blob: 3853a6ab3a5767d266e0b00b53a1fda86fa03e42 [file] [log] [blame]
//! Transforms `ast::Expr` into an equivalent `hir_def::expr::Expr`
//! representation.
use std::mem;
use base_db::CrateId;
use either::Either;
use hir_expand::{
ast_id_map::AstIdMap,
name::{name, AsName, Name},
AstId, ExpandError, InFile,
};
use intern::Interned;
use profile::Count;
use rustc_hash::FxHashMap;
use smallvec::SmallVec;
use syntax::{
ast::{
self, ArrayExprKind, AstChildren, BlockExpr, HasArgList, HasAttrs, HasLoopBody, HasName,
SlicePatComponents,
},
AstNode, AstPtr, SyntaxNodePtr,
};
use triomphe::Arc;
use crate::{
body::{Body, BodyDiagnostic, BodySourceMap, ExprPtr, LabelPtr, PatPtr},
data::adt::StructKind,
db::DefDatabase,
expander::Expander,
hir::{
dummy_expr_id, Array, Binding, BindingAnnotation, BindingId, BindingProblems, CaptureBy,
ClosureKind, Expr, ExprId, Label, LabelId, Literal, LiteralOrConst, MatchArm, Movability,
Pat, PatId, RecordFieldPat, RecordLitField, Statement,
},
item_scope::BuiltinShadowMode,
lang_item::LangItem,
lower::LowerCtx,
nameres::{DefMap, MacroSubNs},
path::{GenericArgs, Path},
type_ref::{Mutability, Rawness, TypeRef},
AdtId, BlockId, BlockLoc, ConstBlockLoc, DefWithBodyId, ModuleDefId, UnresolvedMacro,
};
pub(super) fn lower(
db: &dyn DefDatabase,
owner: DefWithBodyId,
expander: Expander,
params: Option<(ast::ParamList, impl Iterator<Item = bool>)>,
body: Option<ast::Expr>,
krate: CrateId,
is_async_fn: bool,
) -> (Body, BodySourceMap) {
ExprCollector {
db,
owner,
krate,
def_map: expander.module.def_map(db),
source_map: BodySourceMap::default(),
ast_id_map: db.ast_id_map(expander.current_file_id),
body: Body {
exprs: Default::default(),
pats: Default::default(),
bindings: Default::default(),
binding_owners: Default::default(),
labels: Default::default(),
params: Vec::new(),
body_expr: dummy_expr_id(),
block_scopes: Vec::new(),
_c: Count::new(),
},
expander,
current_try_block_label: None,
is_lowering_assignee_expr: false,
is_lowering_generator: false,
label_ribs: Vec::new(),
current_binding_owner: None,
}
.collect(params, body, is_async_fn)
}
struct ExprCollector<'a> {
db: &'a dyn DefDatabase,
expander: Expander,
owner: DefWithBodyId,
def_map: Arc<DefMap>,
ast_id_map: Arc<AstIdMap>,
krate: CrateId,
body: Body,
source_map: BodySourceMap,
is_lowering_assignee_expr: bool,
is_lowering_generator: bool,
current_try_block_label: Option<LabelId>,
// points to the expression that a try expression will target (replaces current_try_block_label)
// catch_scope: Option<ExprId>,
// points to the expression that an unlabeled control flow will target
// loop_scope: Option<ExprId>,
// needed to diagnose non label control flow in while conditions
// is_in_loop_condition: bool,
// resolution
label_ribs: Vec<LabelRib>,
current_binding_owner: Option<ExprId>,
}
#[derive(Clone, Debug)]
struct LabelRib {
kind: RibKind,
// Once we handle macro hygiene this will need to be a map
label: Option<(Name, LabelId)>,
}
impl LabelRib {
fn new(kind: RibKind) -> Self {
LabelRib { kind, label: None }
}
fn new_normal(label: (Name, LabelId)) -> Self {
LabelRib { kind: RibKind::Normal, label: Some(label) }
}
}
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
enum RibKind {
Normal,
Closure,
Constant,
}
impl RibKind {
/// This rib forbids referring to labels defined in upwards ribs.
fn is_label_barrier(self) -> bool {
match self {
RibKind::Normal => false,
RibKind::Closure | RibKind::Constant => true,
}
}
}
#[derive(Debug, Default)]
struct BindingList {
map: FxHashMap<Name, BindingId>,
is_used: FxHashMap<BindingId, bool>,
reject_new: bool,
}
impl BindingList {
fn find(
&mut self,
ec: &mut ExprCollector<'_>,
name: Name,
mode: BindingAnnotation,
) -> BindingId {
let id = *self.map.entry(name).or_insert_with_key(|n| ec.alloc_binding(n.clone(), mode));
if ec.body.bindings[id].mode != mode {
ec.body.bindings[id].problems = Some(BindingProblems::BoundInconsistently);
}
self.check_is_used(ec, id);
id
}
fn check_is_used(&mut self, ec: &mut ExprCollector<'_>, id: BindingId) {
match self.is_used.get(&id) {
None => {
if self.reject_new {
ec.body.bindings[id].problems = Some(BindingProblems::NotBoundAcrossAll);
}
}
Some(true) => {
ec.body.bindings[id].problems = Some(BindingProblems::BoundMoreThanOnce);
}
Some(false) => {}
}
self.is_used.insert(id, true);
}
}
impl ExprCollector<'_> {
fn collect(
mut self,
param_list: Option<(ast::ParamList, impl Iterator<Item = bool>)>,
body: Option<ast::Expr>,
is_async_fn: bool,
) -> (Body, BodySourceMap) {
if let Some((param_list, mut attr_enabled)) = param_list {
if let Some(self_param) =
param_list.self_param().filter(|_| attr_enabled.next().unwrap_or(false))
{
let ptr = AstPtr::new(&self_param);
let binding_id: la_arena::Idx<Binding> = self.alloc_binding(
name![self],
BindingAnnotation::new(
self_param.mut_token().is_some() && self_param.amp_token().is_none(),
false,
),
);
let param_pat =
self.alloc_pat(Pat::Bind { id: binding_id, subpat: None }, Either::Right(ptr));
self.add_definition_to_binding(binding_id, param_pat);
self.body.params.push(param_pat);
}
for (param, _) in param_list.params().zip(attr_enabled).filter(|(_, enabled)| *enabled)
{
let param_pat = self.collect_pat_top(param.pat());
self.body.params.push(param_pat);
}
};
self.body.body_expr = self.with_label_rib(RibKind::Closure, |this| {
if is_async_fn {
match body {
Some(e) => {
let expr = this.collect_expr(e);
this.alloc_expr_desugared(Expr::Async {
id: None,
statements: Box::new([]),
tail: Some(expr),
})
}
None => this.missing_expr(),
}
} else {
this.collect_expr_opt(body)
}
});
(self.body, self.source_map)
}
fn ctx(&self) -> LowerCtx<'_> {
self.expander.ctx(self.db)
}
fn collect_expr(&mut self, expr: ast::Expr) -> ExprId {
self.maybe_collect_expr(expr).unwrap_or_else(|| self.missing_expr())
}
/// Returns `None` if and only if the expression is `#[cfg]`d out.
