52eff69f2445df4f9b17ad2b417be66c3710";
let ct = "dc7e84bfda79164b7ecd8486985d38604febdc6740d20b3ac88f6ad82a4fb08d71ab47a086e86eedf39d1c5bba97c4080126141d67f37be8538f5a8be740e484";
let key = "603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4";
let iv = "000102030405060708090a0b0c0d0e0f";
cipher_test(super::Cipher::aes_256_ofb(), pt, ct, key, iv);
}
#[test]
#[cfg_attr(ossl300, ignore)]
#[cfg(not(boringssl))]
fn test_bf_cbc() {
#[cfg(ossl300)]
let _provider = crate::provider::Provider::try_load(None, "legacy", true).unwrap();
// https://www.schneier.com/code/vectors.txt
let pt = "37363534333231204E6F77206973207468652074696D6520666F722000000000";
let ct = "6B77B4D63006DEE605B156E27403979358DEB9E7154616D959F1652BD5FF92CC";
let key = "0123456789ABCDEFF0E1D2C3B4A59687";
let iv = "FEDCBA9876543210";
cipher_test_nopad(super::Cipher::bf_cbc(), pt, ct, key, iv);
}
#[test]
#[cfg_attr(ossl300, ignore)]
#[cfg(not(boringssl))]
fn test_bf_ecb() {
#[cfg(ossl300)]
let _provider = crate::provider::Provider::try_load(None, "legacy", true).unwrap();
let pt = "5CD54CA83DEF57DA";
let ct = "B1B8CC0B250F09A0";
let key = "0131D9619DC1376E";
let iv = "0000000000000000";
cipher_test_nopad(super::Cipher::bf_ecb(), pt, ct, key, iv);
}
#[test]
#[cfg_attr(ossl300, ignore)]
#[cfg(not(boringssl))]
fn test_bf_cfb64() {
#[cfg(ossl300)]
let _provider = crate::provider::Provider::try_load(None, "legacy", true).unwrap();
let pt = "37363534333231204E6F77206973207468652074696D6520666F722000";
let ct = "E73214A2822139CAF26ECF6D2EB9E76E3DA3DE04D1517200519D57A6C3";
let key = "0123456789ABCDEFF0E1D2C3B4A59687";
let iv = "FEDCBA9876543210";
cipher_test_nopad(super::Cipher::bf_cfb64(), pt, ct, key, iv);
}
#[test]
#[cfg_attr(ossl300, ignore)]
#[cfg(not(boringssl))]
fn test_bf_ofb() {
#[cfg(ossl300)]
let _provider = crate::provider::Provider::try_load(None, "legacy", true).unwrap();
let pt = "37363534333231204E6F77206973207468652074696D6520666F722000";
let ct = "E73214A2822139CA62B343CC5B65587310DD908D0C241B2263C2CF80DA";
let key = "0123456789ABCDEFF0E1D2C3B4A59687";
let iv = "FEDCBA9876543210";
cipher_test_nopad(super::Cipher::bf_ofb(), pt, ct, key, iv);
}
#[test]
fn test_des_cbc() {
#[cfg(ossl300)]
let _provider = crate::provider::Provider::try_load(None, "legacy", true).unwrap();
let pt = "54686973206973206120746573742e";
let ct = "6f2867cfefda048a4046ef7e556c7132";
let key = "7cb66337f3d3c0fe";
let iv = "0001020304050607";
cipher_test(super::Cipher::des_cbc(), pt, ct, key, iv);
}
#[test]
fn test_des_ecb() {
#[cfg(ossl300)]
let _provider = crate::provider::Provider::try_load(None, "legacy", true).unwrap();
let pt = "54686973206973206120746573742e";
let ct = "0050ab8aecec758843fe157b4dde938c";
let key = "7cb66337f3d3c0fe";
let iv = "0001020304050607";
cipher_test(super::Cipher::des_ecb(), pt, ct, key, iv);
}
#[test]
