blob: 88298150a79dcd88672addfde40c57841186a1ea [file] [log] [blame]
#[cfg(feature = "rustc_serialize")]
use rustc_serialize::{Decodable, Decoder, Encodable, Encoder};
use std::borrow::{Borrow, BorrowMut};
use std::fmt;
use std::hash::Hash;
use std::marker::PhantomData;
use std::ops::{Deref, DerefMut, RangeBounds};
use std::slice;
use std::vec;
use crate::{Idx, IndexSlice};
/// An owned contiguous collection of `T`s, indexed by `I` rather than by `usize`.
///
/// ## Why use this instead of a `Vec`?
///
/// An `IndexVec` allows element access only via a specific associated index type, meaning that
/// trying to use the wrong index type (possibly accessing an invalid element) will fail at
/// compile time.
///
/// It also documents what the index is indexing: in a `HashMap<usize, Something>` it's not
/// immediately clear what the `usize` means, while a `HashMap<FieldIdx, Something>` makes it obvious.
///
/// ```compile_fail
/// use rustc_index::{Idx, IndexVec};
///
/// fn f<I1: Idx, I2: Idx>(vec1: IndexVec<I1, u8>, idx1: I1, idx2: I2) {
/// &vec1[idx1]; // Ok
/// &vec1[idx2]; // Compile error!
/// }
/// ```
///
/// While it's possible to use `u32` or `usize` directly for `I`,
/// you almost certainly want to use a [`newtype_index!`]-generated type instead.
///
/// This allows to index the IndexVec with the new index type.
///
/// [`newtype_index!`]: ../macro.newtype_index.html
#[derive(Clone, PartialEq, Eq, Hash)]
#[repr(transparent)]
pub struct IndexVec<I: Idx, T> {
pub raw: Vec<T>,
_marker: PhantomData<fn(&I)>,
}
impl<I: Idx, T> IndexVec<I, T> {
/// Constructs a new, empty `IndexVec<I, T>`.
#[inline]
pub const fn new() -> Self {
IndexVec::from_raw(Vec::new())
}
/// Constructs a new `IndexVec<I, T>` from a `Vec<T>`.
#[inline]
pub const fn from_raw(raw: Vec<T>) -> Self {
IndexVec { raw, _marker: PhantomData }
}
#[inline]
pub fn with_capacity(capacity: usize) -> Self {
IndexVec::from_raw(Vec::with_capacity(capacity))
}
/// Creates a new vector with a copy of `elem` for each index in `universe`.
///
/// Thus `IndexVec::from_elem(elem, &universe)` is equivalent to
/// `IndexVec::<I, _>::from_elem_n(elem, universe.len())`. That can help
/// type inference as it ensures that the resulting vector uses the same
/// index type as `universe`, rather than something potentially surprising.
///
/// For example, if you want to store data for each local in a MIR body,
/// using `let mut uses = IndexVec::from_elem(vec![], &body.local_decls);`
/// ensures that `uses` is an `IndexVec<Local, _>`, and thus can give
/// better error messages later if one accidentally mismatches indices.
#[inline]
pub fn from_elem<S>(elem: T, universe: &IndexSlice<I, S>) -> Self
where
T: Clone,
{
IndexVec::from_raw(vec![elem; universe.len()])
}
/// Creates a new IndexVec with n copies of the `elem`.
#[inline]
pub fn from_elem_n(elem: T, n: usize) -> Self
where
T: Clone,
{
IndexVec::from_raw(vec![elem; n])
}
/// Create an `IndexVec` with `n` elements, where the value of each
/// element is the result of `func(i)`. (The underlying vector will
/// be allocated only once, with a capacity of at least `n`.)
#[inline]
pub fn from_fn_n(func: impl FnMut(I) -> T, n: usize) -> Self {
IndexVec::from_raw((0..n).map(I::new).map(func).collect())
}
#[inline]
pub fn as_slice(&self) -> &IndexSlice<I, T> {
IndexSlice::from_raw(&self.raw)
}
#[inline]
pub fn as_mut_slice(&mut self) -> &mut IndexSlice<I, T> {
IndexSlice::from_raw_mut(&mut self.raw)
}
/// Pushes an element to the array returning the index where it was pushed to.
#[inline]
pub fn push(&mut self, d: T) -> I {
let idx = self.next_index();
self.raw.push(d);
idx
}
#[inline]
pub fn pop(&mut self) -> Option<T> {
self.raw.pop()
}
#[inline]
pub fn into_iter(self) -> vec::IntoIter<T> {
self.raw.into_iter()
}
#[inline]
pub fn into_iter_enumerated(
self,
) -> impl DoubleEndedIterator<Item = (I, T)> + ExactSizeIterator {
self.raw.into_iter().enumerate().map(|(n, t)| (I::new(n), t))
}
#[inline]
pub fn drain<R: RangeBounds<usize>>(&mut self, range: R) -> impl Iterator<Item = T> + '_ {
self.raw.drain(range)
}
#[inline]
pub fn drain_enumerated<R: RangeBounds<usize>>(
&mut self,
range: R,
) -> impl Iterator<Item = (I, T)> + '_ {
let begin = match range.start_bound() {
std::ops::Bound::Included(i) => *i,
std::ops::Bound::Excluded(i) => i.checked_add(1).unwrap(),
std::ops::Bound::Unbounded => 0,
};
self.raw.drain(range).enumerate().map(move |(n, t)| (I::new(begin + n), t))
}
#[inline]
pub fn shrink_to_fit(&mut self) {
self.raw.shrink_to_fit()
}
#[inline]
pub fn truncate(&mut self, a: usize) {
self.raw.truncate(a)
}
/// Grows the index vector so that it contains an entry for
/// `elem`; if that is already true, then has no
/// effect. Otherwise, inserts new values as needed by invoking
/// `fill_value`.