fn maybe_collect_expr(&mut self, expr: ast::Expr) -> Option<ExprId> {
let syntax_ptr = AstPtr::new(&expr);
self.check_cfg(&expr)?;
// FIXME: Move some of these arms out into separate methods for clarity
Some(match expr {
ast::Expr::IfExpr(e) => {
let then_branch = self.collect_block_opt(e.then_branch());
let else_branch = e.else_branch().map(|b| match b {
ast::ElseBranch::Block(it) => self.collect_block(it),
ast::ElseBranch::IfExpr(elif) => {
let expr: ast::Expr = ast::Expr::cast(elif.syntax().clone()).unwrap();
self.collect_expr(expr)
}
});
let condition = self.collect_expr_opt(e.condition());
self.alloc_expr(Expr::If { condition, then_branch, else_branch }, syntax_ptr)
}
ast::Expr::LetExpr(e) => {
let pat = self.collect_pat_top(e.pat());
let expr = self.collect_expr_opt(e.expr());
self.alloc_expr(Expr::Let { pat, expr }, syntax_ptr)
}
ast::Expr::BlockExpr(e) => match e.modifier() {
Some(ast::BlockModifier::Try(_)) => self.desugar_try_block(e),
Some(ast::BlockModifier::Unsafe(_)) => {
self.collect_block_(e, |id, statements, tail| Expr::Unsafe {
id,
statements,
tail,
})
}
Some(ast::BlockModifier::Label(label)) => {
let label = self.collect_label(label);
self.with_labeled_rib(label, |this| {
this.collect_block_(e, |id, statements, tail| Expr::Block {
id,
statements,
tail,
label: Some(label),
})
})
}
Some(ast::BlockModifier::Async(_)) => {
self.with_label_rib(RibKind::Closure, |this| {
this.collect_block_(e, |id, statements, tail| Expr::Async {
id,
statements,
tail,
})
})
}
Some(ast::BlockModifier::Const(_)) => {
self.with_label_rib(RibKind::Constant, |this| {
let (result_expr_id, prev_binding_owner) =
this.initialize_binding_owner(syntax_ptr);
let inner_expr = this.collect_block(e);
let it = this.db.intern_anonymous_const(ConstBlockLoc {
parent: this.owner,
root: inner_expr,
});
this.body.exprs[result_expr_id] = Expr::Const(it);
this.current_binding_owner = prev_binding_owner;
result_expr_id
})
}
None => self.collect_block(e),
},
ast::Expr::LoopExpr(e) => {
let label = e.label().map(|label| self.collect_label(label));
let body = self.collect_labelled_block_opt(label, e.loop_body());
self.alloc_expr(Expr::Loop { body, label }, syntax_ptr)
}
ast::Expr::WhileExpr(e) => self.collect_while_loop(syntax_ptr, e),
ast::Expr::ForExpr(e) => self.collect_for_loop(syntax_ptr, e),
ast::Expr::CallExpr(e) => {
let is_rustc_box = {
let attrs = e.attrs();
attrs.filter_map(|it| it.as_simple_atom()).any(|it| it == "rustc_box")
};
if is_rustc_box {
let expr = self.collect_expr_opt(e.arg_list().and_then(|it| it.args().next()));
self.alloc_expr(Expr::Box { expr }, syntax_ptr)
} else {
let callee = self.collect_expr_opt(e.expr());
let args = if let Some(arg_list) = e.arg_list() {
arg_list.args().filter_map(|e| self.maybe_collect_expr(e)).collect()
} else {
Box::default()
};
self.alloc_expr(
Expr::Call {
callee,
args,
is_assignee_expr: self.is_lowering_assignee_expr,
},
syntax_ptr,
)
}
}
ast::Expr::MethodCallExpr(e) => {
let receiver = self.collect_expr_opt(e.receiver());
let args = if let Some(arg_list) = e.arg_list() {
arg_list.args().filter_map(|e| self.maybe_collect_expr(e)).collect()
} else {
Box::default()
};
let method_name = e.name_ref().map(|nr| nr.as_name()).unwrap_or_else(Name::missing);
let generic_args = e
.generic_arg_list()
.and_then(|it| GenericArgs::from_ast(&self.ctx(), it))
.map(Box::new);
self.alloc_expr(
Expr::MethodCall { receiver, method_name, args, generic_args },
syntax_ptr,
)
}
ast::Expr::MatchExpr(e) => {
let expr = self.collect_expr_opt(e.expr());
let arms = if let Some(match_arm_list) = e.match_arm_list() {
match_arm_list
.arms()
.filter_map(|arm| {
self.check_cfg(&arm).map(|()| MatchArm {
pat: self.collect_pat_top(arm.pat()),
expr: self.collect_expr_opt(arm.expr()),
guard: arm
.guard()
.map(|guard| self.collect_expr_opt(guard.condition())),
})
})
.collect()
} else {
Box::default()
};
self.alloc_expr(Expr::Match { expr, arms }, syntax_ptr)
}
ast::Expr::PathExpr(e) => {
let path = e
.path()
.and_then(|path| self.expander.parse_path(self.db, path))
.map(Expr::Path)
.unwrap_or(Expr::Missing);
self.alloc_expr(path, syntax_ptr)
}
ast::Expr::ContinueExpr(e) => {
let label = self.resolve_label(e.lifetime()).unwrap_or_else(|e| {
self.source_map.diagnostics.push(e);
None
});
self.alloc_expr(Expr::Continue { label }, syntax_ptr)
}
ast::Expr::BreakExpr(e) => {
let label = self.resolve_label(e.lifetime()).unwrap_or_else(|e| {
self.source_map.diagnostics.push(e);
None
});
let expr = e.expr().map(|e| self.collect_expr(e));
self.alloc_expr(Expr::Break { expr, label }, syntax_ptr)
}
ast::Expr::ParenExpr(e) => {
let inner = self.collect_expr_opt(e.expr());
// make the paren expr point to the inner expression as well
let src = self.expander.to_source(syntax_ptr);
self.source_map.expr_map.insert(src, inner);
inner
}
ast::Expr::ReturnExpr(e) => {
let expr = e.expr().map(|e| self.collect_expr(e));
self.alloc_expr(Expr::Return { expr }, syntax_ptr)
}
ast::Expr::YieldExpr(e) => {
self.is_lowering_generator = true;
let expr = e.expr().map(|e| self.collect_expr(e));
self.alloc_expr(Expr::Yield { expr }, syntax_ptr)
}
ast::Expr::YeetExpr(e) => {
let expr = e.expr().map(|e| self.collect_expr(e));
self.alloc_expr(Expr::Yeet { expr }, syntax_ptr)
}
ast::Expr::RecordExpr(e) => {
let path =
e.path().and_then(|path| self.expander.parse_path(self.db, path)).map(Box::new);
let is_assignee_expr = self.is_lowering_assignee_expr;
let record_lit = if let Some(nfl) = e.record_expr_field_list() {
let fields = nfl
.fields()
.filter_map(|field| {
self.check_cfg(&field)?;
let name = field.field_name()?.as_name();
let expr = match field.expr() {
Some(e) => self.collect_expr(e),
None => self.missing_expr(),
};
let src = self.expander.to_source(AstPtr::new(&field));
self.source_map.field_map.insert(src.clone(), expr);
self.source_map.field_map_back.insert(expr, src);
Some(RecordLitField { name, expr })
})
.collect();
let spread = nfl.spread().map(|s| self.collect_expr(s));
let ellipsis = nfl.dotdot_token().is_some();
Expr::RecordLit { path, fields, spread, ellipsis, is_assignee_expr }
} else {
Expr::RecordLit {
path,
fields: Box::default(),
spread: None,
ellipsis: false,
is_assignee_expr,
}
};
self.alloc_expr(record_lit, syntax_ptr)
}
ast::Expr::FieldExpr(e) => {
