blob: bff59aa602377eb608a6102b39690efa661afee3 [file] [log] [blame]
//! A pass that propagates the unreachable terminator of a block to its predecessors
//! when all of their successors are unreachable. This is achieved through a
//! post-order traversal of the blocks.
use rustc_data_structures::fx::FxHashSet;
use rustc_middle::mir::interpret::Scalar;
use rustc_middle::mir::patch::MirPatch;
use rustc_middle::mir::*;
use rustc_middle::ty::{self, TyCtxt};
use rustc_target::abi::Size;
pub struct UnreachablePropagation;
impl MirPass<'_> for UnreachablePropagation {
fn is_enabled(&self, sess: &rustc_session::Session) -> bool {
// Enable only under -Zmir-opt-level=2 as this can make programs less debuggable.
// FIXME(#116171) Coverage gets confused by MIR passes that can remove all
// coverage statements from an instrumented function. This pass can be
// re-enabled when coverage codegen is robust against that happening.
sess.mir_opt_level() >= 2 && !sess.instrument_coverage()
}
fn run_pass<'tcx>(&self, tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) {
let mut patch = MirPatch::new(body);
let mut unreachable_blocks = FxHashSet::default();
for (bb, bb_data) in traversal::postorder(body) {
let terminator = bb_data.terminator();
let is_unreachable = match &terminator.kind {
TerminatorKind::Unreachable => true,
// This will unconditionally run into an unreachable and is therefore unreachable as well.
TerminatorKind::Goto { target } if unreachable_blocks.contains(target) => {
patch.patch_terminator(bb, TerminatorKind::Unreachable);
true
}
// Try to remove unreachable targets from the switch.
TerminatorKind::SwitchInt { .. } => {
remove_successors_from_switch(tcx, bb, &unreachable_blocks, body, &mut patch)
}
_ => false,
};
if is_unreachable {
unreachable_blocks.insert(bb);
}
}
if !tcx
.consider_optimizing(|| format!("UnreachablePropagation {:?} ", body.source.def_id()))
{
return;
}
patch.apply(body);
// We do want do keep some unreachable blocks, but make them empty.
// The order in which we clear bb statements does not matter.
#[allow(rustc::potential_query_instability)]
for bb in unreachable_blocks {
body.basic_blocks_mut()[bb].statements.clear();
}
}
}
/// Return whether the current terminator is fully unreachable.
fn remove_successors_from_switch<'tcx>(
tcx: TyCtxt<'tcx>,
bb: BasicBlock,
unreachable_blocks: &FxHashSet<BasicBlock>,
body: &Body<'tcx>,
patch: &mut MirPatch<'tcx>,
) -> bool {
let terminator = body.basic_blocks[bb].terminator();
let TerminatorKind::SwitchInt { discr, targets } = &terminator.kind else { bug!() };
let source_info = terminator.source_info;
let location = body.terminator_loc(bb);
let is_unreachable = |bb| unreachable_blocks.contains(&bb);
// If there are multiple targets, we want to keep information about reachability for codegen.
// For example (see tests/codegen/match-optimizes-away.rs)
//
// pub enum Two { A, B }
// pub fn identity(x: Two) -> Two {
// match x {
// Two::A => Two::A,
// Two::B => Two::B,
// }
// }
//
// This generates a `switchInt() -> [0: 0, 1: 1, otherwise: unreachable]`, which allows us or LLVM to
// turn it into just `x` later. Without the unreachable, such a transformation would be illegal.
//
// In order to preserve this information, we record reachable and unreachable targets as
// `Assume` statements in MIR.
let discr_ty = discr.ty(body, tcx);
let discr_size = Size::from_bits(match discr_ty.kind() {
ty::Uint(uint) => uint.normalize(tcx.sess.target.pointer_width).bit_width().unwrap(),
ty::Int(int) => int.normalize(tcx.sess.target.pointer_width).bit_width().unwrap(),
ty::Char => 32,
ty::Bool => 1,
other => bug!("unhandled type: {:?}", other),
});
let mut add_assumption = |binop, value| {
let local = patch.new_temp(tcx.types.bool, source_info.span);
let value = Operand::Constant(Box::new(ConstOperand {
span: source_info.span,
user_ty: None,
const_: Const::from_scalar(tcx, Scalar::from_uint(value, discr_size), discr_ty),
}));
let cmp = Rvalue::BinaryOp(binop, Box::new((discr.to_copy(), value)));
patch.add_assign(location, local.into(), cmp);
let assume = NonDivergingIntrinsic::Assume(Operand::Move(local.into()));
patch.add_statement(location, StatementKind::Intrinsic(Box::new(assume)));
};
let otherwise = targets.otherwise();
let otherwise_unreachable = is_unreachable(otherwise);
let reachable_iter = targets.iter().filter(|&(value, bb)| {
let is_unreachable = is_unreachable(bb);
// We remove this target from the switch, so record the inequality using `Assume`.
if is_unreachable && !otherwise_unreachable {
add_assumption(BinOp::Ne, value);
}
!is_unreachable
});
let new_targets = SwitchTargets::new(reachable_iter, otherwise);
let num_targets = new_targets.all_targets().len();
let fully_unreachable = num_targets == 1 && otherwise_unreachable;
let terminator = match (num_targets, otherwise_unreachable) {
// If all targets are unreachable, we can be unreachable as well.
(1, true) => TerminatorKind::Unreachable,
(1, false) => TerminatorKind::Goto { target: otherwise },
(2, true) => {
// All targets are unreachable except one. Record the equality, and make it a goto.
let (value, target) = new_targets.iter().next().unwrap();
add_assumption(BinOp::Eq, value);
TerminatorKind::Goto { target }
}
_ if num_targets == targets.all_targets().len() => {
// Nothing has changed.
return false;
}
_ => TerminatorKind::SwitchInt { discr: discr.clone(), targets: new_targets },
};
patch.patch_terminator(bb, terminator);
fully_unreachable
}