blob: 09a4d998ee135729e0b76be259816235e51cf35c [file] [log] [blame]
//! Type inference for patterns.
use std::iter::repeat_with;
use chalk_ir::Mutability;
use hir_def::{
body::Body,
hir::{Binding, BindingAnnotation, BindingId, Expr, ExprId, ExprOrPatId, Literal, Pat, PatId},
path::Path,
};
use hir_expand::name::Name;
use crate::{
consteval::{try_const_usize, usize_const},
infer::{BindingMode, Expectation, InferenceContext, TypeMismatch},
lower::lower_to_chalk_mutability,
primitive::UintTy,
static_lifetime, InferenceDiagnostic, Interner, Scalar, Substitution, Ty, TyBuilder, TyExt,
TyKind,
};
/// Used to generalize patterns and assignee expressions.
pub(super) trait PatLike: Into<ExprOrPatId> + Copy {
type BindingMode: Copy;
fn infer(
this: &mut InferenceContext<'_>,
id: Self,
expected_ty: &Ty,
default_bm: Self::BindingMode,
) -> Ty;
}
impl PatLike for ExprId {
type BindingMode = ();
fn infer(
this: &mut InferenceContext<'_>,
id: Self,
expected_ty: &Ty,
(): Self::BindingMode,
) -> Ty {
this.infer_assignee_expr(id, expected_ty)
}
}
impl PatLike for PatId {
type BindingMode = BindingMode;
fn infer(
this: &mut InferenceContext<'_>,
id: Self,
expected_ty: &Ty,
default_bm: Self::BindingMode,
) -> Ty {
this.infer_pat(id, expected_ty, default_bm)
}
}
impl InferenceContext<'_> {
/// Infers type for tuple struct pattern or its corresponding assignee expression.
///
/// Ellipses found in the original pattern or expression must be filtered out.
pub(super) fn infer_tuple_struct_pat_like<T: PatLike>(
&mut self,
path: Option<&Path>,
expected: &Ty,
default_bm: T::BindingMode,
id: T,
ellipsis: Option<usize>,
subs: &[T],
) -> Ty {
let (ty, def) = self.resolve_variant(path, true);
let var_data = def.map(|it| it.variant_data(self.db.upcast()));
if let Some(variant) = def {
self.write_variant_resolution(id.into(), variant);
}
if let Some(var) = &var_data {
let cmp = if ellipsis.is_some() { usize::gt } else { usize::ne };
if cmp(&subs.len(), &var.fields().len()) {
self.push_diagnostic(InferenceDiagnostic::MismatchedTupleStructPatArgCount {
pat: id.into(),
expected: var.fields().len(),
found: subs.len(),
});
}
}
self.unify(&ty, expected);
let substs =
ty.as_adt().map(|(_, s)| s.clone()).unwrap_or_else(|| Substitution::empty(Interner));
match def {
_ if subs.is_empty() => {}
Some(def) => {
let field_types = self.db.field_types(def);
let variant_data = def.variant_data(self.db.upcast());
let visibilities = self.db.field_visibilities(def);
let (pre, post) = match ellipsis {
Some(idx) => subs.split_at(idx),
None => (subs, &[][..]),
};
let post_idx_offset = field_types.iter().count().saturating_sub(post.len());
let pre_iter = pre.iter().enumerate();
let post_iter = (post_idx_offset..).zip(post.iter());
for (i, &subpat) in pre_iter.chain(post_iter) {
let field_def = {
match variant_data.field(&Name::new_tuple_field(i)) {
Some(local_id) => {
if !visibilities[local_id]
.is_visible_from(self.db.upcast(), self.resolver.module())
{
// FIXME(DIAGNOSE): private tuple field
}
Some(local_id)
}
None => None,
}
};
let expected_ty = field_def.map_or(self.err_ty(), |f| {
field_types[f].clone().substitute(Interner, &substs)
});
let expected_ty = self.normalize_associated_types_in(expected_ty);
T::infer(self, subpat, &expected_ty, default_bm);
}
}
None => {
let err_ty = self.err_ty();
for &inner in subs {
T::infer(self, inner, &err_ty, default_bm);
}
}
}
ty
}
/// Infers type for record pattern or its corresponding assignee expression.
