blob: e6b61079299cbdd02722555dadaa17251472cf6a [file] [log] [blame]
/* ----------------------------------------------------------------------------
Copyright (c) 2018-2023, Microsoft Research, Daan Leijen
This is free software; you can redistribute it and/or modify it under the
terms of the MIT license. A copy of the license can be found in the file
"LICENSE" at the root of this distribution.
-----------------------------------------------------------------------------*/
// This file is included in `src/prim/prim.c`
#include "mimalloc.h"
#include "mimalloc/internal.h"
#include "mimalloc/atomic.h"
#include "mimalloc/prim.h"
#include <stdio.h> // fputs, stderr
//---------------------------------------------
// Dynamically bind Windows API points for portability
//---------------------------------------------
// We use VirtualAlloc2 for aligned allocation, but it is only supported on Windows 10 and Windows Server 2016.
// So, we need to look it up dynamically to run on older systems. (use __stdcall for 32-bit compatibility)
// NtAllocateVirtualAllocEx is used for huge OS page allocation (1GiB)
// We define a minimal MEM_EXTENDED_PARAMETER ourselves in order to be able to compile with older SDK's.
typedef enum MI_MEM_EXTENDED_PARAMETER_TYPE_E {
MiMemExtendedParameterInvalidType = 0,
MiMemExtendedParameterAddressRequirements,
MiMemExtendedParameterNumaNode,
MiMemExtendedParameterPartitionHandle,
MiMemExtendedParameterUserPhysicalHandle,
MiMemExtendedParameterAttributeFlags,
MiMemExtendedParameterMax
} MI_MEM_EXTENDED_PARAMETER_TYPE;
typedef struct DECLSPEC_ALIGN(8) MI_MEM_EXTENDED_PARAMETER_S {
struct { DWORD64 Type : 8; DWORD64 Reserved : 56; } Type;
union { DWORD64 ULong64; PVOID Pointer; SIZE_T Size; HANDLE Handle; DWORD ULong; } Arg;
} MI_MEM_EXTENDED_PARAMETER;
typedef struct MI_MEM_ADDRESS_REQUIREMENTS_S {
PVOID LowestStartingAddress;
PVOID HighestEndingAddress;
SIZE_T Alignment;
} MI_MEM_ADDRESS_REQUIREMENTS;
#define MI_MEM_EXTENDED_PARAMETER_NONPAGED_HUGE 0x00000010
#include <winternl.h>
typedef PVOID (__stdcall *PVirtualAlloc2)(HANDLE, PVOID, SIZE_T, ULONG, ULONG, MI_MEM_EXTENDED_PARAMETER*, ULONG);
typedef NTSTATUS (__stdcall *PNtAllocateVirtualMemoryEx)(HANDLE, PVOID*, SIZE_T*, ULONG, ULONG, MI_MEM_EXTENDED_PARAMETER*, ULONG);
static PVirtualAlloc2 pVirtualAlloc2 = NULL;
static PNtAllocateVirtualMemoryEx pNtAllocateVirtualMemoryEx = NULL;
// Similarly, GetNumaProcesorNodeEx is only supported since Windows 7
typedef struct MI_PROCESSOR_NUMBER_S { WORD Group; BYTE Number; BYTE Reserved; } MI_PROCESSOR_NUMBER;
typedef VOID (__stdcall *PGetCurrentProcessorNumberEx)(MI_PROCESSOR_NUMBER* ProcNumber);
typedef BOOL (__stdcall *PGetNumaProcessorNodeEx)(MI_PROCESSOR_NUMBER* Processor, PUSHORT NodeNumber);
typedef BOOL (__stdcall* PGetNumaNodeProcessorMaskEx)(USHORT Node, PGROUP_AFFINITY ProcessorMask);
typedef BOOL (__stdcall *PGetNumaProcessorNode)(UCHAR Processor, PUCHAR NodeNumber);
static PGetCurrentProcessorNumberEx pGetCurrentProcessorNumberEx = NULL;
static PGetNumaProcessorNodeEx pGetNumaProcessorNodeEx = NULL;
static PGetNumaNodeProcessorMaskEx pGetNumaNodeProcessorMaskEx = NULL;
static PGetNumaProcessorNode pGetNumaProcessorNode = NULL;
//---------------------------------------------
// Enable large page support dynamically (if possible)
//---------------------------------------------
static bool win_enable_large_os_pages(size_t* large_page_size)
{
static bool large_initialized = false;
if (large_initialized) return (_mi_os_large_page_size() > 0);
