blob: aabda3655602a96b8fe068d261fa817eab379382 [file] [log] [blame]
//! Maps *syntax* of various definitions to their semantic ids.
//!
//! This is a very interesting module, and, in some sense, can be considered the
//! heart of the IDE parts of rust-analyzer.
//!
//! This module solves the following problem:
//!
//! Given a piece of syntax, find the corresponding semantic definition (def).
//!
//! This problem is a part of more-or-less every IDE feature implemented. Every
//! IDE functionality (like goto to definition), conceptually starts with a
//! specific cursor position in a file. Starting with this text offset, we first
//! figure out what syntactic construct are we at: is this a pattern, an
//! expression, an item definition.
//!
//! Knowing only the syntax gives us relatively little info. For example,
//! looking at the syntax of the function we can realize that it is a part of an
//! `impl` block, but we won't be able to tell what trait function the current
//! function overrides, and whether it does that correctly. For that, we need to
//! go from [`ast::Fn`] to [`crate::Function`], and that's exactly what this
//! module does.
//!
//! As syntax trees are values and don't know their place of origin/identity,
//! this module also requires [`InFile`] wrappers to understand which specific
//! real or macro-expanded file the tree comes from.
//!
//! The actual algorithm to resolve syntax to def is curious in two aspects:
//!
//! * It is recursive
//! * It uses the inverse algorithm (what is the syntax for this def?)
//!
//! Specifically, the algorithm goes like this:
//!
//! 1. Find the syntactic container for the syntax. For example, field's
//! container is the struct, and structs container is a module.
//! 2. Recursively get the def corresponding to container.
//! 3. Ask the container def for all child defs. These child defs contain
//! the answer and answer's siblings.
//! 4. For each child def, ask for it's source.
//! 5. The child def whose source is the syntax node we've started with
//! is the answer.
//!
//! It's interesting that both Roslyn and Kotlin contain very similar code
//! shape.
//!
//! Let's take a look at Roslyn:
//!
//! <https://github.com/dotnet/roslyn/blob/36a0c338d6621cc5fe34b79d414074a95a6a489c/src/Compilers/CSharp/Portable/Compilation/SyntaxTreeSemanticModel.cs#L1403-L1429>
//! <https://sourceroslyn.io/#Microsoft.CodeAnalysis.CSharp/Compilation/SyntaxTreeSemanticModel.cs,1403>
//!
//! The `GetDeclaredType` takes `Syntax` as input, and returns `Symbol` as
//! output. First, it retrieves a `Symbol` for parent `Syntax`:
//!
//! * <https://sourceroslyn.io/#Microsoft.CodeAnalysis.CSharp/Compilation/SyntaxTreeSemanticModel.cs,1423>
//!
//! Then, it iterates parent symbol's children, looking for one which has the
//! same text span as the original node:
//!
//! <https://sourceroslyn.io/#Microsoft.CodeAnalysis.CSharp/Compilation/SyntaxTreeSemanticModel.cs,1786>
//!
//! Now, let's look at Kotlin:
//!
//! <https://github.com/JetBrains/kotlin/blob/a288b8b00e4754a1872b164999c6d3f3b8c8994a/idea/idea-frontend-fir/idea-fir-low-level-api/src/org/jetbrains/kotlin/idea/fir/low/level/api/FirModuleResolveStateImpl.kt#L93-L125>
//!
//! This function starts with a syntax node (`KtExpression` is syntax, like all
//! `Kt` nodes), and returns a def. It uses
//! `getNonLocalContainingOrThisDeclaration` to get syntactic container for a
//! current node. Then, `findSourceNonLocalFirDeclaration` gets `Fir` for this
//! parent. Finally, `findElementIn` function traverses `Fir` children to find
//! one with the same source we originally started with.
//!
//! One question is left though -- where does the recursion stops? This happens
//! when we get to the file syntax node, which doesn't have a syntactic parent.
//! In that case, we loop through all the crates that might contain this file
//! and look for a module whose source is the given file.
//!
//! Note that the logic in this module is somewhat fundamentally imprecise --
//! due to conditional compilation and `#[path]` attributes, there's no
//! injective mapping from syntax nodes to defs. This is not an edge case --
//! more or less every item in a `lib.rs` is a part of two distinct crates: a
//! library with `--cfg test` and a library without.
//!
