blob: 3b47a451345ebeeb9f32f5fe59ac3900e4af2d95 [file] [log] [blame]
use crate::ty::needs_ordered_drop;
use crate::{get_enclosing_block, path_to_local_id};
use core::ops::ControlFlow;
use rustc_hir as hir;
use rustc_hir::def::{CtorKind, DefKind, Res};
use rustc_hir::intravisit::{self, walk_block, walk_expr, Visitor};
use rustc_hir::{
AnonConst, Arm, Block, BlockCheckMode, Body, BodyId, Expr, ExprKind, HirId, ItemId, ItemKind, Let, Pat, QPath,
Stmt, UnOp, UnsafeSource, Unsafety,
};
use rustc_lint::LateContext;
use rustc_middle::hir::nested_filter;
use rustc_middle::ty::adjustment::Adjust;
use rustc_middle::ty::{self, Ty, TyCtxt, TypeckResults};
use rustc_span::Span;
mod internal {
/// Trait for visitor functions to control whether or not to descend to child nodes. Implemented
/// for only two types. `()` always descends. `Descend` allows controlled descent.
pub trait Continue {
fn descend(&self) -> bool;
}
}
use internal::Continue;
impl Continue for () {
fn descend(&self) -> bool {
true
}
}
/// Allows for controlled descent when using visitor functions. Use `()` instead when always
/// descending into child nodes.
#[derive(Clone, Copy)]
pub enum Descend {
Yes,
No,
}
impl From<bool> for Descend {
fn from(from: bool) -> Self {
if from { Self::Yes } else { Self::No }
}
}
impl Continue for Descend {
fn descend(&self) -> bool {
matches!(self, Self::Yes)
}
}
/// A type which can be visited.
pub trait Visitable<'tcx> {
/// Calls the corresponding `visit_*` function on the visitor.
fn visit<V: Visitor<'tcx>>(self, visitor: &mut V);
}
impl<'tcx, T> Visitable<'tcx> for &'tcx [T]
where
&'tcx T: Visitable<'tcx>,
{
fn visit<V: Visitor<'tcx>>(self, visitor: &mut V) {
for x in self {
x.visit(visitor);
}
}
}
macro_rules! visitable_ref {
($t:ident, $f:ident) => {
impl<'tcx> Visitable<'tcx> for &'tcx $t<'tcx> {
fn visit<V: Visitor<'tcx>>(self, visitor: &mut V) {
visitor.$f(self);
}
}
};
}
visitable_ref!(Arm, visit_arm);
visitable_ref!(Block, visit_block);
visitable_ref!(Body, visit_body);
visitable_ref!(Expr, visit_expr);
visitable_ref!(Stmt, visit_stmt);
/// Calls the given function once for each expression contained. This does not enter any bodies or
/// nested items.
pub fn for_each_expr<'tcx, B, C: Continue>(
node: impl Visitable<'tcx>,
f: impl FnMut(&'tcx Expr<'tcx>) -> ControlFlow<B, C>,
) -> Option<B> {
struct V<B, F> {
f: F,
res: Option<B>,
}
impl<'tcx, B, C: Continue, F: FnMut(&'tcx Expr<'tcx>) -> ControlFlow<B, C>> Visitor<'tcx> for V<B, F> {
fn visit_expr(&mut self, e: &'tcx Expr<'tcx>) {
if self.res.is_some() {
return;
}
match (self.f)(e) {
ControlFlow::Continue(c) if c.descend() => walk_expr(self, e),
ControlFlow::Break(b) => self.res = Some(b),
ControlFlow::Continue(_) => (),
}
}
// Avoid unnecessary `walk_*` calls.
fn visit_ty(&mut self, _: &'tcx hir::Ty<'tcx>) {}
fn visit_pat(&mut self, _: &'tcx Pat<'tcx>) {}
fn visit_qpath(&mut self, _: &'tcx QPath<'tcx>, _: HirId, _: Span) {}
// Avoid monomorphising all `visit_*` functions.
fn visit_nested_item(&mut self, _: ItemId) {}
}
let mut v = V { f, res: None };
node.visit(&mut v);
v.res
}
/// Calls the given function once for each expression contained. This will enter bodies, but not
/// nested items.