large_initialized = true;
// Try to see if large OS pages are supported
// To use large pages on Windows, we first need access permission
// Set "Lock pages in memory" permission in the group policy editor
// <https://devblogs.microsoft.com/oldnewthing/20110128-00/?p=11643>
unsigned long err = 0;
HANDLE token = NULL;
BOOL ok = OpenProcessToken(GetCurrentProcess(), TOKEN_ADJUST_PRIVILEGES | TOKEN_QUERY, &token);
if (ok) {
TOKEN_PRIVILEGES tp;
ok = LookupPrivilegeValue(NULL, TEXT("SeLockMemoryPrivilege"), &tp.Privileges[0].Luid);
if (ok) {
tp.PrivilegeCount = 1;
tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
ok = AdjustTokenPrivileges(token, FALSE, &tp, 0, (PTOKEN_PRIVILEGES)NULL, 0);
if (ok) {
err = GetLastError();
ok = (err == ERROR_SUCCESS);
if (ok && large_page_size != NULL) {
*large_page_size = GetLargePageMinimum();
}
}
}
CloseHandle(token);
}
if (!ok) {
if (err == 0) err = GetLastError();
_mi_warning_message("cannot enable large OS page support, error %lu\n", err);
}
return (ok!=0);
}
//---------------------------------------------
// Initialize
//---------------------------------------------
void _mi_prim_mem_init( mi_os_mem_config_t* config )
{
config->has_overcommit = false;
config->must_free_whole = true;
config->has_virtual_reserve = true;
// get the page size
SYSTEM_INFO si;
GetSystemInfo(&si);
if (si.dwPageSize > 0) { config->page_size = si.dwPageSize; }
if (si.dwAllocationGranularity > 0) { config->alloc_granularity = si.dwAllocationGranularity; }
// get the VirtualAlloc2 function
HINSTANCE hDll;
hDll = LoadLibrary(TEXT("kernelbase.dll"));
if (hDll != NULL) {
// use VirtualAlloc2FromApp if possible as it is available to Windows store apps
pVirtualAlloc2 = (PVirtualAlloc2)(void (*)(void))GetProcAddress(hDll, "VirtualAlloc2FromApp");
if (pVirtualAlloc2==NULL) pVirtualAlloc2 = (PVirtualAlloc2)(void (*)(void))GetProcAddress(hDll, "VirtualAlloc2");
FreeLibrary(hDll);
}
// NtAllocateVirtualMemoryEx is used for huge page allocation
hDll = LoadLibrary(TEXT("ntdll.dll"));
if (hDll != NULL) {
pNtAllocateVirtualMemoryEx = (PNtAllocateVirtualMemoryEx)(void (*)(void))GetProcAddress(hDll, "NtAllocateVirtualMemoryEx");
FreeLibrary(hDll);
}
// Try to use Win7+ numa API
hDll = LoadLibrary(TEXT("kernel32.dll"));
if (hDll != NULL) {
pGetCurrentProcessorNumberEx = (PGetCurrentProcessorNumberEx)(void (*)(void))GetProcAddress(hDll, "GetCurrentProcessorNumberEx");
pGetNumaProcessorNodeEx = (PGetNumaProcessorNodeEx)(void (*)(void))GetProcAddress(hDll, "GetNumaProcessorNodeEx");
pGetNumaNodeProcessorMaskEx = (PGetNumaNodeProcessorMaskEx)(void (*)(void))GetProcAddress(hDll, "GetNumaNodeProcessorMaskEx");
pGetNumaProcessorNode = (PGetNumaProcessorNode)(void (*)(void))GetProcAddress(hDll, "GetNumaProcessorNode");
FreeLibrary(hDll);
}
if (mi_option_is_enabled(mi_option_allow_large_os_pages) || mi_option_is_enabled(mi_option_reserve_huge_os_pages)) {
win_enable_large_os_pages(&config->large_page_size);
}
}
//---------------------------------------------
// Free
//---------------------------------------------
int _mi_prim_free(void* addr, size_t size ) {
MI_UNUSED(size);
DWORD errcode = 0;
bool err = (VirtualFree(addr, 0, MEM_RELEASE) == 0);
if (err) { errcode = GetLastError(); }
if (errcode == ERROR_INVALID_ADDRESS) {
// In mi_os_mem_alloc_aligned the fallback path may have returned a pointer inside
// the memory region returned by VirtualAlloc; in that case we need to free using
// the start of the region.