fn test_des_ede3() {
let pt = "9994f4c69d40ae4f34ff403b5cf39d4c8207ea5d3e19a5fd";
let ct = "9e5c4297d60582f81071ac8ab7d0698d4c79de8b94c519858207ea5d3e19a5fd";
let key = "010203040506070801020304050607080102030405060708";
let iv = "5cc118306dc702e4";
cipher_test(super::Cipher::des_ede3(), pt, ct, key, iv);
}
#[test]
fn test_des_ede3_cbc() {
let pt = "54686973206973206120746573742e";
let ct = "6f2867cfefda048a4046ef7e556c7132";
let key = "7cb66337f3d3c0fe7cb66337f3d3c0fe7cb66337f3d3c0fe";
let iv = "0001020304050607";
cipher_test(super::Cipher::des_ede3_cbc(), pt, ct, key, iv);
}
#[test]
#[cfg(not(boringssl))]
fn test_des_ede3_cfb64() {
let pt = "2b1773784b5889dc788477367daa98ad";
let ct = "6f2867cfefda048a4046ef7e556c7132";
let key = "7cb66337f3d3c0fe7cb66337f3d3c0fe7cb66337f3d3c0fe";
let iv = "0001020304050607";
cipher_test(super::Cipher::des_ede3_cfb64(), pt, ct, key, iv);
}
#[test]
fn test_aes128_gcm() {
let key = "23dc8d23d95b6fd1251741a64f7d4f41";
let iv = "f416f48ad44d9efa1179e167";
let pt = "6cb9b71dd0ccd42cdf87e8e396fc581fd8e0d700e360f590593b748e105390de";
let aad = "45074844c97d515c65bbe37c210a5a4b08c21c588efe5c5f73c4d9c17d34dacddc0bb6a8a53f7bf477b9780c1c2a928660df87016b2873fe876b2b887fb5886bfd63216b7eaecc046372a82c047eb043f0b063226ee52a12c69b";
let ct = "8ad20486778e87387efb3f2574e509951c0626816722018129e578b2787969d3";
let tag = "91e1bc09";
// this tag is smaller than you'd normally want, but I pulled this test from the part of
// the NIST test vectors that cover 4 byte tags.
let mut actual_tag = [0; 4];
let out = encrypt_aead(
Cipher::aes_128_gcm(),
&Vec::from_hex(key).unwrap(),
Some(&Vec::from_hex(iv).unwrap()),
&Vec::from_hex(aad).unwrap(),
&Vec::from_hex(pt).unwrap(),
&mut actual_tag,
)
.unwrap();
assert_eq!(ct, hex::encode(out));
assert_eq!(tag, hex::encode(actual_tag));
let out = decrypt_aead(
Cipher::aes_128_gcm(),
&Vec::from_hex(key).unwrap(),
Some(&Vec::from_hex(iv).unwrap()),
&Vec::from_hex(aad).unwrap(),
&Vec::from_hex(ct).unwrap(),
&Vec::from_hex(tag).unwrap(),
)
.unwrap();
assert_eq!(pt, hex::encode(out));
}
#[test]
#[cfg(not(boringssl))]
fn test_aes128_ccm() {
let key = "3ee186594f110fb788a8bf8aa8be5d4a";
let nonce = "44f705d52acf27b7f17196aa9b";
let aad = "2c16724296ff85e079627be3053ea95adf35722c21886baba343bd6c79b5cb57";
let pt = "d71864877f2578db092daba2d6a1f9f4698a9c356c7830a1";
let ct = "b4dd74e7a0cc51aea45dfb401a41d5822c96901a83247ea0";
let tag = "d6965f5aa6e31302a9cc2b36";
let mut actual_tag = [0; 12];
let out = encrypt_aead(
Cipher::aes_128_ccm(),
&Vec::from_hex(key).unwrap(),
Some(&Vec::from_hex(nonce).unwrap()),
&Vec::from_hex(aad).unwrap(),
&Vec::from_hex(pt).unwrap(),
&mut actual_tag,
)
.unwrap();
assert_eq!(ct, hex::encode(out));
assert_eq!(tag, hex::encode(actual_tag));
let out = decrypt_aead(
Cipher::aes_128_ccm(),
&Vec::from_hex(key).unwrap(),