let expr = self.collect_expr_opt(e.expr());
let name = match e.field_access() {
Some(kind) => kind.as_name(),
_ => Name::missing(),
};
self.alloc_expr(Expr::Field { expr, name }, syntax_ptr)
}
ast::Expr::AwaitExpr(e) => {
let expr = self.collect_expr_opt(e.expr());
self.alloc_expr(Expr::Await { expr }, syntax_ptr)
}
ast::Expr::TryExpr(e) => self.collect_try_operator(syntax_ptr, e),
ast::Expr::CastExpr(e) => {
let expr = self.collect_expr_opt(e.expr());
let type_ref = Interned::new(TypeRef::from_ast_opt(&self.ctx(), e.ty()));
self.alloc_expr(Expr::Cast { expr, type_ref }, syntax_ptr)
}
ast::Expr::RefExpr(e) => {
let expr = self.collect_expr_opt(e.expr());
let raw_tok = e.raw_token().is_some();
let mutability = if raw_tok {
if e.mut_token().is_some() {
Mutability::Mut
} else if e.const_token().is_some() {
Mutability::Shared
} else {
unreachable!("parser only remaps to raw_token() if matching mutability token follows")
}
} else {
Mutability::from_mutable(e.mut_token().is_some())
};
let rawness = Rawness::from_raw(raw_tok);
self.alloc_expr(Expr::Ref { expr, rawness, mutability }, syntax_ptr)
}
ast::Expr::PrefixExpr(e) => {
let expr = self.collect_expr_opt(e.expr());
match e.op_kind() {
Some(op) => self.alloc_expr(Expr::UnaryOp { expr, op }, syntax_ptr),
None => self.alloc_expr(Expr::Missing, syntax_ptr),
}
}
ast::Expr::ClosureExpr(e) => self.with_label_rib(RibKind::Closure, |this| {
let (result_expr_id, prev_binding_owner) =
this.initialize_binding_owner(syntax_ptr);
let mut args = Vec::new();
let mut arg_types = Vec::new();
if let Some(pl) = e.param_list() {
for param in pl.params() {
let pat = this.collect_pat_top(param.pat());
let type_ref =
param.ty().map(|it| Interned::new(TypeRef::from_ast(&this.ctx(), it)));
args.push(pat);
arg_types.push(type_ref);
}
}
let ret_type = e
.ret_type()
.and_then(|r| r.ty())
.map(|it| Interned::new(TypeRef::from_ast(&this.ctx(), it)));
let prev_is_lowering_generator = mem::take(&mut this.is_lowering_generator);
let prev_try_block_label = this.current_try_block_label.take();
let body = this.collect_expr_opt(e.body());
let closure_kind = if this.is_lowering_generator {
let movability = if e.static_token().is_some() {
Movability::Static
} else {
Movability::Movable
};
ClosureKind::Generator(movability)
} else if e.async_token().is_some() {
ClosureKind::Async
} else {
ClosureKind::Closure
};
let capture_by =
if e.move_token().is_some() { CaptureBy::Value } else { CaptureBy::Ref };
this.is_lowering_generator = prev_is_lowering_generator;
this.current_binding_owner = prev_binding_owner;
this.current_try_block_label = prev_try_block_label;
this.body.exprs[result_expr_id] = Expr::Closure {
args: args.into(),
arg_types: arg_types.into(),
ret_type,
body,
closure_kind,
capture_by,
};
result_expr_id
}),
ast::Expr::BinExpr(e) => {
let op = e.op_kind();
if let Some(ast::BinaryOp::Assignment { op: None }) = op {
self.is_lowering_assignee_expr = true;
}
let lhs = self.collect_expr_opt(e.lhs());
self.is_lowering_assignee_expr = false;
let rhs = self.collect_expr_opt(e.rhs());
self.alloc_expr(Expr::BinaryOp { lhs, rhs, op }, syntax_ptr)
}
ast::Expr::TupleExpr(e) => {
let mut exprs: Vec<_> = e.fields().map(|expr| self.collect_expr(expr)).collect();
// if there is a leading comma, the user is most likely to type out a leading expression
// so we insert a missing expression at the beginning for IDE features
if comma_follows_token(e.l_paren_token()) {
exprs.insert(0, self.missing_expr());
}
self.alloc_expr(
Expr::Tuple {
exprs: exprs.into_boxed_slice(),
is_assignee_expr: self.is_lowering_assignee_expr,
},
syntax_ptr,
)
}
ast::Expr::BoxExpr(e) => {
let expr = self.collect_expr_opt(e.expr());
self.alloc_expr(Expr::Box { expr }, syntax_ptr)
}
ast::Expr::ArrayExpr(e) => {
let kind = e.kind();
match kind {
ArrayExprKind::ElementList(e) => {
let elements = e.map(|expr| self.collect_expr(expr)).collect();
self.alloc_expr(
Expr::Array(Array::ElementList {
elements,
is_assignee_expr: self.is_lowering_assignee_expr,
}),
syntax_ptr,
)
}
ArrayExprKind::Repeat { initializer, repeat } => {
let initializer = self.collect_expr_opt(initializer);
let repeat = self.with_label_rib(RibKind::Constant, |this| {
if let Some(repeat) = repeat {
let syntax_ptr = AstPtr::new(&repeat);
this.collect_as_a_binding_owner_bad(
|this| this.collect_expr(repeat),
syntax_ptr,
)
} else {
this.missing_expr()
}
});
self.alloc_expr(
Expr::Array(Array::Repeat { initializer, repeat }),
syntax_ptr,
)
}
}
}
ast::Expr::Literal(e) => self.alloc_expr(Expr::Literal(e.kind().into()), syntax_ptr),
ast::Expr::IndexExpr(e) => {
let base = self.collect_expr_opt(e.base());
let index = self.collect_expr_opt(e.index());
self.alloc_expr(Expr::Index { base, index }, syntax_ptr)
}
ast::Expr::RangeExpr(e) => {
let lhs = e.start().map(|lhs| self.collect_expr(lhs));
let rhs = e.end().map(|rhs| self.collect_expr(rhs));
match e.op_kind() {
Some(range_type) => {
self.alloc_expr(Expr::Range { lhs, rhs, range_type }, syntax_ptr)
}
None => self.alloc_expr(Expr::Missing, syntax_ptr),
}
}
ast::Expr::MacroExpr(e) => {
let e = e.macro_call()?;
let macro_ptr = AstPtr::new(&e);
let id = self.collect_macro_call(e, macro_ptr, true, |this, expansion| {
expansion.map(|it| this.collect_expr(it))
});
match id {
Some(id) => {
// Make the macro-call point to its expanded expression so we can query
// semantics on syntax pointers to the macro
let src = self.expander.to_source(syntax_ptr);
self.source_map.expr_map.insert(src, id);
id
}
None => self.alloc_expr(Expr::Missing, syntax_ptr),
}
}
ast::Expr::UnderscoreExpr(_) => self.alloc_expr(Expr::Underscore, syntax_ptr),
})
}
fn initialize_binding_owner(
&mut self,
syntax_ptr: AstPtr<ast::Expr>,
) -> (ExprId, Option<ExprId>) {
let result_expr_id = self.alloc_expr(Expr::Missing, syntax_ptr);
let prev_binding_owner = self.current_binding_owner.take();
self.current_binding_owner = Some(result_expr_id);
(result_expr_id, prev_binding_owner)
}
/// FIXME: This function is bad. It will produce a dangling `Missing` expr which wastes memory. Currently
/// it is used only for const blocks and repeat expressions, which are also hacky and ideally should have
/// their own body. Don't add more usage for this function so that we can remove this function after
/// separating those bodies.