MEMORY_BASIC_INFORMATION info = { 0 };
VirtualQuery(addr, &info, sizeof(info));
if (info.AllocationBase < addr && ((uint8_t*)addr - (uint8_t*)info.AllocationBase) < (ptrdiff_t)MI_SEGMENT_SIZE) {
errcode = 0;
err = (VirtualFree(info.AllocationBase, 0, MEM_RELEASE) == 0);
if (err) { errcode = GetLastError(); }
}
}
return (int)errcode;
}
//---------------------------------------------
// VirtualAlloc
//---------------------------------------------
static void* win_virtual_alloc_prim(void* addr, size_t size, size_t try_alignment, DWORD flags) {
#if (MI_INTPTR_SIZE >= 8)
// on 64-bit systems, try to use the virtual address area after 2TiB for 4MiB aligned allocations
if (addr == NULL) {
void* hint = _mi_os_get_aligned_hint(try_alignment,size);
if (hint != NULL) {
void* p = VirtualAlloc(hint, size, flags, PAGE_READWRITE);
if (p != NULL) return p;
_mi_verbose_message("warning: unable to allocate hinted aligned OS memory (%zu bytes, error code: 0x%x, address: %p, alignment: %zu, flags: 0x%x)\n", size, GetLastError(), hint, try_alignment, flags);
// fall through on error
}
}
#endif
// on modern Windows try use VirtualAlloc2 for aligned allocation
if (try_alignment > 1 && (try_alignment % _mi_os_page_size()) == 0 && pVirtualAlloc2 != NULL) {
MI_MEM_ADDRESS_REQUIREMENTS reqs = { 0, 0, 0 };
reqs.Alignment = try_alignment;
MI_MEM_EXTENDED_PARAMETER param = { {0, 0}, {0} };
param.Type.Type = MiMemExtendedParameterAddressRequirements;
param.Arg.Pointer = &reqs;
void* p = (*pVirtualAlloc2)(GetCurrentProcess(), addr, size, flags, PAGE_READWRITE, &param, 1);
if (p != NULL) return p;
_mi_warning_message("unable to allocate aligned OS memory (%zu bytes, error code: 0x%x, address: %p, alignment: %zu, flags: 0x%x)\n", size, GetLastError(), addr, try_alignment, flags);
// fall through on error
}
// last resort
return VirtualAlloc(addr, size, flags, PAGE_READWRITE);
}
static void* win_virtual_alloc(void* addr, size_t size, size_t try_alignment, DWORD flags, bool large_only, bool allow_large, bool* is_large) {
mi_assert_internal(!(large_only && !allow_large));
static _Atomic(size_t) large_page_try_ok; // = 0;
void* p = NULL;
// Try to allocate large OS pages (2MiB) if allowed or required.
if ((large_only || _mi_os_use_large_page(size, try_alignment))
&& allow_large && (flags&MEM_COMMIT)!=0 && (flags&MEM_RESERVE)!=0) {
size_t try_ok = mi_atomic_load_acquire(&large_page_try_ok);
if (!large_only && try_ok > 0) {
// if a large page allocation fails, it seems the calls to VirtualAlloc get very expensive.
// therefore, once a large page allocation failed, we don't try again for `large_page_try_ok` times.
mi_atomic_cas_strong_acq_rel(&large_page_try_ok, &try_ok, try_ok - 1);
}
else {
// large OS pages must always reserve and commit.