Some(&Vec::from_hex(nonce).unwrap()),
&Vec::from_hex(aad).unwrap(),
&Vec::from_hex(ct).unwrap(),
&Vec::from_hex(tag).unwrap(),
)
.unwrap();
assert_eq!(pt, hex::encode(out));
}
#[test]
#[cfg(not(boringssl))]
fn test_aes128_ccm_verify_fail() {
let key = "3ee186594f110fb788a8bf8aa8be5d4a";
let nonce = "44f705d52acf27b7f17196aa9b";
let aad = "2c16724296ff85e079627be3053ea95adf35722c21886baba343bd6c79b5cb57";
let ct = "b4dd74e7a0cc51aea45dfb401a41d5822c96901a83247ea0";
let tag = "00005f5aa6e31302a9cc2b36";
let out = decrypt_aead(
Cipher::aes_128_ccm(),
&Vec::from_hex(key).unwrap(),
Some(&Vec::from_hex(nonce).unwrap()),
&Vec::from_hex(aad).unwrap(),
&Vec::from_hex(ct).unwrap(),
&Vec::from_hex(tag).unwrap(),
);
assert!(out.is_err());
}
#[test]
#[cfg(not(boringssl))]
fn test_aes256_ccm() {
let key = "7f4af6765cad1d511db07e33aaafd57646ec279db629048aa6770af24849aa0d";
let nonce = "dde2a362ce81b2b6913abc3095";
let aad = "404f5df97ece7431987bc098cce994fc3c063b519ffa47b0365226a0015ef695";
let pt = "7ebef26bf4ecf6f0ebb2eb860edbf900f27b75b4a6340fdb";
let ct = "353022db9c568bd7183a13c40b1ba30fcc768c54264aa2cd";
let tag = "2927a053c9244d3217a7ad05";
let mut actual_tag = [0; 12];
let out = encrypt_aead(
Cipher::aes_256_ccm(),
&Vec::from_hex(key).unwrap(),
Some(&Vec::from_hex(nonce).unwrap()),
&Vec::from_hex(aad).unwrap(),
&Vec::from_hex(pt).unwrap(),
&mut actual_tag,
)
.unwrap();
assert_eq!(ct, hex::encode(out));
assert_eq!(tag, hex::encode(actual_tag));
let out = decrypt_aead(
Cipher::aes_256_ccm(),
&Vec::from_hex(key).unwrap(),
Some(&Vec::from_hex(nonce).unwrap()),
&Vec::from_hex(aad).unwrap(),
&Vec::from_hex(ct).unwrap(),
&Vec::from_hex(tag).unwrap(),
)
.unwrap();
assert_eq!(pt, hex::encode(out));
}
#[test]
#[cfg(not(boringssl))]
fn test_aes256_ccm_verify_fail() {
let key = "7f4af6765cad1d511db07e33aaafd57646ec279db629048aa6770af24849aa0d";
let nonce = "dde2a362ce81b2b6913abc3095";
let aad = "404f5df97ece7431987bc098cce994fc3c063b519ffa47b0365226a0015ef695";
let ct = "353022db9c568bd7183a13c40b1ba30fcc768c54264aa2cd";
let tag = "0000a053c9244d3217a7ad05";
let out = decrypt_aead(
Cipher::aes_256_ccm(),
&Vec::from_hex(key).unwrap(),
Some(&Vec::from_hex(nonce).unwrap()),
&Vec::from_hex(aad).unwrap(),
&Vec::from_hex(ct).unwrap(),
&Vec::from_hex(tag).unwrap(),
);
assert!(out.is_err());
}
#[test]
#[cfg(all(ossl110, not(osslconf = "OPENSSL_NO_OCB")))]
fn test_aes_128_ocb() {
let key = "000102030405060708090a0b0c0d0e0f";
let aad = "0001020304050607";
let tag = "16dc76a46d47e1ead537209e8a96d14e";
let iv = "000102030405060708090a0b";
let pt = "0001020304050607";
let ct = "92b657130a74b85a";
let mut actual_tag = [0; 16];
let out = encrypt_aead(
Cipher::aes_128_ocb(),
&Vec::from_hex(key).unwrap(),
Some(&Vec::from_hex(iv).unwrap()),
&Vec::from_hex(aad).unwrap(),
&Vec::from_hex(pt).unwrap(),
&mut actual_tag,
)
.unwrap();