pub fn for_each_expr_with_closures<'tcx, B, C: Continue>(
cx: &LateContext<'tcx>,
node: impl Visitable<'tcx>,
f: impl FnMut(&'tcx Expr<'tcx>) -> ControlFlow<B, C>,
) -> Option<B> {
struct V<'tcx, B, F> {
tcx: TyCtxt<'tcx>,
f: F,
res: Option<B>,
}
impl<'tcx, B, C: Continue, F: FnMut(&'tcx Expr<'tcx>) -> ControlFlow<B, C>> Visitor<'tcx> for V<'tcx, B, F> {
type NestedFilter = nested_filter::OnlyBodies;
fn nested_visit_map(&mut self) -> Self::Map {
self.tcx.hir()
}
fn visit_expr(&mut self, e: &'tcx Expr<'tcx>) {
if self.res.is_some() {
return;
}
match (self.f)(e) {
ControlFlow::Continue(c) if c.descend() => walk_expr(self, e),
ControlFlow::Break(b) => self.res = Some(b),
ControlFlow::Continue(_) => (),
}
}
// Only walk closures
fn visit_anon_const(&mut self, _: &'tcx AnonConst) {}
// Avoid unnecessary `walk_*` calls.
fn visit_ty(&mut self, _: &'tcx hir::Ty<'tcx>) {}
fn visit_pat(&mut self, _: &'tcx Pat<'tcx>) {}
fn visit_qpath(&mut self, _: &'tcx QPath<'tcx>, _: HirId, _: Span) {}
// Avoid monomorphising all `visit_*` functions.
fn visit_nested_item(&mut self, _: ItemId) {}
}
let mut v = V {
tcx: cx.tcx,
f,
res: None,
};
node.visit(&mut v);
v.res
}
/// returns `true` if expr contains match expr desugared from try
fn contains_try(expr: &hir::Expr<'_>) -> bool {
for_each_expr(expr, |e| {
if matches!(e.kind, hir::ExprKind::Match(_, _, hir::MatchSource::TryDesugar(_))) {
ControlFlow::Break(())
} else {
ControlFlow::Continue(())
}
})
.is_some()
}
pub fn find_all_ret_expressions<'hir, F>(_cx: &LateContext<'_>, expr: &'hir hir::Expr<'hir>, callback: F) -> bool
where
F: FnMut(&'hir hir::Expr<'hir>) -> bool,
{
struct RetFinder<F> {
in_stmt: bool,
failed: bool,
cb: F,
}
struct WithStmtGuard<'a, F> {
val: &'a mut RetFinder<F>,
prev_in_stmt: bool,
}
impl<F> RetFinder<F> {
fn inside_stmt(&mut self, in_stmt: bool) -> WithStmtGuard<'_, F> {
let prev_in_stmt = std::mem::replace(&mut self.in_stmt, in_stmt);
WithStmtGuard {
val: self,
prev_in_stmt,
}
}
}
impl<F> std::ops::Deref for WithStmtGuard<'_, F> {
type Target = RetFinder<F>;
fn deref(&self) -> &Self::Target {
self.val
}
}
impl<F> std::ops::DerefMut for WithStmtGuard<'_, F> {
fn deref_mut(&mut self) -> &mut Self::Target {
self.val
}
}
impl<F> Drop for WithStmtGuard<'_, F> {
fn drop(&mut self) {
self.val.in_stmt = self.prev_in_stmt;
}
}
impl<'hir, F: FnMut(&'hir hir::Expr<'hir>) -> bool> intravisit::Visitor<'hir> for RetFinder<F> {
fn visit_stmt(&mut self, stmt: &'hir hir::Stmt<'_>) {
intravisit::walk_stmt(&mut *self.inside_stmt(true), stmt);
}
fn visit_expr(&mut self, expr: &'hir hir::Expr<'_>) {
if self.failed {
return;
}
if self.in_stmt {
match expr.kind {
hir::ExprKind::Ret(Some(expr)) => self.inside_stmt(false).visit_expr(expr),
_ => intravisit::walk_expr(self, expr),
}
} else {
match expr.kind {
hir::ExprKind::If(cond, then, else_opt) => {
self.inside_stmt(true).visit_expr(cond);
self.visit_expr(then);
if let Some(el) = else_opt {
self.visit_expr(el);
}
},
hir::ExprKind::Match(cond, arms, _) => {
self.inside_stmt(true).visit_expr(cond);
for arm in arms {
self.visit_expr(arm.body);
}
},
hir::ExprKind::Block(..) => intravisit::walk_expr(self, expr),
hir::ExprKind::Ret(Some(expr)) => self.visit_expr(expr),
_ => self.failed |= !(self.cb)(expr),
}
}
}
}
!contains_try(expr) && {
let mut ret_finder = RetFinder {
in_stmt: false,
failed: false,
cb: callback,
};
ret_finder.visit_expr(expr);
!ret_finder.failed
}
}
/// Checks if the given resolved path is used in the given body.