*is_large = true;
p = win_virtual_alloc_prim(addr, size, try_alignment, flags | MEM_LARGE_PAGES);
if (large_only) return p;
// fall back to non-large page allocation on error (`p == NULL`).
if (p == NULL) {
mi_atomic_store_release(&large_page_try_ok,10UL); // on error, don't try again for the next N allocations
}
}
}
// Fall back to regular page allocation
if (p == NULL) {
*is_large = ((flags&MEM_LARGE_PAGES) != 0);
p = win_virtual_alloc_prim(addr, size, try_alignment, flags);
}
//if (p == NULL) { _mi_warning_message("unable to allocate OS memory (%zu bytes, error code: 0x%x, address: %p, alignment: %zu, flags: 0x%x, large only: %d, allow large: %d)\n", size, GetLastError(), addr, try_alignment, flags, large_only, allow_large); }
return p;
}
int _mi_prim_alloc(size_t size, size_t try_alignment, bool commit, bool allow_large, bool* is_large, bool* is_zero, void** addr) {
mi_assert_internal(size > 0 && (size % _mi_os_page_size()) == 0);
mi_assert_internal(commit || !allow_large);
mi_assert_internal(try_alignment > 0);
*is_zero = true;
int flags = MEM_RESERVE;
if (commit) { flags |= MEM_COMMIT; }
*addr = win_virtual_alloc(NULL, size, try_alignment, flags, false, allow_large, is_large);
return (*addr != NULL ? 0 : (int)GetLastError());
}
//---------------------------------------------
// Commit/Reset/Protect
//---------------------------------------------
#ifdef _MSC_VER
#pragma warning(disable:6250) // suppress warning calling VirtualFree without MEM_RELEASE (for decommit)
#endif
int _mi_prim_commit(void* addr, size_t size, bool* is_zero) {
*is_zero = false;
/*
// zero'ing only happens on an initial commit... but checking upfront seems expensive..
_MEMORY_BASIC_INFORMATION meminfo; _mi_memzero_var(meminfo);
if (VirtualQuery(addr, &meminfo, size) > 0) {
if ((meminfo.State & MEM_COMMIT) == 0) {
*is_zero = true;
}
}
*/
// commit
void* p = VirtualAlloc(addr, size, MEM_COMMIT, PAGE_READWRITE);
if (p == NULL) return (int)GetLastError();
return 0;
}
int _mi_prim_decommit(void* addr, size_t size, bool* needs_recommit) {
BOOL ok = VirtualFree(addr, size, MEM_DECOMMIT);
*needs_recommit = true; // for safety, assume always decommitted even in the case of an error.
return (ok ? 0 : (int)GetLastError());
}
int _mi_prim_reset(void* addr, size_t size) {
void* p = VirtualAlloc(addr, size, MEM_RESET, PAGE_READWRITE);
mi_assert_internal(p == addr);
#if 0
if (p != NULL) {
VirtualUnlock(addr,size); // VirtualUnlock after MEM_RESET removes the memory directly from the working set
}
#endif
return (p != NULL ? 0 : (int)GetLastError());
}
int _mi_prim_protect(void* addr, size_t size, bool protect) {
DWORD oldprotect = 0;
BOOL ok = VirtualProtect(addr, size, protect ? PAGE_NOACCESS : PAGE_READWRITE, &oldprotect);
return (ok ? 0 : (int)GetLastError());
}
//---------------------------------------------
// Huge page allocation
//---------------------------------------------
static void* _mi_prim_alloc_huge_os_pagesx(void* hint_addr, size_t size, int numa_node)
{