//! At the moment, we don't really handle this well and return the first answer
//! that works. Ideally, we should first let the caller to pick a specific
//! active crate for a given position, and then provide an API to resolve all
//! syntax nodes against this specific crate.
use base_db::FileId;
use hir_def::{
child_by_source::ChildBySource,
dyn_map::{
keys::{self, Key},
DynMap,
},
hir::{BindingId, LabelId},
AdtId, ConstId, ConstParamId, DefWithBodyId, EnumId, EnumVariantId, ExternCrateId, FieldId,
FunctionId, GenericDefId, GenericParamId, ImplId, LifetimeParamId, MacroId, ModuleId, StaticId,
StructId, TraitAliasId, TraitId, TypeAliasId, TypeParamId, UnionId, UseId, VariantId,
};
use hir_expand::{attrs::AttrId, name::AsName, HirFileId, MacroCallId};
use rustc_hash::FxHashMap;
use smallvec::SmallVec;
use stdx::{impl_from, never};
use syntax::{
ast::{self, HasName},
AstNode, SyntaxNode,
};
use crate::{db::HirDatabase, InFile};
pub(super) type SourceToDefCache = FxHashMap<(ChildContainer, HirFileId), DynMap>;
pub(super) struct SourceToDefCtx<'a, 'b> {
pub(super) db: &'b dyn HirDatabase,
pub(super) cache: &'a mut SourceToDefCache,
}
impl SourceToDefCtx<'_, '_> {
pub(super) fn file_to_def(&self, file: FileId) -> SmallVec<[ModuleId; 1]> {
let _p = profile::span("SourceBinder::to_module_def");
let mut mods = SmallVec::new();
for &crate_id in self.db.relevant_crates(file).iter() {
// FIXME: inner items
let crate_def_map = self.db.crate_def_map(crate_id);
mods.extend(
crate_def_map
.modules_for_file(file)
.map(|local_id| crate_def_map.module_id(local_id)),
)
}
mods
}
pub(super) fn module_to_def(&self, src: InFile<ast::Module>) -> Option<ModuleId> {
let _p = profile::span("module_to_def");
let parent_declaration = src
.syntax()
.ancestors_with_macros_skip_attr_item(self.db.upcast())
.find_map(|it| it.map(ast::Module::cast).transpose());
let parent_module = match parent_declaration {
Some(parent_declaration) => self.module_to_def(parent_declaration),
None => {
let file_id = src.file_id.original_file(self.db.upcast());
self.file_to_def(file_id).get(0).copied()
}
}?;
let child_name = src.value.name()?.as_name();
let def_map = parent_module.def_map(self.db.upcast());
let &child_id = def_map[parent_module.local_id].children.get(&child_name)?;
Some(def_map.module_id(child_id))
}
pub(super) fn source_file_to_def(&self, src: InFile<ast::SourceFile>) -> Option<ModuleId> {
let _p = profile::span("source_file_to_def");
let file_id = src.file_id.original_file(self.db.upcast());
self.file_to_def(file_id).get(0).copied()
}
pub(super) fn trait_to_def(&mut self, src: InFile<ast::Trait>) -> Option<TraitId> {
self.to_def(src, keys::TRAIT)
}
pub(super) fn trait_alias_to_def(
&mut self,
src: InFile<ast::TraitAlias>,
) -> Option<TraitAliasId> {
self.to_def(src, keys::TRAIT_ALIAS)
}
pub(super) fn impl_to_def(&mut self, src: InFile<ast::Impl>) -> Option<ImplId> {
self.to_def(src, keys::IMPL)
}
pub(super) fn fn_to_def(&mut self, src: InFile<ast::Fn>) -> Option<FunctionId> {
self.to_def(src, keys::FUNCTION)
}
pub(super) fn struct_to_def(&mut self, src: InFile<ast::Struct>) -> Option<StructId> {
self.to_def(src, keys::STRUCT)
}
pub(super) fn enum_to_def(&mut self, src: InFile<ast::Enum>) -> Option<EnumId> {
self.to_def(src, keys::ENUM)
}
pub(super) fn union_to_def(&mut self, src: InFile<ast::Union>) -> Option<UnionId> {
self.to_def(src, keys::UNION)
}
pub(super) fn static_to_def(&mut self, src: InFile<ast::Static>) -> Option<StaticId> {
self.to_def(src, keys::STATIC)
