blob: 686d5b0438aa97241031b4da6484bf830b336c69 [file] [log] [blame]
//! Proc macro ABI
use libloading::Library;
use proc_macro::bridge;
use proc_macro_api::{ProcMacroKind, RustCInfo};
use crate::{dylib::LoadProcMacroDylibError, ProcMacroSrvSpan};
pub(crate) struct ProcMacros {
exported_macros: Vec<bridge::client::ProcMacro>,
}
impl From<bridge::PanicMessage> for crate::PanicMessage {
fn from(p: bridge::PanicMessage) -> Self {
Self { message: p.as_str().map(|s| s.to_string()) }
}
}
impl ProcMacros {
/// Load a new ABI.
///
/// # Arguments
///
/// *`lib` - The dynamic library containing the macro implementations
/// *`symbol_name` - The symbol name the macros can be found attributes
/// *`info` - RustCInfo about the compiler that was used to compile the
/// macro crate. This is the information we use to figure out
/// which ABI to return
pub(crate) fn from_lib(
lib: &Library,
symbol_name: String,
info: RustCInfo,
) -> Result<ProcMacros, LoadProcMacroDylibError> {
if info.version_string == crate::RUSTC_VERSION_STRING {
let macros =
unsafe { lib.get::<&&[bridge::client::ProcMacro]>(symbol_name.as_bytes()) }?;
return Ok(Self { exported_macros: macros.to_vec() });
}
Err(LoadProcMacroDylibError::AbiMismatch(info.version_string))
}
pub(crate) fn expand<S: ProcMacroSrvSpan>(
&self,
macro_name: &str,
macro_body: tt::Subtree<S>,
attributes: Option<tt::Subtree<S>>,
def_site: S,
call_site: S,
mixed_site: S,
) -> Result<tt::Subtree<S>, crate::PanicMessage> {
let parsed_body = crate::server::TokenStream::with_subtree(macro_body);
let parsed_attributes = attributes.map_or_else(crate::server::TokenStream::new, |attr| {
crate::server::TokenStream::with_subtree(attr)
});
for proc_macro in &self.exported_macros {
match proc_macro {
bridge::client::ProcMacro::CustomDerive { trait_name, client, .. }
if *trait_name == macro_name =>
{
let res = client.run(
&bridge::server::SameThread,
S::make_server(call_site, def_site, mixed_site),
parsed_body,
cfg!(debug_assertions),
);
return res
.map(|it| it.into_subtree(call_site))
.map_err(crate::PanicMessage::from);
}
bridge::client::ProcMacro::Bang { name, client } if *name == macro_name => {
let res = client.run(
&bridge::server::SameThread,
S::make_server(call_site, def_site, mixed_site),
parsed_body,
cfg!(debug_assertions),
);
return res
.map(|it| it.into_subtree(call_site))
.map_err(crate::PanicMessage::from);
}
bridge::client::ProcMacro::Attr { name, client } if *name == macro_name => {
let res = client.run(
&bridge::server::SameThread,
S::make_server(call_site, def_site, mixed_site),
parsed_attributes,
parsed_body,
cfg!(debug_assertions),
);
return res
.map(|it| it.into_subtree(call_site))
.map_err(crate::PanicMessage::from);
}
_ => continue,
}
}
Err(bridge::PanicMessage::String(format!("proc-macro `{macro_name}` is missing")).into())
}
pub(crate) fn list_macros(&self) -> Vec<(String, ProcMacroKind)> {
self.exported_macros
.iter()
.map(|proc_macro| match proc_macro {
bridge::client::ProcMacro::CustomDerive { trait_name, .. } => {
(trait_name.to_string(), ProcMacroKind::CustomDerive)
}
bridge::client::ProcMacro::Bang { name, .. } => {
(name.to_string(), ProcMacroKind::FuncLike)
}
bridge::client::ProcMacro::Attr { name, .. } => {
(name.to_string(), ProcMacroKind::Attr)
}
})
.collect()
}
}
#[test]
fn test_version_check() {
let path = paths::AbsPathBuf::assert(crate::proc_macro_test_dylib_path());
let info = proc_macro_api::read_dylib_info(&path).unwrap();
assert_eq!(
info.version_string,
crate::RUSTC_VERSION_STRING,
"sysroot ABI mismatch: dylib rustc version (read from .rustc section): {:?} != proc-macro-srv version (read from 'rustc --version'): {:?}",
info.version_string,
crate::RUSTC_VERSION_STRING,
);
}