const DWORD flags = MEM_LARGE_PAGES | MEM_COMMIT | MEM_RESERVE;
win_enable_large_os_pages(NULL);
MI_MEM_EXTENDED_PARAMETER params[3] = { {{0,0},{0}},{{0,0},{0}},{{0,0},{0}} };
// on modern Windows try use NtAllocateVirtualMemoryEx for 1GiB huge pages
static bool mi_huge_pages_available = true;
if (pNtAllocateVirtualMemoryEx != NULL && mi_huge_pages_available) {
params[0].Type.Type = MiMemExtendedParameterAttributeFlags;
params[0].Arg.ULong64 = MI_MEM_EXTENDED_PARAMETER_NONPAGED_HUGE;
ULONG param_count = 1;
if (numa_node >= 0) {
param_count++;
params[1].Type.Type = MiMemExtendedParameterNumaNode;
params[1].Arg.ULong = (unsigned)numa_node;
}
SIZE_T psize = size;
void* base = hint_addr;
NTSTATUS err = (*pNtAllocateVirtualMemoryEx)(GetCurrentProcess(), &base, &psize, flags, PAGE_READWRITE, params, param_count);
if (err == 0 && base != NULL) {
return base;
}
else {
// fall back to regular large pages
mi_huge_pages_available = false; // don't try further huge pages
_mi_warning_message("unable to allocate using huge (1GiB) pages, trying large (2MiB) pages instead (status 0x%lx)\n", err);
}
}
// on modern Windows try use VirtualAlloc2 for numa aware large OS page allocation
if (pVirtualAlloc2 != NULL && numa_node >= 0) {
params[0].Type.Type = MiMemExtendedParameterNumaNode;
params[0].Arg.ULong = (unsigned)numa_node;
return (*pVirtualAlloc2)(GetCurrentProcess(), hint_addr, size, flags, PAGE_READWRITE, params, 1);
}
// otherwise use regular virtual alloc on older windows
return VirtualAlloc(hint_addr, size, flags, PAGE_READWRITE);
}
int _mi_prim_alloc_huge_os_pages(void* hint_addr, size_t size, int numa_node, bool* is_zero, void** addr) {
*is_zero = true;
*addr = _mi_prim_alloc_huge_os_pagesx(hint_addr,size,numa_node);
return (*addr != NULL ? 0 : (int)GetLastError());
}
//---------------------------------------------
// Numa nodes
//---------------------------------------------
size_t _mi_prim_numa_node(void) {
USHORT numa_node = 0;
if (pGetCurrentProcessorNumberEx != NULL && pGetNumaProcessorNodeEx != NULL) {
// Extended API is supported
MI_PROCESSOR_NUMBER pnum;
(*pGetCurrentProcessorNumberEx)(&pnum);
USHORT nnode = 0;
BOOL ok = (*pGetNumaProcessorNodeEx)(&pnum, &nnode);
if (ok) { numa_node = nnode; }
}
else if (pGetNumaProcessorNode != NULL) {
// Vista or earlier, use older API that is limited to 64 processors. Issue #277
DWORD pnum = GetCurrentProcessorNumber();
UCHAR nnode = 0;
BOOL ok = pGetNumaProcessorNode((UCHAR)pnum, &nnode);
if (ok) { numa_node = nnode; }
}
return numa_node;
}
size_t _mi_prim_numa_node_count(void) {
ULONG numa_max = 0;
GetNumaHighestNodeNumber(&numa_max);
// find the highest node number that has actual processors assigned to it. Issue #282
while(numa_max > 0) {
if (pGetNumaNodeProcessorMaskEx != NULL) {
// Extended API is supported
GROUP_AFFINITY affinity;
if ((*pGetNumaNodeProcessorMaskEx)((USHORT)numa_max, &affinity)) {
if (affinity.Mask != 0) break; // found the maximum non-empty node
}
}
else {
// Vista or earlier, use older API that is limited to 64 processors.
