blob: d9e0e87eb471e8e6256d1147849b8195c91d1af5 [file] [log] [blame]
use rustc_data_structures::fx::FxIndexSet;
use rustc_hir as hir;
use rustc_hir::def_id::DefId;
use rustc_infer::infer::{outlives::env::OutlivesEnvironment, TyCtxtInferExt};
use rustc_lint_defs::builtin::REFINING_IMPL_TRAIT;
use rustc_middle::traits::{ObligationCause, Reveal};
use rustc_middle::ty::{
self, Ty, TyCtxt, TypeFoldable, TypeFolder, TypeSuperVisitable, TypeVisitable, TypeVisitor,
};
use rustc_span::{Span, DUMMY_SP};
use rustc_trait_selection::traits::{
elaborate, normalize_param_env_or_error, outlives_bounds::InferCtxtExt, ObligationCtxt,
};
use std::ops::ControlFlow;
/// Check that an implementation does not refine an RPITIT from a trait method signature.
pub(super) fn check_refining_return_position_impl_trait_in_trait<'tcx>(
tcx: TyCtxt<'tcx>,
impl_m: ty::AssocItem,
trait_m: ty::AssocItem,
impl_trait_ref: ty::TraitRef<'tcx>,
) {
if !tcx.impl_method_has_trait_impl_trait_tys(impl_m.def_id) {
return;
}
// crate-private traits don't have any library guarantees, there's no need to do this check.
if !tcx.visibility(trait_m.container_id(tcx)).is_public() {
return;
}
// If a type in the trait ref is private, then there's also no reason to to do this check.
let impl_def_id = impl_m.container_id(tcx);
for arg in impl_trait_ref.args {
if let Some(ty) = arg.as_type()
&& let Some(self_visibility) = type_visibility(tcx, ty)
&& !self_visibility.is_public()
{
return;
}
}
let impl_m_args = ty::GenericArgs::identity_for_item(tcx, impl_m.def_id);
let trait_m_to_impl_m_args = impl_m_args.rebase_onto(tcx, impl_def_id, impl_trait_ref.args);
let bound_trait_m_sig = tcx.fn_sig(trait_m.def_id).instantiate(tcx, trait_m_to_impl_m_args);
let trait_m_sig = tcx.liberate_late_bound_regions(impl_m.def_id, bound_trait_m_sig);
// replace the self type of the trait ref with `Self` so that diagnostics render better.
let trait_m_sig_with_self_for_diag = tcx.liberate_late_bound_regions(
impl_m.def_id,
tcx.fn_sig(trait_m.def_id).instantiate(
tcx,
tcx.mk_args_from_iter(
[tcx.types.self_param.into()]
.into_iter()
.chain(trait_m_to_impl_m_args.iter().skip(1)),
),
),
);
let Ok(hidden_tys) = tcx.collect_return_position_impl_trait_in_trait_tys(impl_m.def_id) else {
// Error already emitted, no need to delay another.
return;
};
let mut collector = ImplTraitInTraitCollector { tcx, types: FxIndexSet::default() };
trait_m_sig.visit_with(&mut collector);
// Bound that we find on RPITITs in the trait signature.
let mut trait_bounds = vec![];
// Bounds that we find on the RPITITs in the impl signature.
let mut impl_bounds = vec![];
for trait_projection in collector.types.into_iter().rev() {
let impl_opaque_args = trait_projection.args.rebase_onto(tcx, trait_m.def_id, impl_m_args);
let hidden_ty = hidden_tys[&trait_projection.def_id].instantiate(tcx, impl_opaque_args);
// If the hidden type is not an opaque, then we have "refined" the trait signature.
let ty::Alias(ty::Opaque, impl_opaque) = *hidden_ty.kind() else {
report_mismatched_rpitit_signature(
tcx,
trait_m_sig_with_self_for_diag,
trait_m.def_id,
impl_m.def_id,
None,
);
return;
};
// This opaque also needs to be from the impl method -- otherwise,
// it's a refinement to a TAIT.