pub fn is_res_used(cx: &LateContext<'_>, res: Res, body: BodyId) -> bool {
for_each_expr_with_closures(cx, cx.tcx.hir().body(body).value, |e| {
if let ExprKind::Path(p) = &e.kind {
if cx.qpath_res(p, e.hir_id) == res {
return ControlFlow::Break(());
}
}
ControlFlow::Continue(())
})
.is_some()
}
/// Checks if the given local is used.
pub fn is_local_used<'tcx>(cx: &LateContext<'tcx>, visitable: impl Visitable<'tcx>, id: HirId) -> bool {
for_each_expr_with_closures(cx, visitable, |e| {
if path_to_local_id(e, id) {
ControlFlow::Break(())
} else {
ControlFlow::Continue(())
}
})
.is_some()
}
/// Checks if the given expression is a constant.
pub fn is_const_evaluatable<'tcx>(cx: &LateContext<'tcx>, e: &'tcx Expr<'_>) -> bool {
struct V<'a, 'tcx> {
cx: &'a LateContext<'tcx>,
is_const: bool,
}
impl<'tcx> Visitor<'tcx> for V<'_, 'tcx> {
type NestedFilter = nested_filter::OnlyBodies;
fn nested_visit_map(&mut self) -> Self::Map {
self.cx.tcx.hir()
}
fn visit_expr(&mut self, e: &'tcx Expr<'_>) {
if !self.is_const {
return;
}
match e.kind {
ExprKind::ConstBlock(_) => return,
ExprKind::Call(
&Expr {
kind: ExprKind::Path(ref p),
hir_id,
..
},
_,
) if self
.cx
.qpath_res(p, hir_id)
.opt_def_id()
.map_or(false, |id| self.cx.tcx.is_const_fn_raw(id)) => {},
ExprKind::MethodCall(..)
if self
.cx
.typeck_results()
.type_dependent_def_id(e.hir_id)
.map_or(false, |id| self.cx.tcx.is_const_fn_raw(id)) => {},
ExprKind::Binary(_, lhs, rhs)
if self.cx.typeck_results().expr_ty(lhs).peel_refs().is_primitive_ty()
&& self.cx.typeck_results().expr_ty(rhs).peel_refs().is_primitive_ty() => {},
ExprKind::Unary(UnOp::Deref, e) if self.cx.typeck_results().expr_ty(e).is_ref() => (),
ExprKind::Unary(_, e) if self.cx.typeck_results().expr_ty(e).peel_refs().is_primitive_ty() => (),
ExprKind::Index(base, _, _)
if matches!(
self.cx.typeck_results().expr_ty(base).peel_refs().kind(),
ty::Slice(_) | ty::Array(..)
) => {},
ExprKind::Path(ref p)
if matches!(
self.cx.qpath_res(p, e.hir_id),
Res::Def(
DefKind::Const
| DefKind::AssocConst
| DefKind::AnonConst
| DefKind::ConstParam
| DefKind::Ctor(..)
| DefKind::Fn
| DefKind::AssocFn,
_
) | Res::SelfCtor(_)
) => {},
ExprKind::AddrOf(..)
| ExprKind::Array(_)
| ExprKind::Block(..)
| ExprKind::Cast(..)
| ExprKind::DropTemps(_)
| ExprKind::Field(..)
| ExprKind::If(..)
| ExprKind::Let(..)
| ExprKind::Lit(_)
| ExprKind::Match(..)
| ExprKind::Repeat(..)
| ExprKind::Struct(..)
