blob: 672de1fbe60fd4fab37038250a5ce93d63b42e22 [file] [log] [blame]
use rustc_data_structures::graph::WithNumNodes;
use rustc_index::bit_set::BitSet;
use rustc_middle::mir;
use rustc_span::{BytePos, Span};
use crate::coverage::graph::{BasicCoverageBlock, CoverageGraph, START_BCB};
use crate::coverage::spans::from_mir::SpanFromMir;
use crate::coverage::ExtractedHirInfo;
mod from_mir;
#[derive(Clone, Copy, Debug)]
pub(super) enum BcbMappingKind {
/// Associates an ordinary executable code span with its corresponding BCB.
Code(BasicCoverageBlock),
/// Associates a branch span with BCBs for its true and false arms.
Branch { true_bcb: BasicCoverageBlock, false_bcb: BasicCoverageBlock },
}
#[derive(Debug)]
pub(super) struct BcbMapping {
pub(super) kind: BcbMappingKind,
pub(super) span: Span,
}
pub(super) struct CoverageSpans {
bcb_has_mappings: BitSet<BasicCoverageBlock>,
mappings: Vec<BcbMapping>,
}
impl CoverageSpans {
pub(super) fn bcb_has_coverage_spans(&self, bcb: BasicCoverageBlock) -> bool {
self.bcb_has_mappings.contains(bcb)
}
pub(super) fn all_bcb_mappings(&self) -> impl Iterator<Item = &BcbMapping> {
self.mappings.iter()
}
}
/// Extracts coverage-relevant spans from MIR, and associates them with
/// their corresponding BCBs.
///
/// Returns `None` if no coverage-relevant spans could be extracted.
pub(super) fn generate_coverage_spans(
mir_body: &mir::Body<'_>,
hir_info: &ExtractedHirInfo,
basic_coverage_blocks: &CoverageGraph,
) -> Option<CoverageSpans> {
let mut mappings = vec![];
if hir_info.is_async_fn {
// An async function desugars into a function that returns a future,
// with the user code wrapped in a closure. Any spans in the desugared
// outer function will be unhelpful, so just keep the signature span
// and ignore all of the spans in the MIR body.
if let Some(span) = hir_info.fn_sig_span_extended {
mappings.push(BcbMapping { kind: BcbMappingKind::Code(START_BCB), span });
}
} else {
let sorted_spans = from_mir::mir_to_initial_sorted_coverage_spans(
mir_body,
hir_info,
basic_coverage_blocks,
);
let coverage_spans = SpansRefiner::refine_sorted_spans(sorted_spans);
mappings.extend(coverage_spans.into_iter().map(|RefinedCovspan { bcb, span, .. }| {
// Each span produced by the generator represents an ordinary code region.
BcbMapping { kind: BcbMappingKind::Code(bcb), span }
}));
mappings.extend(from_mir::extract_branch_mappings(
mir_body,
hir_info.body_span,
basic_coverage_blocks,
));
}
if mappings.is_empty() {
return None;
}
// Identify which BCBs have one or more mappings.
let mut bcb_has_mappings = BitSet::new_empty(basic_coverage_blocks.num_nodes());
let mut insert = |bcb| {
bcb_has_mappings.insert(bcb);
};
for &BcbMapping { kind, span: _ } in &mappings {
match kind {
BcbMappingKind::Code(bcb) => insert(bcb),
BcbMappingKind::Branch { true_bcb, false_bcb } => {
insert(true_bcb);
insert(false_bcb);
}
}
}
Some(CoverageSpans { bcb_has_mappings, mappings })
}
#[derive(Debug)]
struct CurrCovspan {
span: Span,
bcb: BasicCoverageBlock,
is_hole: bool,
}
impl CurrCovspan {
fn new(span: Span, bcb: BasicCoverageBlock, is_hole: bool) -> Self {
Self { span, bcb, is_hole }
}
fn into_prev(self) -> PrevCovspan {
let Self { span, bcb, is_hole } = self;
PrevCovspan { span, bcb, merged_spans: vec![span], is_hole }
}
fn into_refined(self) -> RefinedCovspan {
// This is only called in cases where `curr` is a hole span that has
// been carved out of `prev`.
debug_assert!(self.is_hole);
self.into_prev().into_refined()
}
}
#[derive(Debug)]
struct PrevCovspan {
span: Span,
bcb: BasicCoverageBlock,
/// List of all the original spans from MIR that have been merged into this
/// span. Mainly used to precisely skip over gaps when truncating a span.