pub(super) fn infer_record_pat_like<T: PatLike>(
&mut self,
path: Option<&Path>,
expected: &Ty,
default_bm: T::BindingMode,
id: T,
subs: impl Iterator<Item = (Name, T)> + ExactSizeIterator,
) -> Ty {
let (ty, def) = self.resolve_variant(path, false);
if let Some(variant) = def {
self.write_variant_resolution(id.into(), variant);
}
self.unify(&ty, expected);
let substs =
ty.as_adt().map(|(_, s)| s.clone()).unwrap_or_else(|| Substitution::empty(Interner));
match def {
_ if subs.len() == 0 => {}
Some(def) => {
let field_types = self.db.field_types(def);
let variant_data = def.variant_data(self.db.upcast());
let visibilities = self.db.field_visibilities(def);
for (name, inner) in subs {
let field_def = {
match variant_data.field(&name) {
Some(local_id) => {
if !visibilities[local_id]
.is_visible_from(self.db.upcast(), self.resolver.module())
{
self.push_diagnostic(InferenceDiagnostic::NoSuchField {
field: inner.into(),
private: true,
});
}
Some(local_id)
}
None => {
self.push_diagnostic(InferenceDiagnostic::NoSuchField {
field: inner.into(),
private: false,
});
None
}
}
};
let expected_ty = field_def.map_or(self.err_ty(), |f| {
field_types[f].clone().substitute(Interner, &substs)
});
let expected_ty = self.normalize_associated_types_in(expected_ty);
T::infer(self, inner, &expected_ty, default_bm);
}
}
None => {
let err_ty = self.err_ty();
for (_, inner) in subs {
T::infer(self, inner, &err_ty, default_bm);
}
}
}
ty
}
/// Infers type for tuple pattern or its corresponding assignee expression.
///
/// Ellipses found in the original pattern or expression must be filtered out.
pub(super) fn infer_tuple_pat_like<T: PatLike>(
&mut self,
expected: &Ty,
default_bm: T::BindingMode,
ellipsis: Option<usize>,
subs: &[T],
) -> Ty {
let expected = self.resolve_ty_shallow(expected);
let expectations = match expected.as_tuple() {
Some(parameters) => parameters.as_slice(Interner),
_ => &[],
};
let ((pre, post), n_uncovered_patterns) = match ellipsis {
Some(idx) => (subs.split_at(idx), expectations.len().saturating_sub(subs.len())),
None => ((subs, &[][..]), 0),
};
let mut expectations_iter = expectations
.iter()
.map(|a| a.assert_ty_ref(Interner).clone())
.chain(repeat_with(|| self.table.new_type_var()));
let mut inner_tys = Vec::with_capacity(n_uncovered_patterns + subs.len());
inner_tys.extend(expectations_iter.by_ref().take(n_uncovered_patterns + subs.len()));
// Process pre
for (ty, pat) in inner_tys.iter_mut().zip(pre) {
*ty = T::infer(self, *pat, ty, default_bm);
}
// Process post
for (ty, pat) in inner_tys.iter_mut().skip(pre.len() + n_uncovered_patterns).zip(post) {
*ty = T::infer(self, *pat, ty, default_bm);
}
TyKind::Tuple(inner_tys.len(), Substitution::from_iter(Interner, inner_tys))
.intern(Interner)
}
pub(super) fn infer_top_pat(&mut self, pat: PatId, expected: &Ty) {
self.infer_pat(pat, expected, BindingMode::default());
}
fn infer_pat(&mut self, pat: PatId, expected: &Ty, mut default_bm: BindingMode) -> Ty {
let mut expected = self.resolve_ty_shallow(expected);
if self.is_non_ref_pat(self.body, pat) {
let mut pat_adjustments = Vec::new();
while let Some((inner, _lifetime, mutability)) = expected.as_reference() {
pat_adjustments.push(expected.clone());
expected = self.resolve_ty_shallow(inner);
default_bm = match default_bm {
BindingMode::Move => BindingMode::Ref(mutability),
BindingMode::Ref(Mutability::Not) => BindingMode::Ref(Mutability::Not),
BindingMode::Ref(Mutability::Mut) => BindingMode::Ref(mutability),
}
}
if !pat_adjustments.is_empty() {
pat_adjustments.shrink_to_fit();
self.result.pat_adjustments.insert(pat, pat_adjustments);
}
} else if let Pat::Ref { .. } = &self.body[pat] {
cov_mark::hit!(match_ergonomics_ref);
// When you encounter a `&pat` pattern, reset to Move.