}
pub(super) fn const_to_def(&mut self, src: InFile<ast::Const>) -> Option<ConstId> {
self.to_def(src, keys::CONST)
}
pub(super) fn type_alias_to_def(&mut self, src: InFile<ast::TypeAlias>) -> Option<TypeAliasId> {
self.to_def(src, keys::TYPE_ALIAS)
}
pub(super) fn record_field_to_def(&mut self, src: InFile<ast::RecordField>) -> Option<FieldId> {
self.to_def(src, keys::RECORD_FIELD)
}
pub(super) fn tuple_field_to_def(&mut self, src: InFile<ast::TupleField>) -> Option<FieldId> {
self.to_def(src, keys::TUPLE_FIELD)
}
pub(super) fn enum_variant_to_def(
&mut self,
src: InFile<ast::Variant>,
) -> Option<EnumVariantId> {
self.to_def(src, keys::VARIANT)
}
pub(super) fn extern_crate_to_def(
&mut self,
src: InFile<ast::ExternCrate>,
) -> Option<ExternCrateId> {
self.to_def(src, keys::EXTERN_CRATE)
}
#[allow(dead_code)]
pub(super) fn use_to_def(&mut self, src: InFile<ast::Use>) -> Option<UseId> {
self.to_def(src, keys::USE)
}
pub(super) fn adt_to_def(
&mut self,
InFile { file_id, value }: InFile<ast::Adt>,
) -> Option<AdtId> {
match value {
ast::Adt::Enum(it) => self.enum_to_def(InFile::new(file_id, it)).map(AdtId::EnumId),
ast::Adt::Struct(it) => {
self.struct_to_def(InFile::new(file_id, it)).map(AdtId::StructId)
}
ast::Adt::Union(it) => self.union_to_def(InFile::new(file_id, it)).map(AdtId::UnionId),
}
}
pub(super) fn bind_pat_to_def(
&mut self,
src: InFile<ast::IdentPat>,
) -> Option<(DefWithBodyId, BindingId)> {
let container = self.find_pat_or_label_container(src.syntax())?;
let (body, source_map) = self.db.body_with_source_map(container);
let src = src.map(ast::Pat::from);
let pat_id = source_map.node_pat(src.as_ref())?;
// the pattern could resolve to a constant, verify that that is not the case
if let crate::Pat::Bind { id, .. } = body[pat_id] {
Some((container, id))
} else {
None
}
}
pub(super) fn self_param_to_def(
&mut self,
src: InFile<ast::SelfParam>,
) -> Option<(DefWithBodyId, BindingId)> {
let container = self.find_pat_or_label_container(src.syntax())?;
let (body, source_map) = self.db.body_with_source_map(container);
let pat_id = source_map.node_self_param(src.as_ref())?;
if let crate::Pat::Bind { id, .. } = body[pat_id] {
Some((container, id))
} else {
never!();
None
}
}
pub(super) fn label_to_def(
&mut self,
src: InFile<ast::Label>,
) -> Option<(DefWithBodyId, LabelId)> {
let container = self.find_pat_or_label_container(src.syntax())?;
let (_body, source_map) = self.db.body_with_source_map(container);
let label_id = source_map.node_label(src.as_ref())?;
Some((container, label_id))
}
pub(super) fn item_to_macro_call(&mut self, src: InFile<ast::Item>) -> Option<MacroCallId> {
let map = self.dyn_map(src.as_ref())?;
map[keys::ATTR_MACRO_CALL].get(&src.value).copied()
}
/// (AttrId, derive attribute call id, derive call ids)
pub(super) fn attr_to_derive_macro_call(
&mut self,
item: InFile<&ast::Adt>,
src: InFile<ast::Attr>,
) -> Option<(AttrId, MacroCallId, &[Option<MacroCallId>])> {
let map = self.dyn_map(item)?;
map[keys::DERIVE_MACRO_CALL]
.get(&src.value)
.map(|&(attr_id, call_id, ref ids)| (attr_id, call_id, &**ids))
}
pub(super) fn has_derives(&mut self, adt: InFile<&ast::Adt>) -> bool {
self.dyn_map(adt).as_ref().map_or(false, |map| !map[keys::DERIVE_MACRO_CALL].is_empty())
}
fn to_def<Ast: AstNode + 'static, ID: Copy + 'static>(
&mut self,
src: InFile<Ast>,
key: Key<Ast, ID>,
) -> Option<ID> {
self.dyn_map(src.as_ref())?[key].get(&src.value).copied()
}
fn dyn_map<Ast: AstNode + 'static>(&mut self, src: InFile<&Ast>) -> Option<&DynMap> {