merged_spans: Vec<Span>,
is_hole: bool,
}
impl PrevCovspan {
fn is_mergeable(&self, other: &CurrCovspan) -> bool {
self.bcb == other.bcb && !self.is_hole && !other.is_hole
}
fn merge_from(&mut self, other: &CurrCovspan) {
debug_assert!(self.is_mergeable(other));
self.span = self.span.to(other.span);
self.merged_spans.push(other.span);
}
fn cutoff_statements_at(mut self, cutoff_pos: BytePos) -> Option<RefinedCovspan> {
self.merged_spans.retain(|span| span.hi() <= cutoff_pos);
if let Some(max_hi) = self.merged_spans.iter().map(|span| span.hi()).max() {
self.span = self.span.with_hi(max_hi);
}
if self.merged_spans.is_empty() { None } else { Some(self.into_refined()) }
}
fn refined_copy(&self) -> RefinedCovspan {
let &Self { span, bcb, merged_spans: _, is_hole } = self;
RefinedCovspan { span, bcb, is_hole }
}
fn into_refined(self) -> RefinedCovspan {
// Even though we consume self, we can just reuse the copying impl.
self.refined_copy()
}
}
#[derive(Debug)]
struct RefinedCovspan {
span: Span,
bcb: BasicCoverageBlock,
is_hole: bool,
}
impl RefinedCovspan {
fn is_mergeable(&self, other: &Self) -> bool {
self.bcb == other.bcb && !self.is_hole && !other.is_hole
}
fn merge_from(&mut self, other: &Self) {
debug_assert!(self.is_mergeable(other));
self.span = self.span.to(other.span);
}
}
/// Converts the initial set of coverage spans (one per MIR `Statement` or `Terminator`) into a
/// minimal set of coverage spans, using the BCB CFG to determine where it is safe and useful to:
///
/// * Remove duplicate source code coverage regions
/// * Merge spans that represent continuous (both in source code and control flow), non-branching
/// execution
/// * Carve out (leave uncovered) any "hole" spans that need to be left blank
/// (e.g. closures that will be counted by their own MIR body)
struct SpansRefiner {
/// The initial set of coverage spans, sorted by `Span` (`lo` and `hi`) and by relative
/// dominance between the `BasicCoverageBlock`s of equal `Span`s.
sorted_spans_iter: std::vec::IntoIter<SpanFromMir>,
/// The current coverage span to compare to its `prev`, to possibly merge, discard,
/// or cause `prev` to be modified or discarded.
/// If `curr` is not discarded or merged, it becomes `prev` for the next iteration.
some_curr: Option<CurrCovspan>,
/// The coverage span from a prior iteration; typically assigned from that iteration's `curr`.
/// If that `curr` was discarded, `prev` retains its value from the previous iteration.
some_prev: Option<PrevCovspan>,
/// The final coverage spans to add to the coverage map. A `Counter` or `Expression`
/// will also be injected into the MIR for each BCB that has associated spans.
refined_spans: Vec<RefinedCovspan>,
}
impl SpansRefiner {
/// Takes the initial list of (sorted) spans extracted from MIR, and "refines"
/// them by merging compatible adjacent spans, removing redundant spans,
/// and carving holes in spans when they overlap in unwanted ways.
fn refine_sorted_spans(sorted_spans: Vec<SpanFromMir>) -> Vec<RefinedCovspan> {
let sorted_spans_len = sorted_spans.len();
let this = Self {
sorted_spans_iter: sorted_spans.into_iter(),
some_curr: None,
some_prev: None,
refined_spans: Vec::with_capacity(sorted_spans_len),
};
this.to_refined_spans()
}
/// Iterate through the sorted coverage spans, and return the refined list of merged and
/// de-duplicated spans.
fn to_refined_spans(mut self) -> Vec<RefinedCovspan> {
while self.next_coverage_span() {
// For the first span we don't have `prev` set, so most of the
// span-processing steps don't make sense yet.
if self.some_prev.is_none() {
debug!(" initial span");
continue;
}
// The remaining cases assume that `prev` and `curr` are set.
let prev = self.prev();
let curr = self.curr();
if prev.is_mergeable(curr) {
debug!(?prev, "curr will be merged into prev");
let curr = self.take_curr();
self.prev_mut().merge_from(&curr);
} else if prev.span.hi() <= curr.span.lo() {
debug!(
" different bcbs and disjoint spans, so keep curr for next iter, and add prev={prev:?}",
);
let prev = self.take_prev().into_refined();
self.refined_spans.push(prev);
} else if prev.is_hole {
// drop any equal or overlapping span (`curr`) and keep `prev` to test again in the
// next iter
debug!(?prev, "prev (a hole) overlaps curr, so discarding curr");
self.take_curr(); // Discards curr.