ULONGLONG mask;
if (GetNumaNodeProcessorMask((UCHAR)numa_max, &mask)) {
if (mask != 0) break; // found the maximum non-empty node
};
}
// max node was invalid or had no processor assigned, try again
numa_max--;
}
return ((size_t)numa_max + 1);
}
//----------------------------------------------------------------
// Clock
//----------------------------------------------------------------
static mi_msecs_t mi_to_msecs(LARGE_INTEGER t) {
static LARGE_INTEGER mfreq; // = 0
if (mfreq.QuadPart == 0LL) {
LARGE_INTEGER f;
QueryPerformanceFrequency(&f);
mfreq.QuadPart = f.QuadPart/1000LL;
if (mfreq.QuadPart == 0) mfreq.QuadPart = 1;
}
return (mi_msecs_t)(t.QuadPart / mfreq.QuadPart);
}
mi_msecs_t _mi_prim_clock_now(void) {
LARGE_INTEGER t;
QueryPerformanceCounter(&t);
return mi_to_msecs(t);
}
//----------------------------------------------------------------
// Process Info
//----------------------------------------------------------------
#include <windows.h>
#include <psapi.h>
static mi_msecs_t filetime_msecs(const FILETIME* ftime) {
ULARGE_INTEGER i;
i.LowPart = ftime->dwLowDateTime;
i.HighPart = ftime->dwHighDateTime;
mi_msecs_t msecs = (i.QuadPart / 10000); // FILETIME is in 100 nano seconds
return msecs;
}
typedef BOOL (WINAPI *PGetProcessMemoryInfo)(HANDLE, PPROCESS_MEMORY_COUNTERS, DWORD);
static PGetProcessMemoryInfo pGetProcessMemoryInfo = NULL;
void _mi_prim_process_info(mi_process_info_t* pinfo)
{
FILETIME ct;
FILETIME ut;
FILETIME st;
FILETIME et;
GetProcessTimes(GetCurrentProcess(), &ct, &et, &st, &ut);
pinfo->utime = filetime_msecs(&ut);
pinfo->stime = filetime_msecs(&st);
// load psapi on demand
if (pGetProcessMemoryInfo == NULL) {
HINSTANCE hDll = LoadLibrary(TEXT("psapi.dll"));
if (hDll != NULL) {
pGetProcessMemoryInfo = (PGetProcessMemoryInfo)(void (*)(void))GetProcAddress(hDll, "GetProcessMemoryInfo");
}
}
// get process info
PROCESS_MEMORY_COUNTERS info;
memset(&info, 0, sizeof(info));
if (pGetProcessMemoryInfo != NULL) {
pGetProcessMemoryInfo(GetCurrentProcess(), &info, sizeof(info));
}
pinfo->current_rss = (size_t)info.WorkingSetSize;
pinfo->peak_rss = (size_t)info.PeakWorkingSetSize;
pinfo->current_commit = (size_t)info.PagefileUsage;
pinfo->peak_commit = (size_t)info.PeakPagefileUsage;
pinfo->page_faults = (size_t)info.PageFaultCount;
}
//----------------------------------------------------------------
// Output
//----------------------------------------------------------------
void _mi_prim_out_stderr( const char* msg )
{
// on windows with redirection, the C runtime cannot handle locale dependent output
// after the main thread closes so we use direct console output.
if (!_mi_preloading()) {
// _cputs(msg); // _cputs cannot be used at is aborts if it fails to lock the console
static HANDLE hcon = INVALID_HANDLE_VALUE;
static bool hconIsConsole;
if (hcon == INVALID_HANDLE_VALUE) {
CONSOLE_SCREEN_BUFFER_INFO sbi;
hcon = GetStdHandle(STD_ERROR_HANDLE);
hconIsConsole = ((hcon != INVALID_HANDLE_VALUE) && GetConsoleScreenBufferInfo(hcon, &sbi));
}
const size_t len = _mi_strlen(msg);
if (len > 0 && len < UINT32_MAX) {
DWORD written = 0;
if (hconIsConsole) {
WriteConsoleA(hcon, msg, (DWORD)len, &written, NULL);
}
else if (hcon != INVALID_HANDLE_VALUE) {
// use direct write if stderr was redirected
WriteFile(hcon, msg, (DWORD)len, &written, NULL);
}
else {
// finally fall back to fputs after all
fputs(msg, stderr);
}
}
}
}
//----------------------------------------------------------------
// Environment
//----------------------------------------------------------------
// On Windows use GetEnvironmentVariable instead of getenv to work
// reliably even when this is invoked before the C runtime is initialized.
// i.e. when `_mi_preloading() == true`.
