blob: 860fcbd24e14827f074f7946ee5e2b8ed437ffaa [file] [log] [blame]
//! Instruction Set Architectures.
//!
//! The `isa` module provides a `TargetIsa` trait which provides the behavior specialization needed
//! by the ISA-independent code generator. The sub-modules of this module provide definitions for
//! the instruction sets that Cranelift can target. Each sub-module has it's own implementation of
//! `TargetIsa`.
//!
//! # Constructing a `TargetIsa` instance
//!
//! The target ISA is built from the following information:
//!
//! - The name of the target ISA as a string. Cranelift is a cross-compiler, so the ISA to target
//! can be selected dynamically. Individual ISAs can be left out when Cranelift is compiled, so a
//! string is used to identify the proper sub-module.
//! - Values for settings that apply to all ISAs. This is represented by a `settings::Flags`
//! instance.
//! - Values for ISA-specific settings.
//!
//! The `isa::lookup()` function is the main entry point which returns an `isa::Builder`
//! appropriate for the requested ISA:
//!
//! ```
//! # #[macro_use] extern crate target_lexicon;
//! use cranelift_codegen::isa;
//! use cranelift_codegen::settings::{self, Configurable};
//! use std::str::FromStr;
//! use target_lexicon::Triple;
//!
//! let shared_builder = settings::builder();
//! let shared_flags = settings::Flags::new(shared_builder);
//!
//! match isa::lookup(triple!("x86_64")) {
//! Err(_) => {
//! // The x86_64 target ISA is not available.
//! }
//! Ok(mut isa_builder) => {
//! isa_builder.set("use_popcnt", "on");
//! let isa = isa_builder.finish(shared_flags);
//! }
//! }
//! ```
//!
//! The configured target ISA trait object is a `Box<TargetIsa>` which can be used for multiple
//! concurrent function compilations.
use crate::dominator_tree::DominatorTree;
pub use crate::isa::call_conv::CallConv;
use crate::flowgraph;
use crate::ir::{self, Function, Type};
#[cfg(feature = "unwind")]
use crate::isa::unwind::systemv::RegisterMappingError;
use crate::machinst::{CompiledCode, CompiledCodeStencil, TextSectionBuilder, UnwindInfoKind};
use crate::settings;
use crate::settings::SetResult;
use crate::CodegenResult;
use alloc::{boxed::Box, sync::Arc, vec::Vec};
use core::fmt;
use core::fmt::{Debug, Formatter};
use cranelift_control::ControlPlane;
use target_lexicon::{triple, Architecture, PointerWidth, Triple};
// This module is made public here for benchmarking purposes. No guarantees are
// made regarding API stability.
#[cfg(feature = "x86")]
pub mod x64;
#[cfg(feature = "arm64")]
pub mod aarch64;
#[cfg(feature = "riscv64")]
pub mod riscv64;
#[cfg(feature = "s390x")]
mod s390x;
pub mod unwind;
mod call_conv;
/// Returns a builder that can create a corresponding `TargetIsa`
/// or `Err(LookupError::SupportDisabled)` if not enabled.
macro_rules! isa_builder {
($name: ident, $cfg_terms: tt, $triple: ident) => {{
#[cfg $cfg_terms]
{
Ok($name::isa_builder($triple))
}
#[cfg(not $cfg_terms)]
{
Err(LookupError::SupportDisabled)
}
}};
}
/// Look for an ISA for the given `triple`.
/// Return a builder that can create a corresponding `TargetIsa`.
pub fn lookup(triple: Triple) -> Result<Builder, LookupError> {
match triple.architecture {
Architecture::X86_64 => {
isa_builder!(x64, (feature = "x86"), triple)
}
Architecture::Aarch64 { .. } => isa_builder!(aarch64, (feature = "arm64"), triple),
Architecture::S390x { .. } => isa_builder!(s390x, (feature = "s390x"), triple),
Architecture::Riscv64 { .. } => isa_builder!(riscv64, (feature = "riscv64"), triple),
_ => Err(LookupError::Unsupported),
}
}
/// The string names of all the supported, but possibly not enabled, architectures. The elements of
/// this slice are suitable to be passed to the [lookup_by_name] function to obtain the default
/// configuration for that architecture.
pub const ALL_ARCHITECTURES: &[&str] = &["x86_64", "aarch64", "s390x", "riscv64"];
/// Look for a supported ISA with the given `name`.
/// Return a builder that can create a corresponding `TargetIsa`.
pub fn lookup_by_name(name: &str) -> Result<Builder, LookupError> {
use alloc::str::FromStr;
lookup(triple!(name))
}
/// Describes reason for target lookup failure
#[derive(PartialEq, Eq, Copy, Clone, Debug)]
pub enum LookupError {
/// Support for this target was disabled in the current build.
SupportDisabled,
/// Support for this target has not yet been implemented.