} else if curr.is_hole {
self.carve_out_span_for_hole();
} else {
self.cutoff_prev_at_overlapping_curr();
}
}
// There is usually a final span remaining in `prev` after the loop ends,
// so add it to the output as well.
if let Some(prev) = self.some_prev.take() {
debug!(" AT END, adding last prev={prev:?}");
self.refined_spans.push(prev.into_refined());
}
// Do one last merge pass, to simplify the output.
self.refined_spans.dedup_by(|b, a| {
if a.is_mergeable(b) {
debug!(?a, ?b, "merging list-adjacent refined spans");
a.merge_from(b);
true
} else {
false
}
});
// Discard hole spans, since their purpose was to carve out chunks from
// other spans, but we don't want the holes themselves in the final mappings.
self.refined_spans.retain(|covspan| !covspan.is_hole);
self.refined_spans
}
#[track_caller]
fn curr(&self) -> &CurrCovspan {
self.some_curr.as_ref().unwrap_or_else(|| bug!("some_curr is None (curr)"))
}
/// If called, then the next call to `next_coverage_span()` will *not* update `prev` with the
/// `curr` coverage span.
#[track_caller]
fn take_curr(&mut self) -> CurrCovspan {
self.some_curr.take().unwrap_or_else(|| bug!("some_curr is None (take_curr)"))
}
#[track_caller]
fn prev(&self) -> &PrevCovspan {
self.some_prev.as_ref().unwrap_or_else(|| bug!("some_prev is None (prev)"))
}
#[track_caller]
fn prev_mut(&mut self) -> &mut PrevCovspan {
self.some_prev.as_mut().unwrap_or_else(|| bug!("some_prev is None (prev_mut)"))
}
#[track_caller]
fn take_prev(&mut self) -> PrevCovspan {
self.some_prev.take().unwrap_or_else(|| bug!("some_prev is None (take_prev)"))
}
/// Advance `prev` to `curr` (if any), and `curr` to the next coverage span in sorted order.
fn next_coverage_span(&mut self) -> bool {
if let Some(curr) = self.some_curr.take() {
self.some_prev = Some(curr.into_prev());
}
while let Some(curr) = self.sorted_spans_iter.next() {
debug!("FOR curr={:?}", curr);
if let Some(prev) = &self.some_prev
&& prev.span.lo() > curr.span.lo()
{
// Skip curr because prev has already advanced beyond the end of curr.
// This can only happen if a prior iteration updated `prev` to skip past
// a region of code, such as skipping past a hole.
debug!(?prev, "prev.span starts after curr.span, so curr will be dropped");
} else {
self.some_curr = Some(CurrCovspan::new(curr.span, curr.bcb, curr.is_hole));
return true;
}
}
false
}
/// If `prev`s span extends left of the hole (`curr`), carve out the hole's span from
/// `prev`'s span. Add the portion of the span to the left of the hole; and if the span
/// extends to the right of the hole, update `prev` to that portion of the span.
fn carve_out_span_for_hole(&mut self) {
let prev = self.prev();
let curr = self.curr();
let left_cutoff = curr.span.lo();
let right_cutoff = curr.span.hi();
let has_pre_hole_span = prev.span.lo() < right_cutoff;
let has_post_hole_span = prev.span.hi() > right_cutoff;
if has_pre_hole_span {
let mut pre_hole = prev.refined_copy();
pre_hole.span = pre_hole.span.with_hi(left_cutoff);
debug!(?pre_hole, "prev overlaps a hole; adding pre-hole span");
self.refined_spans.push(pre_hole);
}
if has_post_hole_span {
// Mutate `prev.span` to start after the hole (and discard curr).
self.prev_mut().span = self.prev().span.with_lo(right_cutoff);
debug!(prev=?self.prev(), "mutated prev to start after the hole");
// Prevent this curr from becoming prev.
let hole_covspan = self.take_curr().into_refined();
self.refined_spans.push(hole_covspan); // since self.prev() was already updated
}
}
/// `curr` overlaps `prev`. If `prev`s span extends left of `curr`s span, keep _only_
/// statements that end before `curr.lo()` (if any), and add the portion of the
/// combined span for those statements. Any other statements have overlapping spans
/// that can be ignored because `curr` and/or other upcoming statements/spans inside
/// the overlap area will produce their own counters. This disambiguation process
/// avoids injecting multiple counters for overlapping spans, and the potential for
/// double-counting.
fn cutoff_prev_at_overlapping_curr(&mut self) {
debug!(
" different bcbs, overlapping spans, so ignore/drop pending and only add prev \
if it has statements that end before curr; prev={:?}",
self.prev()
);
let curr_span = self.curr().span;
if let Some(prev) = self.take_prev().cutoff_statements_at(curr_span.lo()) {
debug!("after cutoff, adding {prev:?}");
self.refined_spans.push(prev);
} else {
debug!("prev was eliminated by cutoff");
}
}
}