fn collect_as_a_binding_owner_bad(
&mut self,
job: impl FnOnce(&mut ExprCollector<'_>) -> ExprId,
syntax_ptr: AstPtr<ast::Expr>,
) -> ExprId {
let (id, prev_owner) = self.initialize_binding_owner(syntax_ptr);
let tmp = job(self);
self.body.exprs[id] = mem::replace(&mut self.body.exprs[tmp], Expr::Missing);
self.current_binding_owner = prev_owner;
id
}
/// Desugar `try { <stmts>; <expr> }` into `'<new_label>: { <stmts>; ::std::ops::Try::from_output(<expr>) }`,
/// `try { <stmts>; }` into `'<new_label>: { <stmts>; ::std::ops::Try::from_output(()) }`
/// and save the `<new_label>` to use it as a break target for desugaring of the `?` operator.
fn desugar_try_block(&mut self, e: BlockExpr) -> ExprId {
let Some(try_from_output) = LangItem::TryTraitFromOutput.path(self.db, self.krate) else {
return self.collect_block(e);
};
let label = self.alloc_label_desugared(Label { name: Name::generate_new_name() });
let old_label = self.current_try_block_label.replace(label);
let (btail, expr_id) = self.with_labeled_rib(label, |this| {
let mut btail = None;
let block = this.collect_block_(e, |id, statements, tail| {
btail = tail;
Expr::Block { id, statements, tail, label: Some(label) }
});
(btail, block)
});
let callee = self.alloc_expr_desugared(Expr::Path(try_from_output));
let next_tail = match btail {
Some(tail) => self.alloc_expr_desugared(Expr::Call {
callee,
args: Box::new([tail]),
is_assignee_expr: false,
}),
None => {
let unit = self.alloc_expr_desugared(Expr::Tuple {
exprs: Box::new([]),
is_assignee_expr: false,
});
self.alloc_expr_desugared(Expr::Call {
callee,
args: Box::new([unit]),
is_assignee_expr: false,
})
}
};
let Expr::Block { tail, .. } = &mut self.body.exprs[expr_id] else {
unreachable!("block was lowered to non-block");
};
*tail = Some(next_tail);
self.current_try_block_label = old_label;
expr_id
}
/// Desugar `ast::WhileExpr` from: `[opt_ident]: while <cond> <body>` into:
/// ```ignore (pseudo-rust)
/// [opt_ident]: loop {
/// if <cond> {
/// <body>
/// }
/// else {
/// break;
/// }
/// }
/// ```
/// FIXME: Rustc wraps the condition in a construct equivalent to `{ let _t = <cond>; _t }`
/// to preserve drop semantics. We should probably do the same in future.
fn collect_while_loop(&mut self, syntax_ptr: AstPtr<ast::Expr>, e: ast::WhileExpr) -> ExprId {
let label = e.label().map(|label| self.collect_label(label));
let body = self.collect_labelled_block_opt(label, e.loop_body());
let condition = self.collect_expr_opt(e.condition());
let break_expr =
self.alloc_expr(Expr::Break { expr: None, label: None }, syntax_ptr.clone());
let if_expr = self.alloc_expr(
Expr::If { condition, then_branch: body, else_branch: Some(break_expr) },
syntax_ptr.clone(),
);
self.alloc_expr(Expr::Loop { body: if_expr, label }, syntax_ptr)
}
/// Desugar `ast::ForExpr` from: `[opt_ident]: for <pat> in <head> <body>` into:
/// ```ignore (pseudo-rust)
/// match IntoIterator::into_iter(<head>) {
/// mut iter => {
/// [opt_ident]: loop {
/// match Iterator::next(&mut iter) {
/// None => break,
/// Some(<pat>) => <body>,
/// };
/// }
/// }
/// }
/// ```
fn collect_for_loop(&mut self, syntax_ptr: AstPtr<ast::Expr>, e: ast::ForExpr) -> ExprId {
let Some((into_iter_fn, iter_next_fn, option_some, option_none)) = (|| {
Some((
LangItem::IntoIterIntoIter.path(self.db, self.krate)?,
LangItem::IteratorNext.path(self.db, self.krate)?,
LangItem::OptionSome.path(self.db, self.krate)?,
LangItem::OptionNone.path(self.db, self.krate)?,
))
})() else {
// Some of the needed lang items are missing, so we can't desugar
return self.alloc_expr(Expr::Missing, syntax_ptr);
};
let head = self.collect_expr_opt(e.iterable());
let into_iter_fn_expr = self.alloc_expr(Expr::Path(into_iter_fn), syntax_ptr.clone());
let iterator = self.alloc_expr(
Expr::Call {
callee: into_iter_fn_expr,
args: Box::new([head]),
is_assignee_expr: false,
},
syntax_ptr.clone(),
);
let none_arm = MatchArm {
pat: self.alloc_pat_desugared(Pat::Path(Box::new(option_none))),
guard: None,
expr: self.alloc_expr(Expr::Break { expr: None, label: None }, syntax_ptr.clone()),
};
let some_pat = Pat::TupleStruct {
path: Some(Box::new(option_some)),
args: Box::new([self.collect_pat_top(e.pat())]),
ellipsis: None,
};
let label = e.label().map(|label| self.collect_label(label));
let some_arm = MatchArm {
pat: self.alloc_pat_desugared(some_pat),
guard: None,
expr: self.with_opt_labeled_rib(label, |this| {
this.collect_expr_opt(e.loop_body().map(|it| it.into()))
}),
};
let iter_name = Name::generate_new_name();
let iter_expr =
self.alloc_expr(Expr::Path(Path::from(iter_name.clone())), syntax_ptr.clone());
let iter_expr_mut = self.alloc_expr(
Expr::Ref { expr: iter_expr, rawness: Rawness::Ref, mutability: Mutability::Mut },
syntax_ptr.clone(),
);
let iter_next_fn_expr = self.alloc_expr(Expr::Path(iter_next_fn), syntax_ptr.clone());
let iter_next_expr = self.alloc_expr(
