blob: 5969e5fbe98f47ab1c2cdc42fd5cb82048da7e18 [file] [log] [blame]
use rustc_data_structures::fx::FxHashMap;
use rustc_data_structures::graph::implementation::{Direction, Graph, NodeIndex, INCOMING};
use rustc_index::IndexVec;
use super::{DepNode, DepNodeIndex};
pub struct DepGraphQuery {
pub graph: Graph<DepNode, ()>,
pub indices: FxHashMap<DepNode, NodeIndex>,
pub dep_index_to_index: IndexVec<DepNodeIndex, Option<NodeIndex>>,
}
impl DepGraphQuery {
pub fn new(prev_node_count: usize) -> DepGraphQuery {
let node_count = prev_node_count + prev_node_count / 4;
let edge_count = 6 * node_count;
let graph = Graph::with_capacity(node_count, edge_count);
let indices = FxHashMap::default();
let dep_index_to_index = IndexVec::new();
DepGraphQuery { graph, indices, dep_index_to_index }
}
pub fn push(&mut self, index: DepNodeIndex, node: DepNode, edges: &[DepNodeIndex]) {
let source = self.graph.add_node(node);
self.dep_index_to_index.insert(index, source);
self.indices.insert(node, source);
for &target in edges.iter() {
let target = self.dep_index_to_index[target];
// We may miss the edges that are pushed while the `DepGraphQuery` is being accessed.
// Skip them to issues.
if let Some(target) = target {
self.graph.add_edge(source, target, ());
}
}
}
pub fn nodes(&self) -> Vec<&DepNode> {
self.graph.all_nodes().iter().map(|n| &n.data).collect()
}
pub fn edges(&self) -> Vec<(&DepNode, &DepNode)> {
self.graph
.all_edges()
.iter()
.map(|edge| (edge.source(), edge.target()))
.map(|(s, t)| (self.graph.node_data(s), self.graph.node_data(t)))
.collect()
}
fn reachable_nodes(&self, node: &DepNode, direction: Direction) -> Vec<&DepNode> {
if let Some(&index) = self.indices.get(node) {
self.graph.depth_traverse(index, direction).map(|s| self.graph.node_data(s)).collect()
} else {
vec![]
}
}
/// All nodes that can reach `node`.
pub fn transitive_predecessors(&self, node: &DepNode) -> Vec<&DepNode> {
self.reachable_nodes(node, INCOMING)
}
}