// Note: on windows, environment names are not case sensitive.
bool _mi_prim_getenv(const char* name, char* result, size_t result_size) {
result[0] = 0;
size_t len = GetEnvironmentVariableA(name, result, (DWORD)result_size);
return (len > 0 && len < result_size);
}
//----------------------------------------------------------------
// Random
//----------------------------------------------------------------
#if defined(MI_USE_RTLGENRANDOM) // || defined(__cplusplus)
// We prefer to use BCryptGenRandom instead of (the unofficial) RtlGenRandom but when using
// dynamic overriding, we observed it can raise an exception when compiled with C++, and
// sometimes deadlocks when also running under the VS debugger.
// In contrast, issue #623 implies that on Windows Server 2019 we need to use BCryptGenRandom.
// To be continued..
#pragma comment (lib,"advapi32.lib")
#define RtlGenRandom SystemFunction036
mi_decl_externc BOOLEAN NTAPI RtlGenRandom(PVOID RandomBuffer, ULONG RandomBufferLength);
bool _mi_prim_random_buf(void* buf, size_t buf_len) {
return (RtlGenRandom(buf, (ULONG)buf_len) != 0);
}
#else
#ifndef BCRYPT_USE_SYSTEM_PREFERRED_RNG
#define BCRYPT_USE_SYSTEM_PREFERRED_RNG 0x00000002
#endif
typedef LONG (NTAPI *PBCryptGenRandom)(HANDLE, PUCHAR, ULONG, ULONG);
static PBCryptGenRandom pBCryptGenRandom = NULL;
bool _mi_prim_random_buf(void* buf, size_t buf_len) {
if (pBCryptGenRandom == NULL) {
HINSTANCE hDll = LoadLibrary(TEXT("bcrypt.dll"));
if (hDll != NULL) {
pBCryptGenRandom = (PBCryptGenRandom)(void (*)(void))GetProcAddress(hDll, "BCryptGenRandom");
}
if (pBCryptGenRandom == NULL) return false;
}
return (pBCryptGenRandom(NULL, (PUCHAR)buf, (ULONG)buf_len, BCRYPT_USE_SYSTEM_PREFERRED_RNG) >= 0);
}
#endif // MI_USE_RTLGENRANDOM
//----------------------------------------------------------------
// Thread init/done
//----------------------------------------------------------------
#if !defined(MI_SHARED_LIB)
// use thread local storage keys to detect thread ending
#include <fibersapi.h>
#if (_WIN32_WINNT < 0x600) // before Windows Vista
WINBASEAPI DWORD WINAPI FlsAlloc( _In_opt_ PFLS_CALLBACK_FUNCTION lpCallback );
WINBASEAPI PVOID WINAPI FlsGetValue( _In_ DWORD dwFlsIndex );
WINBASEAPI BOOL WINAPI FlsSetValue( _In_ DWORD dwFlsIndex, _In_opt_ PVOID lpFlsData );
WINBASEAPI BOOL WINAPI FlsFree(_In_ DWORD dwFlsIndex);
#endif
static DWORD mi_fls_key = (DWORD)(-1);
static void NTAPI mi_fls_done(PVOID value) {
mi_heap_t* heap = (mi_heap_t*)value;
if (heap != NULL) {
_mi_thread_done(heap);
FlsSetValue(mi_fls_key, NULL); // prevent recursion as _mi_thread_done may set it back to the main heap, issue #672
}
}
void _mi_prim_thread_init_auto_done(void) {
mi_fls_key = FlsAlloc(&mi_fls_done);
}
void _mi_prim_thread_done_auto_done(void) {
// call thread-done on all threads (except the main thread) to prevent
// dangling callback pointer if statically linked with a DLL; Issue #208
FlsFree(mi_fls_key);
}
void _mi_prim_thread_associate_default_heap(mi_heap_t* heap) {
mi_assert_internal(mi_fls_key != (DWORD)(-1));
FlsSetValue(mi_fls_key, heap);
}
#else
// Dll; nothing to do as in that case thread_done is handled through the DLL_THREAD_DETACH event.
void _mi_prim_thread_init_auto_done(void) {
}
void _mi_prim_thread_done_auto_done(void) {
}
void _mi_prim_thread_associate_default_heap(mi_heap_t* heap) {
MI_UNUSED(heap);
}
#endif