if !tcx.hir().get_if_local(impl_opaque.def_id).map_or(false, |node| {
matches!(
node.expect_item().expect_opaque_ty().origin,
hir::OpaqueTyOrigin::AsyncFn(def_id) | hir::OpaqueTyOrigin::FnReturn(def_id)
if def_id == impl_m.def_id.expect_local()
)
}) {
report_mismatched_rpitit_signature(
tcx,
trait_m_sig_with_self_for_diag,
trait_m.def_id,
impl_m.def_id,
None,
);
return;
}
trait_bounds.extend(
tcx.item_bounds(trait_projection.def_id).iter_instantiated(tcx, trait_projection.args),
);
impl_bounds.extend(elaborate(
tcx,
tcx.explicit_item_bounds(impl_opaque.def_id)
.iter_instantiated_copied(tcx, impl_opaque.args),
));
}
let hybrid_preds = tcx
.predicates_of(impl_def_id)
.instantiate_identity(tcx)
.into_iter()
.chain(tcx.predicates_of(trait_m.def_id).instantiate_own(tcx, trait_m_to_impl_m_args))
.map(|(clause, _)| clause);
let param_env = ty::ParamEnv::new(tcx.mk_clauses_from_iter(hybrid_preds), Reveal::UserFacing);
let param_env = normalize_param_env_or_error(tcx, param_env, ObligationCause::dummy());
let ref infcx = tcx.infer_ctxt().build();
let ocx = ObligationCtxt::new(infcx);
// Normalize the bounds. This has two purposes:
//
// 1. Project the RPITIT projections from the trait to the opaques on the impl,
// which means that they don't need to be mapped manually.
//
// 2. Project any other projections that show up in the bound. That makes sure that
// we don't consider `tests/ui/async-await/in-trait/async-associated-types.rs`
// to be refining.
let (trait_bounds, impl_bounds) =
ocx.normalize(&ObligationCause::dummy(), param_env, (trait_bounds, impl_bounds));
// Since we've normalized things, we need to resolve regions, since we'll
// possibly have introduced region vars during projection. We don't expect
// this resolution to have incurred any region errors -- but if we do, then
// just delay a bug.
let mut implied_wf_types = FxIndexSet::default();
implied_wf_types.extend(trait_m_sig.inputs_and_output);
implied_wf_types.extend(ocx.normalize(
&ObligationCause::dummy(),
param_env,
trait_m_sig.inputs_and_output,
));
if !ocx.select_all_or_error().is_empty() {
tcx.sess.delay_span_bug(
DUMMY_SP,
"encountered errors when checking RPITIT refinement (selection)",
);
return;
}
let outlives_env = OutlivesEnvironment::with_bounds(
param_env,
infcx.implied_bounds_tys(param_env, impl_m.def_id.expect_local(), implied_wf_types),
);
let errors = infcx.resolve_regions(&outlives_env);
if !errors.is_empty() {
tcx.sess.delay_span_bug(
DUMMY_SP,
"encountered errors when checking RPITIT refinement (regions)",
);
return;
}
// Resolve any lifetime variables that may have been introduced during normalization.
let Ok((trait_bounds, impl_bounds)) = infcx.fully_resolve((trait_bounds, impl_bounds)) else {
tcx.sess.delay_span_bug(
DUMMY_SP,
"encountered errors when checking RPITIT refinement (resolution)",
);
return;
};
// For quicker lookup, use an `IndexSet` (we don't use one earlier because
// it's not foldable..).
// Also, We have to anonymize binders in these types because they may contain
// `BrNamed` bound vars, which contain unique `DefId`s which correspond to syntax
// locations that we don't care about when checking bound equality.
let trait_bounds = FxIndexSet::from_iter(trait_bounds.fold_with(&mut Anonymize { tcx }));
let impl_bounds = impl_bounds.fold_with(&mut Anonymize { tcx });
// Find any clauses that are present in the impl's RPITITs that are not
// present in the trait's RPITITs. This will trigger on trivial predicates,
// too, since we *do not* use the trait solver to prove that the RPITIT's
// bounds are not stronger -- we're doing a simple, syntactic compatibility
// check between bounds. This is strictly forwards compatible, though.