let container = self.find_container(src.map(|it| it.syntax()))?;
Some(self.cache_for(container, src.file_id))
}
fn cache_for(&mut self, container: ChildContainer, file_id: HirFileId) -> &DynMap {
let db = self.db;
self.cache
.entry((container, file_id))
.or_insert_with(|| container.child_by_source(db, file_id))
}
pub(super) fn type_param_to_def(&mut self, src: InFile<ast::TypeParam>) -> Option<TypeParamId> {
let container: ChildContainer = self.find_generic_param_container(src.syntax())?.into();
let dyn_map = self.cache_for(container, src.file_id);
dyn_map[keys::TYPE_PARAM].get(&src.value).copied().map(|it| TypeParamId::from_unchecked(it))
}
pub(super) fn lifetime_param_to_def(
&mut self,
src: InFile<ast::LifetimeParam>,
) -> Option<LifetimeParamId> {
let container: ChildContainer = self.find_generic_param_container(src.syntax())?.into();
let dyn_map = self.cache_for(container, src.file_id);
dyn_map[keys::LIFETIME_PARAM].get(&src.value).copied()
}
pub(super) fn const_param_to_def(
&mut self,
src: InFile<ast::ConstParam>,
) -> Option<ConstParamId> {
let container: ChildContainer = self.find_generic_param_container(src.syntax())?.into();
let dyn_map = self.cache_for(container, src.file_id);
dyn_map[keys::CONST_PARAM]
.get(&src.value)
.copied()
.map(|it| ConstParamId::from_unchecked(it))
}
pub(super) fn generic_param_to_def(
&mut self,
InFile { file_id, value }: InFile<ast::GenericParam>,
) -> Option<GenericParamId> {
match value {
ast::GenericParam::ConstParam(it) => {
self.const_param_to_def(InFile::new(file_id, it)).map(GenericParamId::ConstParamId)
}
ast::GenericParam::LifetimeParam(it) => self
.lifetime_param_to_def(InFile::new(file_id, it))
.map(GenericParamId::LifetimeParamId),
ast::GenericParam::TypeParam(it) => {
self.type_param_to_def(InFile::new(file_id, it)).map(GenericParamId::TypeParamId)
}
}
}
pub(super) fn macro_to_def(&mut self, src: InFile<ast::Macro>) -> Option<MacroId> {
self.dyn_map(src.as_ref()).and_then(|it| match &src.value {
ast::Macro::MacroRules(value) => {
it[keys::MACRO_RULES].get(value).copied().map(MacroId::from)
}
ast::Macro::MacroDef(value) => it[keys::MACRO2].get(value).copied().map(MacroId::from),
})
}
pub(super) fn proc_macro_to_def(&mut self, src: InFile<ast::Fn>) -> Option<MacroId> {
self.dyn_map(src.as_ref())
.and_then(|it| it[keys::PROC_MACRO].get(&src.value).copied().map(MacroId::from))
}
pub(super) fn find_container(&mut self, src: InFile<&SyntaxNode>) -> Option<ChildContainer> {
for container in src.ancestors_with_macros_skip_attr_item(self.db.upcast()) {
if let Some(res) = self.container_to_def(container) {
return Some(res);
}
}
let def = self.file_to_def(src.file_id.original_file(self.db.upcast())).get(0).copied()?;
Some(def.into())
}
fn container_to_def(&mut self, container: InFile<SyntaxNode>) -> Option<ChildContainer> {
let cont = if let Some(item) = ast::Item::cast(container.value.clone()) {
match item {
ast::Item::Module(it) => self.module_to_def(container.with_value(it))?.into(),
ast::Item::Trait(it) => self.trait_to_def(container.with_value(it))?.into(),
ast::Item::TraitAlias(it) => {
self.trait_alias_to_def(container.with_value(it))?.into()
}
ast::Item::Impl(it) => self.impl_to_def(container.with_value(it))?.into(),
ast::Item::Enum(it) => self.enum_to_def(container.with_value(it))?.into(),
ast::Item::TypeAlias(it) => {
self.type_alias_to_def(container.with_value(it))?.into()
}
ast::Item::Struct(it) => {
let def = self.struct_to_def(container.with_value(it))?;