Expr::Call {
callee: iter_next_fn_expr,
args: Box::new([iter_expr_mut]),
is_assignee_expr: false,
},
syntax_ptr.clone(),
);
let loop_inner = self.alloc_expr(
Expr::Match { expr: iter_next_expr, arms: Box::new([none_arm, some_arm]) },
syntax_ptr.clone(),
);
let loop_outer =
self.alloc_expr(Expr::Loop { body: loop_inner, label }, syntax_ptr.clone());
let iter_binding = self.alloc_binding(iter_name, BindingAnnotation::Mutable);
let iter_pat = self.alloc_pat_desugared(Pat::Bind { id: iter_binding, subpat: None });
self.add_definition_to_binding(iter_binding, iter_pat);
self.alloc_expr(
Expr::Match {
expr: iterator,
arms: Box::new([MatchArm { pat: iter_pat, guard: None, expr: loop_outer }]),
},
syntax_ptr.clone(),
)
}
/// Desugar `ast::TryExpr` from: `<expr>?` into:
/// ```ignore (pseudo-rust)
/// match Try::branch(<expr>) {
/// ControlFlow::Continue(val) => val,
/// ControlFlow::Break(residual) =>
/// // If there is an enclosing `try {...}`:
/// break 'catch_target Try::from_residual(residual),
/// // Otherwise:
/// return Try::from_residual(residual),
/// }
/// ```
fn collect_try_operator(&mut self, syntax_ptr: AstPtr<ast::Expr>, e: ast::TryExpr) -> ExprId {
let Some((try_branch, cf_continue, cf_break, try_from_residual)) = (|| {
Some((
LangItem::TryTraitBranch.path(self.db, self.krate)?,
LangItem::ControlFlowContinue.path(self.db, self.krate)?,
LangItem::ControlFlowBreak.path(self.db, self.krate)?,
LangItem::TryTraitFromResidual.path(self.db, self.krate)?,
))
})() else {
// Some of the needed lang items are missing, so we can't desugar
return self.alloc_expr(Expr::Missing, syntax_ptr);
};
let operand = self.collect_expr_opt(e.expr());
let try_branch = self.alloc_expr(Expr::Path(try_branch), syntax_ptr.clone());
let expr = self.alloc_expr(
Expr::Call { callee: try_branch, args: Box::new([operand]), is_assignee_expr: false },
syntax_ptr.clone(),
);
let continue_name = Name::generate_new_name();
let continue_binding =
self.alloc_binding(continue_name.clone(), BindingAnnotation::Unannotated);
let continue_bpat =
self.alloc_pat_desugared(Pat::Bind { id: continue_binding, subpat: None });
self.add_definition_to_binding(continue_binding, continue_bpat);
let continue_arm = MatchArm {
pat: self.alloc_pat_desugared(Pat::TupleStruct {
path: Some(Box::new(cf_continue)),
args: Box::new([continue_bpat]),
ellipsis: None,
}),
guard: None,
expr: self.alloc_expr(Expr::Path(Path::from(continue_name)), syntax_ptr.clone()),
};
let break_name = Name::generate_new_name();
let break_binding = self.alloc_binding(break_name.clone(), BindingAnnotation::Unannotated);
let break_bpat = self.alloc_pat_desugared(Pat::Bind { id: break_binding, subpat: None });
self.add_definition_to_binding(break_binding, break_bpat);
let break_arm = MatchArm {
pat: self.alloc_pat_desugared(Pat::TupleStruct {
path: Some(Box::new(cf_break)),
args: Box::new([break_bpat]),
ellipsis: None,
}),
guard: None,
expr: {
let it = self.alloc_expr(Expr::Path(Path::from(break_name)), syntax_ptr.clone());
let callee = self.alloc_expr(Expr::Path(try_from_residual), syntax_ptr.clone());
let result = self.alloc_expr(
Expr::Call { callee, args: Box::new([it]), is_assignee_expr: false },
syntax_ptr.clone(),
);
self.alloc_expr(
match self.current_try_block_label {
Some(label) => Expr::Break { expr: Some(result), label: Some(label) },
None => Expr::Return { expr: Some(result) },
},
syntax_ptr.clone(),
)
},
};
let arms = Box::new([continue_arm, break_arm]);
self.alloc_expr(Expr::Match { expr, arms }, syntax_ptr)
}
fn collect_macro_call<T, U>(
&mut self,
mcall: ast::MacroCall,
syntax_ptr: AstPtr<ast::MacroCall>,
record_diagnostics: bool,
collector: impl FnOnce(&mut Self, Option<T>) -> U,
) -> U
where
T: ast::AstNode,
{
// File containing the macro call. Expansion errors will be attached here.
let outer_file = self.expander.current_file_id;
let macro_call_ptr = self.expander.to_source(AstPtr::new(&mcall));
let module = self.expander.module.local_id;
let res = self.expander.enter_expand(self.db, mcall, |path| {
self.def_map
.resolve_path(
self.db,
module,
&path,
crate::item_scope::BuiltinShadowMode::Other,
Some(MacroSubNs::Bang),
)
.0
.take_macros()
});
let res = match res {
Ok(res) => res,
Err(UnresolvedMacro { path }) => {
if record_diagnostics {
self.source_map.diagnostics.push(BodyDiagnostic::UnresolvedMacroCall {
node: InFile::new(outer_file, syntax_ptr),
path,
});
}
return collector(self, None);
}
};
if record_diagnostics {
match &res.err {
Some(ExpandError::UnresolvedProcMacro(krate)) => {
self.source_map.diagnostics.push(BodyDiagnostic::UnresolvedProcMacro {
node: InFile::new(outer_file, syntax_ptr),
krate: *krate,
});
}
Some(ExpandError::RecursionOverflowPoisoned) => {
// Recursion limit has been reached in the macro expansion tree, but not in
// this very macro call. Don't add diagnostics to avoid duplication.