Unsupported,
}
// This is manually implementing Error and Display instead of using thiserror to reduce the amount
// of dependencies used by Cranelift.
impl std::error::Error for LookupError {}
impl fmt::Display for LookupError {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
match self {
LookupError::SupportDisabled => write!(f, "Support for this target is disabled"),
LookupError::Unsupported => {
write!(f, "Support for this target has not been implemented yet")
}
}
}
}
/// The type of a polymorphic TargetISA object which is 'static.
pub type OwnedTargetIsa = Arc<dyn TargetIsa>;
/// Type alias of `IsaBuilder` used for building Cranelift's ISAs.
pub type Builder = IsaBuilder<CodegenResult<OwnedTargetIsa>>;
/// Builder for a `TargetIsa`.
/// Modify the ISA-specific settings before creating the `TargetIsa` trait object with `finish`.
#[derive(Clone)]
pub struct IsaBuilder<T> {
triple: Triple,
setup: settings::Builder,
constructor: fn(Triple, settings::Flags, &settings::Builder) -> T,
}
impl<T> IsaBuilder<T> {
/// Creates a new ISA-builder from its components, namely the `triple` for
/// the ISA, the ISA-specific settings builder, and a final constructor
/// function to generate the ISA from its components.
pub fn new(
triple: Triple,
setup: settings::Builder,
constructor: fn(Triple, settings::Flags, &settings::Builder) -> T,
) -> Self {
IsaBuilder {
triple,
setup,
constructor,
}
}
/// Gets the triple for the builder.
pub fn triple(&self) -> &Triple {
&self.triple
}
/// Iterates the available settings in the builder.
pub fn iter(&self) -> impl Iterator<Item = settings::Setting> {
self.setup.iter()
}
/// Combine the ISA-specific settings with the provided
/// ISA-independent settings and allocate a fully configured
/// `TargetIsa` trait object. May return an error if some of the
/// flags are inconsistent or incompatible: for example, some
/// platform-independent features, like general SIMD support, may
/// need certain ISA extensions to be enabled.
pub fn finish(&self, shared_flags: settings::Flags) -> T {
(self.constructor)(self.triple.clone(), shared_flags, &self.setup)
}
}
impl<T> settings::Configurable for IsaBuilder<T> {
fn set(&mut self, name: &str, value: &str) -> SetResult<()> {
self.setup.set(name, value)
}
fn enable(&mut self, name: &str) -> SetResult<()> {
self.setup.enable(name)
}
}
/// After determining that an instruction doesn't have an encoding, how should we proceed to
/// legalize it?
///
/// The `Encodings` iterator returns a legalization function to call.
pub type Legalize =
fn(ir::Inst, &mut ir::Function, &mut flowgraph::ControlFlowGraph, &dyn TargetIsa) -> bool;
/// This struct provides information that a frontend may need to know about a target to
/// produce Cranelift IR for the target.
#[derive(Clone, Copy, Hash)]
pub struct TargetFrontendConfig {
/// The default calling convention of the target.
pub default_call_conv: CallConv,
/// The pointer width of the target.
pub pointer_width: PointerWidth,
}
impl TargetFrontendConfig {
/// Get the pointer type of this target.
pub fn pointer_type(self) -> ir::Type {
ir::Type::int(self.pointer_bits() as u16).unwrap()
}
/// Get the width of pointers on this target, in units of bits.
pub fn pointer_bits(self) -> u8 {
self.pointer_width.bits()
}
/// Get the width of pointers on this target, in units of bytes.
pub fn pointer_bytes(self) -> u8 {
self.pointer_width.bytes()
}
}
/// Methods that are specialized to a target ISA.
///
/// Implies a Display trait that shows the shared flags, as well as any ISA-specific flags.
pub trait TargetIsa: fmt::Display + Send + Sync {
/// Get the name of this ISA.
fn name(&self) -> &'static str;
/// Get the target triple that was used to make this trait object.
fn triple(&self) -> &Triple;
/// Get the ISA-independent flags that were used to make this trait object.
fn flags(&self) -> &settings::Flags;
/// Get the ISA-dependent MachineEnv for managing register allocation.
fn machine_env(&self) -> &regalloc2::MachineEnv;
/// Get the ISA-dependent flag values that were used to make this trait object.
fn isa_flags(&self) -> Vec<settings::Value>;
/// Get a flag indicating whether branch protection is enabled.
fn is_branch_protection_enabled(&self) -> bool {
false
}
/// Get the ISA-dependent maximum vector register size, in bytes.
fn dynamic_vector_bytes(&self, dynamic_ty: ir::Type) -> u32;
/// Compile the given function.
fn compile_function(
&self,
func: &Function,
domtree: &DominatorTree,
want_disasm: bool,
ctrl_plane: &mut ControlPlane,
) -> CodegenResult<CompiledCodeStencil>;
#[cfg(feature = "unwind")]
/// Map a regalloc::Reg to its corresponding DWARF register.
fn map_regalloc_reg_to_dwarf(
&self,
_: crate::machinst::Reg,
) -> Result<u16, RegisterMappingError> {
Err(RegisterMappingError::UnsupportedArchitecture)
}
/// Creates unwind information for the function.