| ExprKind::Tup(_)
| ExprKind::Type(..) => (),
_ => {
self.is_const = false;
return;
},
}
walk_expr(self, e);
}
}
let mut v = V { cx, is_const: true };
v.visit_expr(e);
v.is_const
}
/// Checks if the given expression performs an unsafe operation outside of an unsafe block.
pub fn is_expr_unsafe<'tcx>(cx: &LateContext<'tcx>, e: &'tcx Expr<'_>) -> bool {
struct V<'a, 'tcx> {
cx: &'a LateContext<'tcx>,
is_unsafe: bool,
}
impl<'tcx> Visitor<'tcx> for V<'_, 'tcx> {
type NestedFilter = nested_filter::OnlyBodies;
fn nested_visit_map(&mut self) -> Self::Map {
self.cx.tcx.hir()
}
fn visit_expr(&mut self, e: &'tcx Expr<'_>) {
if self.is_unsafe {
return;
}
match e.kind {
ExprKind::Unary(UnOp::Deref, e) if self.cx.typeck_results().expr_ty(e).is_unsafe_ptr() => {
self.is_unsafe = true;
},
ExprKind::MethodCall(..)
if self
.cx
.typeck_results()
.type_dependent_def_id(e.hir_id)
.map_or(false, |id| {
self.cx.tcx.fn_sig(id).skip_binder().unsafety() == Unsafety::Unsafe
}) =>
{
self.is_unsafe = true;
},
ExprKind::Call(func, _) => match *self.cx.typeck_results().expr_ty(func).peel_refs().kind() {
ty::FnDef(id, _) if self.cx.tcx.fn_sig(id).skip_binder().unsafety() == Unsafety::Unsafe => {
self.is_unsafe = true;
},
ty::FnPtr(sig) if sig.unsafety() == Unsafety::Unsafe => self.is_unsafe = true,
_ => walk_expr(self, e),
},
ExprKind::Path(ref p)
if self
.cx
.qpath_res(p, e.hir_id)
.opt_def_id()
.map_or(false, |id| self.cx.tcx.is_mutable_static(id)) =>
{
self.is_unsafe = true;
},
_ => walk_expr(self, e),
}
}
fn visit_block(&mut self, b: &'tcx Block<'_>) {
if !matches!(b.rules, BlockCheckMode::UnsafeBlock(_)) {
walk_block(self, b);
}
}
fn visit_nested_item(&mut self, id: ItemId) {
if let ItemKind::Impl(i) = &self.cx.tcx.hir().item(id).kind {
self.is_unsafe = i.unsafety == Unsafety::Unsafe;
}
}
}
let mut v = V { cx, is_unsafe: false };
v.visit_expr(e);
v.is_unsafe
}
/// Checks if the given expression contains an unsafe block
pub fn contains_unsafe_block<'tcx>(cx: &LateContext<'tcx>, e: &'tcx Expr<'tcx>) -> bool {
struct V<'cx, 'tcx> {
cx: &'cx LateContext<'tcx>,
found_unsafe: bool,
}
impl<'tcx> Visitor<'tcx> for V<'_, 'tcx> {
type NestedFilter = nested_filter::OnlyBodies;
fn nested_visit_map(&mut self) -> Self::Map {
self.cx.tcx.hir()
}
fn visit_block(&mut self, b: &'tcx Block<'_>) {
if self.found_unsafe {
return;
}
if b.rules == BlockCheckMode::UnsafeBlock(UnsafeSource::UserProvided) {
self.found_unsafe = true;
return;
}
walk_block(self, b);
}
}
let mut v = V {
cx,
found_unsafe: false,
};
v.visit_expr(e);
v.found_unsafe
}
/// Runs the given function for each sub-expression producing the final value consumed by the parent
/// of the give expression.