for (clause, span) in impl_bounds {
if !trait_bounds.contains(&clause) {
report_mismatched_rpitit_signature(
tcx,
trait_m_sig_with_self_for_diag,
trait_m.def_id,
impl_m.def_id,
Some(span),
);
return;
}
}
}
struct ImplTraitInTraitCollector<'tcx> {
tcx: TyCtxt<'tcx>,
types: FxIndexSet<ty::AliasTy<'tcx>>,
}
impl<'tcx> TypeVisitor<TyCtxt<'tcx>> for ImplTraitInTraitCollector<'tcx> {
type BreakTy = !;
fn visit_ty(&mut self, ty: Ty<'tcx>) -> std::ops::ControlFlow<Self::BreakTy> {
if let ty::Alias(ty::Projection, proj) = *ty.kind()
&& self.tcx.is_impl_trait_in_trait(proj.def_id)
{
if self.types.insert(proj) {
for (pred, _) in self
.tcx
.explicit_item_bounds(proj.def_id)
.iter_instantiated_copied(self.tcx, proj.args)
{
pred.visit_with(self)?;
}
}
ControlFlow::Continue(())
} else {
ty.super_visit_with(self)
}
}
}
fn report_mismatched_rpitit_signature<'tcx>(
tcx: TyCtxt<'tcx>,
trait_m_sig: ty::FnSig<'tcx>,
trait_m_def_id: DefId,
impl_m_def_id: DefId,
unmatched_bound: Option<Span>,
) {
let mapping = std::iter::zip(
tcx.fn_sig(trait_m_def_id).skip_binder().bound_vars(),
tcx.fn_sig(impl_m_def_id).skip_binder().bound_vars(),
)
.filter_map(|(impl_bv, trait_bv)| {
if let ty::BoundVariableKind::Region(impl_bv) = impl_bv
&& let ty::BoundVariableKind::Region(trait_bv) = trait_bv
{
Some((impl_bv, trait_bv))
} else {
None
}
})
.collect();
let mut return_ty =
trait_m_sig.output().fold_with(&mut super::RemapLateBound { tcx, mapping: &mapping });
if tcx.asyncness(impl_m_def_id).is_async() && tcx.asyncness(trait_m_def_id).is_async() {
let ty::Alias(ty::Projection, future_ty) = return_ty.kind() else {
bug!();
};
let Some(future_output_ty) = tcx
.explicit_item_bounds(future_ty.def_id)
.iter_instantiated_copied(tcx, future_ty.args)
.find_map(|(clause, _)| match clause.kind().no_bound_vars()? {
ty::ClauseKind::Projection(proj) => proj.term.ty(),
_ => None,
})
else {
bug!()
};
return_ty = future_output_ty;
}
let (span, impl_return_span, pre, post) =
match tcx.hir().get_by_def_id(impl_m_def_id.expect_local()).fn_decl().unwrap().output {
hir::FnRetTy::DefaultReturn(span) => (tcx.def_span(impl_m_def_id), span, "-> ", " "),
hir::FnRetTy::Return(ty) => (ty.span, ty.span, "", ""),
};
let trait_return_span =
tcx.hir().get_if_local(trait_m_def_id).map(|node| match node.fn_decl().unwrap().output {
hir::FnRetTy::DefaultReturn(_) => tcx.def_span(trait_m_def_id),
hir::FnRetTy::Return(ty) => ty.span,
});
let span = unmatched_bound.unwrap_or(span);
tcx.emit_spanned_lint(
REFINING_IMPL_TRAIT,
tcx.local_def_id_to_hir_id(impl_m_def_id.expect_local()),
span,
crate::errors::ReturnPositionImplTraitInTraitRefined {
impl_return_span,
trait_return_span,
pre,
post,
return_ty,
unmatched_bound,
},
);
}
fn type_visibility<'tcx>(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> Option<ty::Visibility<DefId>> {
match *ty.kind() {
ty::Ref(_, ty, _) => type_visibility(tcx, ty),
ty::Adt(def, args) => {
if def.is_fundamental() {
type_visibility(tcx, args.type_at(0))
} else {
Some(tcx.visibility(def.did()))
}
}
_ => None,
}
}
struct Anonymize<'tcx> {
tcx: TyCtxt<'tcx>,
}
impl<'tcx> TypeFolder<TyCtxt<'tcx>> for Anonymize<'tcx> {
fn interner(&self) -> TyCtxt<'tcx> {
self.tcx
}
fn fold_binder<T>(&mut self, t: ty::Binder<'tcx, T>) -> ty::Binder<'tcx, T>
where
T: TypeFoldable<TyCtxt<'tcx>>,
{
self.tcx.anonymize_bound_vars(t)
}
}