///
/// Returns `None` if there is no unwind information for the function.
#[cfg(feature = "unwind")]
fn emit_unwind_info(
&self,
result: &CompiledCode,
kind: UnwindInfoKind,
) -> CodegenResult<Option<crate::isa::unwind::UnwindInfo>>;
/// Creates a new System V Common Information Entry for the ISA.
///
/// Returns `None` if the ISA does not support System V unwind information.
#[cfg(feature = "unwind")]
fn create_systemv_cie(&self) -> Option<gimli::write::CommonInformationEntry> {
// By default, an ISA cannot create a System V CIE
None
}
/// Returns an object that can be used to build the text section of an
/// executable.
///
/// This object will internally attempt to handle as many relocations as
/// possible using relative calls/jumps/etc between functions.
///
/// The `num_labeled_funcs` argument here is the number of functions which
/// will be "labeled" or might have calls between them, typically the number
/// of defined functions in the object file.
fn text_section_builder(&self, num_labeled_funcs: usize) -> Box<dyn TextSectionBuilder>;
/// Returns the minimum function alignment and the preferred function
/// alignment, for performance, required by this ISA.
fn function_alignment(&self) -> FunctionAlignment;
/// Create a polymorphic TargetIsa from this specific implementation.
fn wrapped(self) -> OwnedTargetIsa
where
Self: Sized + 'static,
{
Arc::new(self)
}
/// Generate a `Capstone` context for disassembling bytecode for this architecture.
#[cfg(feature = "disas")]
fn to_capstone(&self) -> Result<capstone::Capstone, capstone::Error> {
Err(capstone::Error::UnsupportedArch)
}
/// Returns whether this ISA has a native fused-multiply-and-add instruction
/// for floats.
///
/// Currently this only returns false on x86 when some native features are
/// not detected.
fn has_native_fma(&self) -> bool;
/// Returns whether the CLIF `x86_blendv` instruction is implemented for
/// this ISA for the specified type.
fn has_x86_blendv_lowering(&self, ty: Type) -> bool;
/// Returns whether the CLIF `x86_pshufb` instruction is implemented for
/// this ISA.
fn has_x86_pshufb_lowering(&self) -> bool;
/// Returns whether the CLIF `x86_pmulhrsw` instruction is implemented for
/// this ISA.
fn has_x86_pmulhrsw_lowering(&self) -> bool;
/// Returns whether the CLIF `x86_pmaddubsw` instruction is implemented for
/// this ISA.
fn has_x86_pmaddubsw_lowering(&self) -> bool;
}
/// Function alignment specifications as required by an ISA, returned by
/// [`TargetIsa::function_alignment`].
#[derive(Copy, Clone)]
pub struct FunctionAlignment {
/// The minimum alignment required by an ISA, where all functions must be
/// aligned to at least this amount.
pub minimum: u32,
/// A "preferred" alignment which should be used for more
/// performance-sensitive situations. This can involve cache-line-aligning
/// for example to get more of a small function into fewer cache lines.
pub preferred: u32,
}
/// Methods implemented for free for target ISA!
impl<'a> dyn TargetIsa + 'a {
/// Get the default calling convention of this target.
pub fn default_call_conv(&self) -> CallConv {
CallConv::triple_default(self.triple())
}
/// Get the endianness of this ISA.
pub fn endianness(&self) -> ir::Endianness {
match self.triple().endianness().unwrap() {
target_lexicon::Endianness::Little => ir::Endianness::Little,
target_lexicon::Endianness::Big => ir::Endianness::Big,
}
}
/// Returns the minimum symbol alignment for this ISA.
pub fn symbol_alignment(&self) -> u64 {
match self.triple().architecture {
// All symbols need to be aligned to at least 2 on s390x.
Architecture::S390x => 2,
_ => 1,
}
}
/// Get the pointer type of this ISA.
pub fn pointer_type(&self) -> ir::Type {
ir::Type::int(self.pointer_bits() as u16).unwrap()
}
/// Get the width of pointers on this ISA.
pub(crate) fn pointer_width(&self) -> PointerWidth {
self.triple().pointer_width().unwrap()
}
/// Get the width of pointers on this ISA, in units of bits.
pub fn pointer_bits(&self) -> u8 {
self.pointer_width().bits()
}
/// Get the width of pointers on this ISA, in units of bytes.
pub fn pointer_bytes(&self) -> u8 {
self.pointer_width().bytes()
}
/// Get the information needed by frontends producing Cranelift IR.
pub fn frontend_config(&self) -> TargetFrontendConfig {
TargetFrontendConfig {
default_call_conv: self.default_call_conv(),
pointer_width: self.pointer_width(),
}
}
}
impl Debug for &dyn TargetIsa {
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
write!(
f,
"TargetIsa {{ triple: {:?}, pointer_width: {:?}}}",
self.triple(),
self.pointer_width()
)
}
}