}
Some(err) => {
self.source_map.diagnostics.push(BodyDiagnostic::MacroError {
node: InFile::new(outer_file, syntax_ptr),
message: err.to_string(),
});
}
None => {}
}
}
match res.value {
Some((mark, expansion)) => {
// Keep collecting even with expansion errors so we can provide completions and
// other services in incomplete macro expressions.
self.source_map.expansions.insert(macro_call_ptr, self.expander.current_file_id);
let prev_ast_id_map = mem::replace(
&mut self.ast_id_map,
self.db.ast_id_map(self.expander.current_file_id),
);
if record_diagnostics {
// FIXME: Report parse errors here
}
let id = collector(self, Some(expansion.tree()));
self.ast_id_map = prev_ast_id_map;
self.expander.exit(self.db, mark);
id
}
None => collector(self, None),
}
}
fn collect_expr_opt(&mut self, expr: Option<ast::Expr>) -> ExprId {
match expr {
Some(expr) => self.collect_expr(expr),
None => self.missing_expr(),
}
}
fn collect_macro_as_stmt(
&mut self,
statements: &mut Vec<Statement>,
mac: ast::MacroExpr,
) -> Option<ExprId> {
let mac_call = mac.macro_call()?;
let syntax_ptr = AstPtr::new(&ast::Expr::from(mac));
let macro_ptr = AstPtr::new(&mac_call);
let expansion = self.collect_macro_call(
mac_call,
macro_ptr,
false,
|this, expansion: Option<ast::MacroStmts>| match expansion {
Some(expansion) => {
expansion.statements().for_each(|stmt| this.collect_stmt(statements, stmt));
expansion.expr().and_then(|expr| match expr {
ast::Expr::MacroExpr(mac) => this.collect_macro_as_stmt(statements, mac),
expr => Some(this.collect_expr(expr)),
})
}
None => None,
},
);
match expansion {
Some(tail) => {
// Make the macro-call point to its expanded expression so we can query
// semantics on syntax pointers to the macro
let src = self.expander.to_source(syntax_ptr);
self.source_map.expr_map.insert(src, tail);
Some(tail)
}
None => None,
}
}
fn collect_stmt(&mut self, statements: &mut Vec<Statement>, s: ast::Stmt) {
match s {
ast::Stmt::LetStmt(stmt) => {
if self.check_cfg(&stmt).is_none() {
return;
}
let pat = self.collect_pat_top(stmt.pat());
let type_ref =
stmt.ty().map(|it| Interned::new(TypeRef::from_ast(&self.ctx(), it)));
let initializer = stmt.initializer().map(|e| self.collect_expr(e));
let else_branch = stmt
.let_else()
.and_then(|let_else| let_else.block_expr())
.map(|block| self.collect_block(block));
statements.push(Statement::Let { pat, type_ref, initializer, else_branch });
}
ast::Stmt::ExprStmt(stmt) => {
let expr = stmt.expr();
match &expr {
Some(expr) if self.check_cfg(expr).is_none() => return,
_ => (),
}
let has_semi = stmt.semicolon_token().is_some();
// Note that macro could be expanded to multiple statements
if let Some(ast::Expr::MacroExpr(mac)) = expr {
if let Some(expr) = self.collect_macro_as_stmt(statements, mac) {
statements.push(Statement::Expr { expr, has_semi })
}
} else {
let expr = self.collect_expr_opt(expr);
statements.push(Statement::Expr { expr, has_semi });
}
}
ast::Stmt::Item(_item) => (),
}
}
fn collect_block(&mut self, block: ast::BlockExpr) -> ExprId {
self.collect_block_(block, |id, statements, tail| Expr::Block {
id,
statements,
tail,
label: None,
})
}
fn collect_block_(
&mut self,
block: ast::BlockExpr,
mk_block: impl FnOnce(Option<BlockId>, Box<[Statement]>, Option<ExprId>) -> Expr,
) -> ExprId {
let block_has_items = {
let statement_has_item = block.statements().any(|stmt| match stmt {
ast::Stmt::Item(_) => true,
// Macro calls can be both items and expressions. The syntax library always treats
// them as expressions here, so we undo that.
ast::Stmt::ExprStmt(es) => matches!(es.expr(), Some(ast::Expr::MacroExpr(_))),
_ => false,
});
statement_has_item || matches!(block.tail_expr(), Some(ast::Expr::MacroExpr(_)))
};
let block_id = if block_has_items {
let file_local_id = self.ast_id_map.ast_id(&block);
let ast_id = AstId::new(self.expander.current_file_id, file_local_id);
Some(self.db.intern_block(BlockLoc { ast_id, module: self.expander.module }))
} else {
None
};
let (module, def_map) =
match block_id.map(|block_id| (self.db.block_def_map(block_id), block_id)) {
Some((def_map, block_id)) => {
self.body.block_scopes.push(block_id);
(def_map.module_id(DefMap::ROOT), def_map)
}
None => (self.expander.module, self.def_map.clone()),
};
let prev_def_map = mem::replace(&mut self.def_map, def_map);
let prev_local_module = mem::replace(&mut self.expander.module, module);
let mut statements = Vec::new();
block.statements().for_each(|s| self.collect_stmt(&mut statements, s));
let tail = block.tail_expr().and_then(|e| match e {
ast::Expr::MacroExpr(mac) => self.collect_macro_as_stmt(&mut statements, mac),
expr => self.maybe_collect_expr(expr),
});
let tail = tail.or_else(|| {
let stmt = statements.pop()?;
if let Statement::Expr { expr, has_semi: false } = stmt {
return Some(expr);
}
statements.push(stmt);
None
});
let syntax_node_ptr = AstPtr::new(&block.into());
let expr_id = self
.alloc_expr(mk_block(block_id, statements.into_boxed_slice(), tail), syntax_node_ptr);
self.def_map = prev_def_map;
self.expander.module = prev_local_module;
expr_id
}
fn collect_block_opt(&mut self, expr: Option<ast::BlockExpr>) -> ExprId {
match expr {
Some(block) => self.collect_block(block),
None => self.missing_expr(),
}
}
fn collect_labelled_block_opt(
&mut self,
label: Option<LabelId>,
expr: Option<ast::BlockExpr>,
) -> ExprId {
match label {
Some(label) => self.with_labeled_rib(label, |this| this.collect_block_opt(expr)),
None => self.collect_block_opt(expr),
}
}
// region: patterns
fn collect_pat_top(&mut self, pat: Option<ast::Pat>) -> PatId {
match pat {
Some(pat) => self.collect_pat(pat, &mut BindingList::default()),
None => self.missing_pat(),
}
}
fn collect_pat(&mut self, pat: ast::Pat, binding_list: &mut BindingList) -> PatId {
let pattern = match &pat {
ast::Pat::IdentPat(bp) => {
let name = bp.name().map(|nr| nr.as_name()).unwrap_or_else(Name::missing);
let annotation =
BindingAnnotation::new(bp.mut_token().is_some(), bp.ref_token().is_some());
let subpat = bp.pat().map(|subpat| self.collect_pat(subpat, binding_list));
let is_simple_ident_pat =
annotation == BindingAnnotation::Unannotated && subpat.is_none();
let (binding, pattern) = if is_simple_ident_pat {
// This could also be a single-segment path pattern. To
// decide that, we need to try resolving the name.
let (resolved, _) = self.def_map.resolve_path(
self.db,
self.expander.module.local_id,
&name.clone().into(),
BuiltinShadowMode::Other,
None,
);
match resolved.take_values() {
Some(ModuleDefId::ConstId(_)) => (None, Pat::Path(name.into())),
Some(ModuleDefId::EnumVariantId(_)) => {
// this is only really valid for unit variants, but
// shadowing other enum variants with a pattern is
// an error anyway
(None, Pat::Path(name.into()))
}
Some(ModuleDefId::AdtId(AdtId::StructId(s)))
if self.db.struct_data(s).variant_data.kind() != StructKind::Record =>
{
// Funnily enough, record structs *can* be shadowed
// by pattern bindings (but unit or tuple structs
// can't).