assert_eq!(ct, hex::encode(out));
assert_eq!(tag, hex::encode(actual_tag));
let out = decrypt_aead(
Cipher::aes_128_ocb(),
&Vec::from_hex(key).unwrap(),
Some(&Vec::from_hex(iv).unwrap()),
&Vec::from_hex(aad).unwrap(),
&Vec::from_hex(ct).unwrap(),
&Vec::from_hex(tag).unwrap(),
)
.unwrap();
assert_eq!(pt, hex::encode(out));
}
#[test]
#[cfg(all(ossl110, not(osslconf = "OPENSSL_NO_OCB")))]
fn test_aes_128_ocb_fail() {
let key = "000102030405060708090a0b0c0d0e0f";
let aad = "0001020304050607";
let tag = "16dc76a46d47e1ead537209e8a96d14e";
let iv = "000000000405060708090a0b";
let ct = "92b657130a74b85a";
let out = decrypt_aead(
Cipher::aes_128_ocb(),
&Vec::from_hex(key).unwrap(),
Some(&Vec::from_hex(iv).unwrap()),
&Vec::from_hex(aad).unwrap(),
&Vec::from_hex(ct).unwrap(),
&Vec::from_hex(tag).unwrap(),
);
assert!(out.is_err());
}
#[test]
#[cfg(any(ossl110, libressl310))]
fn test_chacha20() {
let key = "0000000000000000000000000000000000000000000000000000000000000000";
let iv = "00000000000000000000000000000000";
let pt =
"000000000000000000000000000000000000000000000000000000000000000000000000000000000\
00000000000000000000000000000000000000000000000";
let ct =
"76b8e0ada0f13d90405d6ae55386bd28bdd219b8a08ded1aa836efcc8b770dc7da41597c5157488d7\
724e03fb8d84a376a43b8f41518a11cc387b669b2ee6586";
cipher_test(Cipher::chacha20(), pt, ct, key, iv);
}
#[test]
#[cfg(any(ossl110, libressl360))]
fn test_chacha20_poly1305() {
let key = "808182838485868788898a8b8c8d8e8f909192939495969798999a9b9c9d9e9f";
let iv = "070000004041424344454647";
let aad = "50515253c0c1c2c3c4c5c6c7";
let pt =
"4c616469657320616e642047656e746c656d656e206f662074686520636c617373206f66202739393\
a204966204920636f756c64206f6666657220796f75206f6e6c79206f6e652074697020666f722074\
6865206675747572652c2073756e73637265656e20776f756c642062652069742e";
let ct =
"d31a8d34648e60db7b86afbc53ef7ec2a4aded51296e08fea9e2b5a736ee62d63dbea45e8ca967128\
2fafb69da92728b1a71de0a9e060b2905d6a5b67ecd3b3692ddbd7f2d778b8c9803aee328091b58fa\
b324e4fad675945585808b4831d7bc3ff4def08e4b7a9de576d26586cec64b6116";
let tag = "1ae10b594f09e26a7e902ecbd0600691";
let mut actual_tag = [0; 16];
let out = encrypt_aead(
Cipher::chacha20_poly1305(),
&Vec::from_hex(key).unwrap(),
Some(&Vec::from_hex(iv).unwrap()),
&Vec::from_hex(aad).unwrap(),
&Vec::from_hex(pt).unwrap(),
&mut actual_tag,
)
.unwrap();
assert_eq!(ct, hex::encode(out));
assert_eq!(tag, hex::encode(actual_tag));
let out = decrypt_aead(
Cipher::chacha20_poly1305(),
&Vec::from_hex(key).unwrap(),
Some(&Vec::from_hex(iv).unwrap()),
&Vec::from_hex(aad).unwrap(),
&Vec::from_hex(ct).unwrap(),
&Vec::from_hex(tag).unwrap(),
)
.unwrap();
assert_eq!(pt, hex::encode(out));
}
#[test]
#[cfg(not(any(osslconf = "OPENSSL_NO_SEED", ossl300)))]
fn test_seed_cbc() {
#[cfg(ossl300)]
let _provider = crate::provider::Provider::try_load(None, "legacy", true).unwrap();