///
/// e.g. for the following expression
/// ```rust,ignore
/// if foo {
/// f(0)
/// } else {
/// 1 + 1
/// }
/// ```
/// this will pass both `f(0)` and `1+1` to the given function.
pub fn for_each_value_source<'tcx, B>(
e: &'tcx Expr<'tcx>,
f: &mut impl FnMut(&'tcx Expr<'tcx>) -> ControlFlow<B>,
) -> ControlFlow<B> {
match e.kind {
ExprKind::Block(Block { expr: Some(e), .. }, _) => for_each_value_source(e, f),
ExprKind::Match(_, arms, _) => {
for arm in arms {
for_each_value_source(arm.body, f)?;
}
ControlFlow::Continue(())
},
ExprKind::If(_, if_expr, Some(else_expr)) => {
for_each_value_source(if_expr, f)?;
for_each_value_source(else_expr, f)
},
ExprKind::DropTemps(e) => for_each_value_source(e, f),
_ => f(e),
}
}
/// Runs the given function for each path expression referencing the given local which occur after
/// the given expression.
pub fn for_each_local_use_after_expr<'tcx, B>(
cx: &LateContext<'tcx>,
local_id: HirId,
expr_id: HirId,
f: impl FnMut(&'tcx Expr<'tcx>) -> ControlFlow<B>,
) -> ControlFlow<B> {
struct V<'cx, 'tcx, F, B> {
cx: &'cx LateContext<'tcx>,
local_id: HirId,
expr_id: HirId,
found: bool,
res: ControlFlow<B>,
f: F,
}
impl<'cx, 'tcx, F: FnMut(&'tcx Expr<'tcx>) -> ControlFlow<B>, B> Visitor<'tcx> for V<'cx, 'tcx, F, B> {
type NestedFilter = nested_filter::OnlyBodies;
fn nested_visit_map(&mut self) -> Self::Map {
self.cx.tcx.hir()
}
fn visit_expr(&mut self, e: &'tcx Expr<'tcx>) {
if !self.found {
if e.hir_id == self.expr_id {
self.found = true;
} else {
walk_expr(self, e);
}
return;
}
if self.res.is_break() {
return;
}
if path_to_local_id(e, self.local_id) {
self.res = (self.f)(e);
} else {
walk_expr(self, e);
}
}
}
if let Some(b) = get_enclosing_block(cx, local_id) {
let mut v = V {
cx,
local_id,
expr_id,
found: false,
res: ControlFlow::Continue(()),
f,
};
v.visit_block(b);
v.res
} else {
ControlFlow::Continue(())
}
}
// Calls the given function for every unconsumed temporary created by the expression. Note the
// function is only guaranteed to be called for types which need to be dropped, but it may be called
// for other types.
#[allow(clippy::too_many_lines)]
pub fn for_each_unconsumed_temporary<'tcx, B>(
cx: &LateContext<'tcx>,
e: &'tcx Expr<'tcx>,
mut f: impl FnMut(Ty<'tcx>) -> ControlFlow<B>,
) -> ControlFlow<B> {
// Todo: Handle partially consumed values.
fn helper<'tcx, B>(
typeck: &'tcx TypeckResults<'tcx>,
consume: bool,
e: &'tcx Expr<'tcx>,
f: &mut impl FnMut(Ty<'tcx>) -> ControlFlow<B>,
) -> ControlFlow<B> {
if !consume
|| matches!(
typeck.expr_adjustments(e),
[adjust, ..] if matches!(adjust.kind, Adjust::Borrow(_) | Adjust::Deref(_))
)
{
match e.kind {
ExprKind::Path(QPath::Resolved(None, p))
if matches!(p.res, Res::Def(DefKind::Ctor(_, CtorKind::Const), _)) =>
{
f(typeck.expr_ty(e))?;
},
ExprKind::Path(_)
| ExprKind::Unary(UnOp::Deref, _)
| ExprKind::Index(..)
| ExprKind::Field(..)
| ExprKind::AddrOf(..) => (),
_ => f(typeck.expr_ty(e))?,
}
}
match e.kind {
ExprKind::AddrOf(_, _, e)
| ExprKind::Field(e, _)
| ExprKind::Unary(UnOp::Deref, e)
| ExprKind::Match(e, ..)