// This is so that `w` is by value: `let (_, &w) = &(1, &2);`
default_bm = BindingMode::Move;
}
// Lose mutability.
let default_bm = default_bm;
let expected = expected;
let ty = match &self.body[pat] {
Pat::Tuple { args, ellipsis } => {
self.infer_tuple_pat_like(&expected, default_bm, *ellipsis, args)
}
Pat::Or(pats) => {
for pat in pats.iter() {
self.infer_pat(*pat, &expected, default_bm);
}
expected.clone()
}
&Pat::Ref { pat, mutability } => self.infer_ref_pat(
pat,
lower_to_chalk_mutability(mutability),
&expected,
default_bm,
),
Pat::TupleStruct { path: p, args: subpats, ellipsis } => self
.infer_tuple_struct_pat_like(
p.as_deref(),
&expected,
default_bm,
pat,
*ellipsis,
subpats,
),
Pat::Record { path: p, args: fields, ellipsis: _ } => {
let subs = fields.iter().map(|f| (f.name.clone(), f.pat));
self.infer_record_pat_like(p.as_deref(), &expected, default_bm, pat, subs)
}
Pat::Path(path) => {
// FIXME update resolver for the surrounding expression
self.infer_path(path, pat.into()).unwrap_or_else(|| self.err_ty())
}
Pat::Bind { id, subpat } => {
return self.infer_bind_pat(pat, *id, default_bm, *subpat, &expected);
}
Pat::Slice { prefix, slice, suffix } => {
self.infer_slice_pat(&expected, prefix, slice, suffix, default_bm)
}
Pat::Wild => expected.clone(),
Pat::Range { .. } => {
// FIXME: do some checks here.
expected.clone()
}
&Pat::Lit(expr) => {
// Don't emit type mismatches again, the expression lowering already did that.
let ty = self.infer_lit_pat(expr, &expected);
self.write_pat_ty(pat, ty);
return self.pat_ty_after_adjustment(pat);
}
Pat::Box { inner } => match self.resolve_boxed_box() {
Some(box_adt) => {
let (inner_ty, alloc_ty) = match expected.as_adt() {
Some((adt, subst)) if adt == box_adt => (
subst.at(Interner, 0).assert_ty_ref(Interner).clone(),
subst.as_slice(Interner).get(1).and_then(|a| a.ty(Interner).cloned()),
),
_ => (self.result.standard_types.unknown.clone(), None),
};
let inner_ty = self.infer_pat(*inner, &inner_ty, default_bm);
let mut b = TyBuilder::adt(self.db, box_adt).push(inner_ty);
if let Some(alloc_ty) = alloc_ty {
b = b.push(alloc_ty);
}
b.fill_with_defaults(self.db, || self.table.new_type_var()).build()
}
None => self.err_ty(),
},
Pat::ConstBlock(expr) => {
self.infer_expr(*expr, &Expectation::has_type(expected.clone()))
}
Pat::Missing => self.err_ty(),
};
// use a new type variable if we got error type here
let ty = self.insert_type_vars_shallow(ty);
// FIXME: This never check is odd, but required with out we do inference right now
if !expected.is_never() && !self.unify(&ty, &expected) {
self.result
.type_mismatches
.insert(pat.into(), TypeMismatch { expected, actual: ty.clone() });
}
self.write_pat_ty(pat, ty);
self.pat_ty_after_adjustment(pat)
}
fn pat_ty_after_adjustment(&self, pat: PatId) -> Ty {
self.result
.pat_adjustments
.get(&pat)
.and_then(|it| it.first())
.unwrap_or(&self.result.type_of_pat[pat])
.clone()
}
fn infer_ref_pat(
&mut self,
inner_pat: PatId,
mutability: Mutability,
expected: &Ty,
default_bm: BindingMode,
) -> Ty {
let expectation = match expected.as_reference() {
Some((inner_ty, _lifetime, _exp_mut)) => inner_ty.clone(),
None => {
let inner_ty = self.table.new_type_var();
let ref_ty =
TyKind::Ref(mutability, static_lifetime(), inner_ty.clone()).intern(Interner);
// Unification failure will be reported by the caller.