let pt = "5363686f6b6f6c6164656e6b756368656e0a";
let ct = "c2edf0fb2eb11bf7b2f39417a8528896d34b24b6fd79e5923b116dfcd2aba5a4";
let key = "41414141414141414141414141414141";
let iv = "41414141414141414141414141414141";
cipher_test(super::Cipher::seed_cbc(), pt, ct, key, iv);
}
#[test]
#[cfg(not(any(osslconf = "OPENSSL_NO_SEED", ossl300)))]
fn test_seed_cfb128() {
#[cfg(ossl300)]
let _provider = crate::provider::Provider::try_load(None, "legacy", true).unwrap();
let pt = "5363686f6b6f6c6164656e6b756368656e0a";
let ct = "71d4d25fc1750cb7789259e7f34061939a41";
let key = "41414141414141414141414141414141";
let iv = "41414141414141414141414141414141";
cipher_test(super::Cipher::seed_cfb128(), pt, ct, key, iv);
}
#[test]
#[cfg(not(any(osslconf = "OPENSSL_NO_SEED", ossl300)))]
fn test_seed_ecb() {
#[cfg(ossl300)]
let _provider = crate::provider::Provider::try_load(None, "legacy", true).unwrap();
let pt = "5363686f6b6f6c6164656e6b756368656e0a";
let ct = "0263a9cd498cf0edb0ef72a3231761d00ce601f7d08ad19ad74f0815f2c77f7e";
let key = "41414141414141414141414141414141";
let iv = "41414141414141414141414141414141";
cipher_test(super::Cipher::seed_ecb(), pt, ct, key, iv);
}
#[test]
#[cfg(not(any(osslconf = "OPENSSL_NO_SEED", ossl300)))]
fn test_seed_ofb() {
#[cfg(ossl300)]
let _provider = crate::provider::Provider::try_load(None, "legacy", true).unwrap();
let pt = "5363686f6b6f6c6164656e6b756368656e0a";
let ct = "71d4d25fc1750cb7789259e7f34061930afd";
let key = "41414141414141414141414141414141";
let iv = "41414141414141414141414141414141";
cipher_test(super::Cipher::seed_ofb(), pt, ct, key, iv);
}
// GB/T 32907-2016
// http://openstd.samr.gov.cn/bzgk/gb/newGbInfo?hcno=7803DE42D3BC5E80B0C3E5D8E873D56A
#[test]
#[cfg(all(any(ossl111, libressl291), not(osslconf = "OPENSSL_NO_SM4")))]
fn test_sm4_ecb() {
use std::mem;
let key = vec![
0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef, 0xfe, 0xdc, 0xba, 0x98, 0x76, 0x54,
0x32, 0x10,
];
let pt = vec![
0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef, 0xfe, 0xdc, 0xba, 0x98, 0x76, 0x54,
0x32, 0x10,
];
let ct = vec![
0x68, 0x1e, 0xdf, 0x34, 0xd2, 0x06, 0x96, 0x5e, 0x86, 0xb3, 0xe9, 0x4f, 0x53, 0x6e,
0x42, 0x46,
];
let ct1 = vec![
0x59, 0x52, 0x98, 0xc7, 0xc6, 0xfd, 0x27, 0x1f, 0x04, 0x02, 0xf8, 0x04, 0xc3, 0x3d,
0x3f, 0x66,
];
let block_size = Cipher::sm4_ecb().block_size();
let mut c = Crypter::new(Cipher::sm4_ecb(), Mode::Encrypt, &key, None).unwrap();
c.pad(false);
// 1 round
let mut r = vec![0; pt.len() + Cipher::sm4_ecb().block_size()];
let count = c.update(&pt, &mut r).unwrap();
assert_eq!(ct, &r[..count]);
// 1000000 rounds
let mut r1 = vec![0; pt.len() + Cipher::sm4_ecb().block_size()];
for _ in 0..999999 {
c.update(&r[..block_size], &mut r1).unwrap();
mem::swap(&mut r, &mut r1);
}
assert_eq!(ct1, &r[..count]);
}
}