VariantId::from(def).into()
}
ast::Item::Union(it) => {
let def = self.union_to_def(container.with_value(it))?;
VariantId::from(def).into()
}
ast::Item::Fn(it) => {
let def = self.fn_to_def(container.with_value(it))?;
DefWithBodyId::from(def).into()
}
ast::Item::Static(it) => {
let def = self.static_to_def(container.with_value(it))?;
DefWithBodyId::from(def).into()
}
ast::Item::Const(it) => {
let def = self.const_to_def(container.with_value(it))?;
DefWithBodyId::from(def).into()
}
_ => return None,
}
} else {
let it = ast::Variant::cast(container.value)?;
let def = self.enum_variant_to_def(InFile::new(container.file_id, it))?;
DefWithBodyId::from(def).into()
};
Some(cont)
}
fn find_generic_param_container(&mut self, src: InFile<&SyntaxNode>) -> Option<GenericDefId> {
let ancestors = src.ancestors_with_macros_skip_attr_item(self.db.upcast());
for InFile { file_id, value } in ancestors {
let item = match ast::Item::cast(value) {
Some(it) => it,
None => continue,
};
let res: GenericDefId = match item {
ast::Item::Fn(it) => self.fn_to_def(InFile::new(file_id, it))?.into(),
ast::Item::Struct(it) => self.struct_to_def(InFile::new(file_id, it))?.into(),
ast::Item::Enum(it) => self.enum_to_def(InFile::new(file_id, it))?.into(),
ast::Item::Trait(it) => self.trait_to_def(InFile::new(file_id, it))?.into(),
ast::Item::TraitAlias(it) => {
self.trait_alias_to_def(InFile::new(file_id, it))?.into()
}
ast::Item::TypeAlias(it) => {
self.type_alias_to_def(InFile::new(file_id, it))?.into()
}
ast::Item::Impl(it) => self.impl_to_def(InFile::new(file_id, it))?.into(),
_ => continue,
};
return Some(res);
}
None
}
fn find_pat_or_label_container(&mut self, src: InFile<&SyntaxNode>) -> Option<DefWithBodyId> {
let ancestors = src.ancestors_with_macros_skip_attr_item(self.db.upcast());
for InFile { file_id, value } in ancestors {
let item = match ast::Item::cast(value) {
Some(it) => it,
None => continue,
};
let res: DefWithBodyId = match item {
ast::Item::Const(it) => self.const_to_def(InFile::new(file_id, it))?.into(),
ast::Item::Static(it) => self.static_to_def(InFile::new(file_id, it))?.into(),
ast::Item::Fn(it) => self.fn_to_def(InFile::new(file_id, it))?.into(),
_ => continue,
};
return Some(res);
}
None
}
}
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)]
pub(crate) enum ChildContainer {
DefWithBodyId(DefWithBodyId),
ModuleId(ModuleId),
TraitId(TraitId),
TraitAliasId(TraitAliasId),
ImplId(ImplId),
EnumId(EnumId),
VariantId(VariantId),
TypeAliasId(TypeAliasId),
/// XXX: this might be the same def as, for example an `EnumId`. However,
/// here the children are generic parameters, and not, eg enum variants.
GenericDefId(GenericDefId),
}
impl_from! {
DefWithBodyId,
ModuleId,
TraitId,
TraitAliasId,
ImplId,
EnumId,
VariantId,
TypeAliasId,
GenericDefId
for ChildContainer
}
impl ChildContainer {
fn child_by_source(self, db: &dyn HirDatabase, file_id: HirFileId) -> DynMap {
let db = db.upcast();
match self {
ChildContainer::DefWithBodyId(it) => it.child_by_source(db, file_id),
ChildContainer::ModuleId(it) => it.child_by_source(db, file_id),
ChildContainer::TraitId(it) => it.child_by_source(db, file_id),
ChildContainer::TraitAliasId(_) => DynMap::default(),
ChildContainer::ImplId(it) => it.child_by_source(db, file_id),
ChildContainer::EnumId(it) => it.child_by_source(db, file_id),
ChildContainer::VariantId(it) => it.child_by_source(db, file_id),
ChildContainer::TypeAliasId(_) => DynMap::default(),
ChildContainer::GenericDefId(it) => it.child_by_source(db, file_id),
}
}
}