(None, Pat::Path(name.into()))
}
// shadowing statics is an error as well, so we just ignore that case here
_ => {
let id = binding_list.find(self, name, annotation);
(Some(id), Pat::Bind { id, subpat })
}
}
} else {
let id = binding_list.find(self, name, annotation);
(Some(id), Pat::Bind { id, subpat })
};
let ptr = AstPtr::new(&pat);
let pat = self.alloc_pat(pattern, Either::Left(ptr));
if let Some(binding_id) = binding {
self.add_definition_to_binding(binding_id, pat);
}
return pat;
}
ast::Pat::TupleStructPat(p) => {
let path =
p.path().and_then(|path| self.expander.parse_path(self.db, path)).map(Box::new);
let (args, ellipsis) = self.collect_tuple_pat(
p.fields(),
comma_follows_token(p.l_paren_token()),
binding_list,
);
Pat::TupleStruct { path, args, ellipsis }
}
ast::Pat::RefPat(p) => {
let pat = self.collect_pat_opt(p.pat(), binding_list);
let mutability = Mutability::from_mutable(p.mut_token().is_some());
Pat::Ref { pat, mutability }
}
ast::Pat::PathPat(p) => {
let path =
p.path().and_then(|path| self.expander.parse_path(self.db, path)).map(Box::new);
path.map(Pat::Path).unwrap_or(Pat::Missing)
}
ast::Pat::OrPat(p) => 'b: {
let prev_is_used = mem::take(&mut binding_list.is_used);
let prev_reject_new = mem::take(&mut binding_list.reject_new);
let mut pats = Vec::with_capacity(p.pats().count());
let mut it = p.pats();
let Some(first) = it.next() else {
break 'b Pat::Or(Box::new([]));
};
pats.push(self.collect_pat(first, binding_list));
binding_list.reject_new = true;
for rest in it {
for (_, it) in binding_list.is_used.iter_mut() {
*it = false;
}
pats.push(self.collect_pat(rest, binding_list));
for (&id, &is_used) in binding_list.is_used.iter() {
if !is_used {
self.body.bindings[id].problems =
Some(BindingProblems::NotBoundAcrossAll);
}
}
}
binding_list.reject_new = prev_reject_new;
let current_is_used = mem::replace(&mut binding_list.is_used, prev_is_used);
for (id, _) in current_is_used.into_iter() {
binding_list.check_is_used(self, id);
}
Pat::Or(pats.into())
}
ast::Pat::ParenPat(p) => return self.collect_pat_opt(p.pat(), binding_list),
ast::Pat::TuplePat(p) => {
let (args, ellipsis) = self.collect_tuple_pat(
p.fields(),
comma_follows_token(p.l_paren_token()),
binding_list,
);
Pat::Tuple { args, ellipsis }
}
ast::Pat::WildcardPat(_) => Pat::Wild,
ast::Pat::RecordPat(p) => {
let path =
p.path().and_then(|path| self.expander.parse_path(self.db, path)).map(Box::new);
let args = p
.record_pat_field_list()
.expect("every struct should have a field list")
.fields()
.filter_map(|f| {
let ast_pat = f.pat()?;
let pat = self.collect_pat(ast_pat, binding_list);
let name = f.field_name()?.as_name();
Some(RecordFieldPat { name, pat })
})
.collect();
let ellipsis = p
.record_pat_field_list()
.expect("every struct should have a field list")
.rest_pat()
.is_some();
Pat::Record { path, args, ellipsis }
}
ast::Pat::SlicePat(p) => {
let SlicePatComponents { prefix, slice, suffix } = p.components();
// FIXME properly handle `RestPat`
Pat::Slice {
prefix: prefix.into_iter().map(|p| self.collect_pat(p, binding_list)).collect(),
slice: slice.map(|p| self.collect_pat(p, binding_list)),
suffix: suffix.into_iter().map(|p| self.collect_pat(p, binding_list)).collect(),
}
}
#[rustfmt::skip] // https://github.com/rust-lang/rustfmt/issues/5676
ast::Pat::LiteralPat(lit) => 'b: {
let Some((hir_lit, ast_lit)) = pat_literal_to_hir(lit) else { break 'b Pat::Missing };
let expr = Expr::Literal(hir_lit);
let expr_ptr = AstPtr::new(&ast::Expr::Literal(ast_lit));
let expr_id = self.alloc_expr(expr, expr_ptr);
Pat::Lit(expr_id)
}
ast::Pat::RestPat(_) => {
// `RestPat` requires special handling and should not be mapped
// to a Pat. Here we are using `Pat::Missing` as a fallback for
// when `RestPat` is mapped to `Pat`, which can easily happen
// when the source code being analyzed has a malformed pattern
// which includes `..` in a place where it isn't valid.
Pat::Missing
}
ast::Pat::BoxPat(boxpat) => {
let inner = self.collect_pat_opt(boxpat.pat(), binding_list);
Pat::Box { inner }
}
ast::Pat::ConstBlockPat(const_block_pat) => {
if let Some(block) = const_block_pat.block_expr() {
let expr_id = self.with_label_rib(RibKind::Constant, |this| {
let syntax_ptr = AstPtr::new(&block.clone().into());
this.collect_as_a_binding_owner_bad(
|this| this.collect_block(block),
syntax_ptr,
)
});
Pat::ConstBlock(expr_id)
} else {
Pat::Missing
}
}
ast::Pat::MacroPat(mac) => match mac.macro_call() {
Some(call) => {
let macro_ptr = AstPtr::new(&call);
let src = self.expander.to_source(Either::Left(AstPtr::new(&pat)));
let pat =
self.collect_macro_call(call, macro_ptr, true, |this, expanded_pat| {
this.collect_pat_opt(expanded_pat, binding_list)
});
self.source_map.pat_map.insert(src, pat);
return pat;
}
None => Pat::Missing,
},
// FIXME: implement in a way that also builds source map and calculates assoc resolutions in type inference.
ast::Pat::RangePat(p) => {
let mut range_part_lower = |p: Option<ast::Pat>| {
p.and_then(|it| match &it {
ast::Pat::LiteralPat(it) => {
Some(Box::new(LiteralOrConst::Literal(pat_literal_to_hir(it)?.0)))
}
ast::Pat::IdentPat(p) => {
let name =
p.name().map(|nr| nr.as_name()).unwrap_or_else(Name::missing);
Some(Box::new(LiteralOrConst::Const(name.into())))
}
ast::Pat::PathPat(p) => p
.path()
.and_then(|path| self.expander.parse_path(self.db, path))
.map(LiteralOrConst::Const)
.map(Box::new),
_ => None,
})
};
let start = range_part_lower(p.start());
let end = range_part_lower(p.end());
Pat::Range { start, end }
}
};
let ptr = AstPtr::new(&pat);
self.alloc_pat(pattern, Either::Left(ptr))
}
fn collect_pat_opt(&mut self, pat: Option<ast::Pat>, binding_list: &mut BindingList) -> PatId {
match pat {
Some(pat) => self.collect_pat(pat, binding_list),
None => self.missing_pat(),
}
}
fn collect_tuple_pat(
&mut self,
args: AstChildren<ast::Pat>,
has_leading_comma: bool,
binding_list: &mut BindingList,
) -> (Box<[PatId]>, Option<usize>) {
// Find the location of the `..`, if there is one. Note that we do not
// consider the possibility of there being multiple `..` here.