self.unify(&ref_ty, expected);
inner_ty
}
};
let subty = self.infer_pat(inner_pat, &expectation, default_bm);
TyKind::Ref(mutability, static_lifetime(), subty).intern(Interner)
}
fn infer_bind_pat(
&mut self,
pat: PatId,
binding: BindingId,
default_bm: BindingMode,
subpat: Option<PatId>,
expected: &Ty,
) -> Ty {
let Binding { mode, .. } = self.body.bindings[binding];
let mode = if mode == BindingAnnotation::Unannotated {
default_bm
} else {
BindingMode::convert(mode)
};
self.result.binding_modes.insert(pat, mode);
let inner_ty = match subpat {
Some(subpat) => self.infer_pat(subpat, expected, default_bm),
None => expected.clone(),
};
let inner_ty = self.insert_type_vars_shallow(inner_ty);
let bound_ty = match mode {
BindingMode::Ref(mutability) => {
TyKind::Ref(mutability, static_lifetime(), inner_ty.clone()).intern(Interner)
}
BindingMode::Move => inner_ty.clone(),
};
self.write_pat_ty(pat, inner_ty.clone());
self.write_binding_ty(binding, bound_ty);
inner_ty
}
fn infer_slice_pat(
&mut self,
expected: &Ty,
prefix: &[PatId],
slice: &Option<PatId>,
suffix: &[PatId],
default_bm: BindingMode,
) -> Ty {
let elem_ty = match expected.kind(Interner) {
TyKind::Array(st, _) | TyKind::Slice(st) => st.clone(),
_ => self.err_ty(),
};
for &pat_id in prefix.iter().chain(suffix.iter()) {
self.infer_pat(pat_id, &elem_ty, default_bm);
}
if let &Some(slice_pat_id) = slice {
let rest_pat_ty = match expected.kind(Interner) {
TyKind::Array(_, length) => {
let len = try_const_usize(self.db, length);
let len =
len.and_then(|len| len.checked_sub((prefix.len() + suffix.len()) as u128));
TyKind::Array(elem_ty.clone(), usize_const(self.db, len, self.resolver.krate()))
}
_ => TyKind::Slice(elem_ty.clone()),
}
.intern(Interner);
self.infer_pat(slice_pat_id, &rest_pat_ty, default_bm);
}
match expected.kind(Interner) {
TyKind::Array(_, const_) => TyKind::Array(elem_ty, const_.clone()),
_ => TyKind::Slice(elem_ty),
}
.intern(Interner)
}
fn infer_lit_pat(&mut self, expr: ExprId, expected: &Ty) -> Ty {
// Like slice patterns, byte string patterns can denote both `&[u8; N]` and `&[u8]`.
if let Expr::Literal(Literal::ByteString(_)) = self.body[expr] {
if let Some((inner, ..)) = expected.as_reference() {
let inner = self.resolve_ty_shallow(inner);
if matches!(inner.kind(Interner), TyKind::Slice(_)) {
let elem_ty = TyKind::Scalar(Scalar::Uint(UintTy::U8)).intern(Interner);
let slice_ty = TyKind::Slice(elem_ty).intern(Interner);
let ty =
TyKind::Ref(Mutability::Not, static_lifetime(), slice_ty).intern(Interner);
self.write_expr_ty(expr, ty.clone());
return ty;
}
}
}
self.infer_expr(expr, &Expectation::has_type(expected.clone()))
}
fn is_non_ref_pat(&mut self, body: &hir_def::body::Body, pat: PatId) -> bool {
match &body[pat] {
Pat::Tuple { .. }
| Pat::TupleStruct { .. }
| Pat::Record { .. }
| Pat::Range { .. }
| Pat::Slice { .. } => true,
Pat::Or(pats) => pats.iter().all(|p| self.is_non_ref_pat(body, *p)),
Pat::Path(p) => {
let v = self.resolve_value_path_inner(p, pat.into());
v.is_some_and(|x| !matches!(x.0, hir_def::resolver::ValueNs::ConstId(_)))
}
Pat::ConstBlock(..) => false,
Pat::Lit(expr) => !matches!(
body[*expr],
Expr::Literal(Literal::String(..) | Literal::CString(..) | Literal::ByteString(..))
),
Pat::Wild | Pat::Bind { .. } | Pat::Ref { .. } | Pat::Box { .. } | Pat::Missing => {
false
}
}
}
}
pub(super) fn contains_explicit_ref_binding(body: &Body, pat_id: PatId) -> bool {
let mut res = false;
body.walk_pats(pat_id, &mut |pat| {
res |= matches!(body[pat], Pat::Bind { id, .. } if body.bindings[id].mode == BindingAnnotation::Ref);
});
res
}