///
/// Returns a reference to the `elem` entry.
#[inline]
pub fn ensure_contains_elem(&mut self, elem: I, fill_value: impl FnMut() -> T) -> &mut T {
let min_new_len = elem.index() + 1;
if self.len() < min_new_len {
self.raw.resize_with(min_new_len, fill_value);
}
&mut self[elem]
}
#[inline]
pub fn resize(&mut self, new_len: usize, value: T)
where
T: Clone,
{
self.raw.resize(new_len, value)
}
#[inline]
pub fn resize_to_elem(&mut self, elem: I, fill_value: impl FnMut() -> T) {
let min_new_len = elem.index() + 1;
self.raw.resize_with(min_new_len, fill_value);
}
}
/// `IndexVec` is often used as a map, so it provides some map-like APIs.
impl<I: Idx, T> IndexVec<I, Option<T>> {
#[inline]
pub fn insert(&mut self, index: I, value: T) -> Option<T> {
self.ensure_contains_elem(index, || None).replace(value)
}
#[inline]
pub fn get_or_insert_with(&mut self, index: I, value: impl FnOnce() -> T) -> &mut T {
self.ensure_contains_elem(index, || None).get_or_insert_with(value)
}
#[inline]
pub fn remove(&mut self, index: I) -> Option<T> {
self.get_mut(index)?.take()
}
}
impl<I: Idx, T: fmt::Debug> fmt::Debug for IndexVec<I, T> {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Debug::fmt(&self.raw, fmt)
}
}
impl<I: Idx, T> Deref for IndexVec<I, T> {
type Target = IndexSlice<I, T>;
#[inline]
fn deref(&self) -> &Self::Target {
self.as_slice()
}
}
impl<I: Idx, T> DerefMut for IndexVec<I, T> {
#[inline]
fn deref_mut(&mut self) -> &mut Self::Target {
self.as_mut_slice()
}
}
impl<I: Idx, T> Borrow<IndexSlice<I, T>> for IndexVec<I, T> {
fn borrow(&self) -> &IndexSlice<I, T> {
self
}
}
impl<I: Idx, T> BorrowMut<IndexSlice<I, T>> for IndexVec<I, T> {
fn borrow_mut(&mut self) -> &mut IndexSlice<I, T> {
self
}
}
impl<I: Idx, T> Extend<T> for IndexVec<I, T> {
#[inline]
fn extend<J: IntoIterator<Item = T>>(&mut self, iter: J) {
self.raw.extend(iter);
}
#[inline]
#[cfg(feature = "nightly")]
fn extend_one(&mut self, item: T) {
self.raw.push(item);
}
#[inline]
#[cfg(feature = "nightly")]
fn extend_reserve(&mut self, additional: usize) {
self.raw.reserve(additional);
}
}
impl<I: Idx, T> FromIterator<T> for IndexVec<I, T> {
#[inline]
fn from_iter<J>(iter: J) -> Self
where
J: IntoIterator<Item = T>,
{
IndexVec::from_raw(Vec::from_iter(iter))
}
}
impl<I: Idx, T> IntoIterator for IndexVec<I, T> {
type Item = T;
type IntoIter = vec::IntoIter<T>;
#[inline]
fn into_iter(self) -> vec::IntoIter<T> {
self.raw.into_iter()
}
}
impl<'a, I: Idx, T> IntoIterator for &'a IndexVec<I, T> {
type Item = &'a T;
type IntoIter = slice::Iter<'a, T>;
#[inline]
fn into_iter(self) -> slice::Iter<'a, T> {
self.iter()
}
}
impl<'a, I: Idx, T> IntoIterator for &'a mut IndexVec<I, T> {
type Item = &'a mut T;
type IntoIter = slice::IterMut<'a, T>;
#[inline]
fn into_iter(self) -> slice::IterMut<'a, T> {
self.iter_mut()
}
}
impl<I: Idx, T> Default for IndexVec<I, T> {
#[inline]
fn default() -> Self {
IndexVec::new()
}
}
impl<I: Idx, T, const N: usize> From<[T; N]> for IndexVec<I, T> {
#[inline]
fn from(array: [T; N]) -> Self {
IndexVec::from_raw(array.into())
}
}
#[cfg(feature = "rustc_serialize")]
impl<S: Encoder, I: Idx, T: Encodable<S>> Encodable<S> for IndexVec<I, T> {
fn encode(&self, s: &mut S) {
Encodable::encode(&self.raw, s);
}
}
#[cfg(feature = "rustc_serialize")]
impl<D: Decoder, I: Idx, T: Decodable<D>> Decodable<D> for IndexVec<I, T> {
fn decode(d: &mut D) -> Self {
IndexVec::from_raw(Vec::<T>::decode(d))
}
}
// Whether `IndexVec` is `Send` depends only on the data,
// not the phantom data.
unsafe impl<I: Idx, T> Send for IndexVec<I, T> where T: Send {}
#[cfg(test)]
mod tests;