| ExprKind::Let(&Let { init: e, .. }) => {
helper(typeck, false, e, f)?;
},
ExprKind::Block(&Block { expr: Some(e), .. }, _) | ExprKind::Cast(e, _) | ExprKind::Unary(_, e) => {
helper(typeck, true, e, f)?;
},
ExprKind::Call(callee, args) => {
helper(typeck, true, callee, f)?;
for arg in args {
helper(typeck, true, arg, f)?;
}
},
ExprKind::MethodCall(_, receiver, args, _) => {
helper(typeck, true, receiver, f)?;
for arg in args {
helper(typeck, true, arg, f)?;
}
},
ExprKind::Tup(args) | ExprKind::Array(args) => {
for arg in args {
helper(typeck, true, arg, f)?;
}
},
ExprKind::Index(borrowed, consumed, _)
| ExprKind::Assign(borrowed, consumed, _)
| ExprKind::AssignOp(_, borrowed, consumed) => {
helper(typeck, false, borrowed, f)?;
helper(typeck, true, consumed, f)?;
},
ExprKind::Binary(_, lhs, rhs) => {
helper(typeck, true, lhs, f)?;
helper(typeck, true, rhs, f)?;
},
ExprKind::Struct(_, fields, default) => {
for field in fields {
helper(typeck, true, field.expr, f)?;
}
if let Some(default) = default {
helper(typeck, false, default, f)?;
}
},
ExprKind::If(cond, then, else_expr) => {
helper(typeck, true, cond, f)?;
helper(typeck, true, then, f)?;
if let Some(else_expr) = else_expr {
helper(typeck, true, else_expr, f)?;
}
},
ExprKind::Type(e, _) => {
helper(typeck, consume, e, f)?;
},
// Either drops temporaries, jumps out of the current expression, or has no sub expression.
ExprKind::DropTemps(_)
| ExprKind::Ret(_)
| ExprKind::Become(_)
| ExprKind::Break(..)
| ExprKind::Yield(..)
| ExprKind::Block(..)
| ExprKind::Loop(..)
| ExprKind::Repeat(..)
| ExprKind::Lit(_)
| ExprKind::ConstBlock(_)
| ExprKind::Closure { .. }
| ExprKind::Path(_)
| ExprKind::Continue(_)
| ExprKind::InlineAsm(_)
| ExprKind::OffsetOf(..)
| ExprKind::Err(_) => (),
}
ControlFlow::Continue(())
}
helper(cx.typeck_results(), true, e, &mut f)
}
pub fn any_temporaries_need_ordered_drop<'tcx>(cx: &LateContext<'tcx>, e: &'tcx Expr<'tcx>) -> bool {
for_each_unconsumed_temporary(cx, e, |ty| {
if needs_ordered_drop(cx, ty) {
ControlFlow::Break(())
} else {
ControlFlow::Continue(())
}
})
.is_break()
}
/// Runs the given function for each path expression referencing the given local which occur after
/// the given expression.
pub fn for_each_local_assignment<'tcx, B>(
cx: &LateContext<'tcx>,
local_id: HirId,
f: impl FnMut(&'tcx Expr<'tcx>) -> ControlFlow<B>,
) -> ControlFlow<B> {
struct V<'cx, 'tcx, F, B> {
cx: &'cx LateContext<'tcx>,
local_id: HirId,
res: ControlFlow<B>,
f: F,
}
impl<'cx, 'tcx, F: FnMut(&'tcx Expr<'tcx>) -> ControlFlow<B>, B> Visitor<'tcx> for V<'cx, 'tcx, F, B> {
type NestedFilter = nested_filter::OnlyBodies;
fn nested_visit_map(&mut self) -> Self::Map {
self.cx.tcx.hir()
}
fn visit_expr(&mut self, e: &'tcx Expr<'tcx>) {
if let ExprKind::Assign(lhs, rhs, _) = e.kind
&& self.res.is_continue()
&& path_to_local_id(lhs, self.local_id)
{
self.res = (self.f)(rhs);
self.visit_expr(rhs);
} else {
walk_expr(self, e);
}
}
}
if let Some(b) = get_enclosing_block(cx, local_id) {
let mut v = V {
cx,
local_id,
res: ControlFlow::Continue(()),
f,
};
v.visit_block(b);
v.res
} else {
ControlFlow::Continue(())
}
}
pub fn contains_break_or_continue(expr: &Expr<'_>) -> bool {
for_each_expr(expr, |e| {
if matches!(e.kind, ExprKind::Break(..) | ExprKind::Continue(..)) {
ControlFlow::Break(())
} else {
ControlFlow::Continue(())
}
})
.is_some()
}