let ellipsis = args.clone().position(|p| matches!(p, ast::Pat::RestPat(_)));
// We want to skip the `..` pattern here, since we account for it above.
let mut args: Vec<_> = args
.filter(|p| !matches!(p, ast::Pat::RestPat(_)))
.map(|p| self.collect_pat(p, binding_list))
.collect();
// if there is a leading comma, the user is most likely to type out a leading pattern
// so we insert a missing pattern at the beginning for IDE features
if has_leading_comma {
args.insert(0, self.missing_pat());
}
(args.into_boxed_slice(), ellipsis)
}
// endregion: patterns
/// Returns `None` (and emits diagnostics) when `owner` if `#[cfg]`d out, and `Some(())` when
/// not.
fn check_cfg(&mut self, owner: &dyn ast::HasAttrs) -> Option<()> {
match self.expander.parse_attrs(self.db, owner).cfg() {
Some(cfg) => {
if self.expander.cfg_options().check(&cfg) != Some(false) {
return Some(());
}
self.source_map.diagnostics.push(BodyDiagnostic::InactiveCode {
node: InFile::new(
self.expander.current_file_id,
SyntaxNodePtr::new(owner.syntax()),
),
cfg,
opts: self.expander.cfg_options().clone(),
});
None
}
None => Some(()),
}
}
fn add_definition_to_binding(&mut self, binding_id: BindingId, pat_id: PatId) {
self.body.bindings[binding_id].definitions.push(pat_id);
}
// region: labels
fn collect_label(&mut self, ast_label: ast::Label) -> LabelId {
let label = Label {
name: ast_label.lifetime().as_ref().map_or_else(Name::missing, Name::new_lifetime),
};
self.alloc_label(label, AstPtr::new(&ast_label))
}
fn resolve_label(
&self,
lifetime: Option<ast::Lifetime>,
) -> Result<Option<LabelId>, BodyDiagnostic> {
let Some(lifetime) = lifetime else { return Ok(None) };
let name = Name::new_lifetime(&lifetime);
for (rib_idx, rib) in self.label_ribs.iter().enumerate().rev() {
if let Some((label_name, id)) = &rib.label {
if *label_name == name {
return if self.is_label_valid_from_rib(rib_idx) {
Ok(Some(*id))
} else {
Err(BodyDiagnostic::UnreachableLabel {
name,
node: InFile::new(
self.expander.current_file_id,
AstPtr::new(&lifetime),
),
})
};
}
}
}
Err(BodyDiagnostic::UndeclaredLabel {
name,
node: InFile::new(self.expander.current_file_id, AstPtr::new(&lifetime)),
})
}
fn is_label_valid_from_rib(&self, rib_index: usize) -> bool {
!self.label_ribs[rib_index + 1..].iter().any(|rib| rib.kind.is_label_barrier())
}
fn with_label_rib<T>(&mut self, kind: RibKind, f: impl FnOnce(&mut Self) -> T) -> T {
self.label_ribs.push(LabelRib::new(kind));
let res = f(self);
self.label_ribs.pop();
res
}
fn with_labeled_rib<T>(&mut self, label: LabelId, f: impl FnOnce(&mut Self) -> T) -> T {
self.label_ribs.push(LabelRib::new_normal((self.body[label].name.clone(), label)));
let res = f(self);
self.label_ribs.pop();
res
}
fn with_opt_labeled_rib<T>(
&mut self,
label: Option<LabelId>,
f: impl FnOnce(&mut Self) -> T,
) -> T {
match label {
None => f(self),
Some(label) => self.with_labeled_rib(label, f),
}
}
// endregion: labels
}
fn pat_literal_to_hir(lit: &ast::LiteralPat) -> Option<(Literal, ast::Literal)> {
let ast_lit = lit.literal()?;
let mut hir_lit: Literal = ast_lit.kind().into();
if lit.minus_token().is_some() {
let Some(h) = hir_lit.negate() else {
return None;
};
hir_lit = h;
}
Some((hir_lit, ast_lit))
}
impl ExprCollector<'_> {
fn alloc_expr(&mut self, expr: Expr, ptr: ExprPtr) -> ExprId {
let src = self.expander.to_source(ptr);
let id = self.body.exprs.alloc(expr);
self.source_map.expr_map_back.insert(id, src.clone());
self.source_map.expr_map.insert(src, id);
id
}
// FIXME: desugared exprs don't have ptr, that's wrong and should be fixed somehow.
fn alloc_expr_desugared(&mut self, expr: Expr) -> ExprId {
self.body.exprs.alloc(expr)
}
fn missing_expr(&mut self) -> ExprId {
self.alloc_expr_desugared(Expr::Missing)
}
fn alloc_binding(&mut self, name: Name, mode: BindingAnnotation) -> BindingId {
let binding = self.body.bindings.alloc(Binding {
name,
mode,
definitions: SmallVec::new(),
problems: None,
});
if let Some(owner) = self.current_binding_owner {
self.body.binding_owners.insert(binding, owner);
}
binding
}
fn alloc_pat(&mut self, pat: Pat, ptr: PatPtr) -> PatId {
let src = self.expander.to_source(ptr);
let id = self.body.pats.alloc(pat);
self.source_map.pat_map_back.insert(id, src.clone());
self.source_map.pat_map.insert(src, id);
id
}
// FIXME: desugared pats don't have ptr, that's wrong and should be fixed somehow.
fn alloc_pat_desugared(&mut self, pat: Pat) -> PatId {
self.body.pats.alloc(pat)
}
fn missing_pat(&mut self) -> PatId {
self.body.pats.alloc(Pat::Missing)
}
fn alloc_label(&mut self, label: Label, ptr: LabelPtr) -> LabelId {
let src = self.expander.to_source(ptr);
let id = self.body.labels.alloc(label);
self.source_map.label_map_back.insert(id, src.clone());
self.source_map.label_map.insert(src, id);
id
}
// FIXME: desugared labels don't have ptr, that's wrong and should be fixed somehow.
fn alloc_label_desugared(&mut self, label: Label) -> LabelId {
self.body.labels.alloc(label)
}
}
fn comma_follows_token(t: Option<syntax::SyntaxToken>) -> bool {
(|| syntax::algo::skip_trivia_token(t?.next_token()?, syntax::Direction::Next))()
.map_or(false, |it| it.kind() == syntax::T![,])
}